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ABSTRACT

Recent diffusion-based world models can synthesize multi-camera driving videos,
yet they still suffer from geometric drift between views, degrading perception, pre-
diction and planning. We introduce OminiDrive, the first unified model that jointly
compresses, generates and modulates all camera streams to deliver realistic, con-
trollable and view-consistent driving videos. A DiT backbone operates in a shared
latent manifold obtained by multi-view variational compression; within this space
a consistency-aware denoiser injects correlated noise and aligns view-dependent
coordinates at every diffusion step. Heterogeneous control signals—vehicle tra-
jectory, ego pose and scene semantics—are fused through lightweight latent mod-
ulation layers, thus steering generation without extra inference cost. By reasoning
over a single, view-homogeneous token grid, OminiDrive preserves both spatial
coherence and temporal fidelity. Experiments on nuScenes and Waymo datasets
show state-of-the-art view consistency and video quality, and the synthesized data
significantly improves the performance of downstream perception models.The
project is available at https://iclr2026sub.github.io/OminiDrive/.

1 INTRODUCTION

Generative world models Gao et al. (2023; 2024a); Wang et al. (2024a); Zhao et al. (2025b); Wen
et al. (2024); Kim et al. (2021); Mei et al. (2024); Zhao et al. (2025a) have rapidly become a linchpin
of autonomous-driving research. By amalgamating 3D VAEs Yang et al. (2024b); Kong et al. (2024)
with DiT backbones Esser et al. (2024a) and accelerated by flow-matching samplers Lipman et al.
(2022), modern diffusion systems now deliver minute-long, photorealistic, controllable simulations
at automotive scale. Such synthetic corpora markedly curtail data-collection costs while enabling
exhaustive, closed-loop evaluation of perception and planning stacks Yang et al. (2024a).

Despite this progress, two fundamental obstacles remain. (i) Multi-view inconsistency. Prevailing
pipelines compress each of the six camera streams independently, Cross-view communication is
therefore postponed to diffusion time via ad-hoc cross-attention Gao et al. (2024a); Wang et al.
(2024a), leaving the latent space fragmented and geometrically discordant. (ii) Heterogeneous con-
trol injection. Driving simulators must reconcile spatially aligned geometric cues (HD-maps, trajec-
tories, camera extrinsics) with global semantic cues (text or style prompts). Existing architectures
attach disjoint modules—ControlNet-like branches for geometry, cross-attention adapters for se-
mantics—so temporal synchrony and spatial anchoring are frequently lost, degrading fine-grained
controllability.

To address the two challenges outlined above, we introduce OminiDrive, the first unified framework
specifically designed for multi-camera driving video generation that resolves both issues through
Unified Compression and Unified Controllable Generation. Unified Compression performs an
early-fusion encoding of the six camera streams, allowing inter-view geometry to be inferred before
any latent is produced and thereby eradicating cross-camera inconsistencies. Unified Controllable
Generation then harnesses an LLM-assisted MM-DiTEsser et al. (2024b) that ingests a joint se-
quence of video latents, linguistic prompts distilled by the LLM, and geometric cues, so that spatially
local conditions and global semantics are negotiated within one coherent representation. Working
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Table 1: OminiDrive offers the most comprehensive control among the leading driving video gener-
ation models.

Model Supported Control Conditions

Traj. 3D Box HD Map Text Cam. Img Ref.

DriveGANKim et al. (2021) × × × × ✓ ×
Drive-WMWang et al. (2024b) ✓ × × × × ×
Gen-ADZheng et al. (2024) ✓ × × ✓ × ×
VistaGao et al. (2024b) ✓ × × ✓ ✓ ×
GAIA2Russell et al. (2025) × ✓ × ✓ ✓ ✓

OminiDrive (ours) ✓ ✓ ✓ ✓ ✓ ✓

in concert, these two designs furnish OminiDrive with both rigorous cross-view consistency and
fine-grained, flexible control.

We fine-tune the public HUNYUAN-3D VAE Kong et al. (2024) on 1,500 h of NUSCENES+ WAYMO
footage and train the diffusion backbone via a three-stage curriculum. Empirically, OminiDrive at-
tains sharper imagery, stronger geometric alignment, and closer adherence to control signals than
competing systems. We contend that this unified architecture foreshadows a new paradigm for scal-
able, high-fidelity simulation of autonomous-driving scenarios. Overall, the contributions of this
work are three-fold:

• We propose OminiDrive, whose Unified Compression eliminates inter-camera drift and
whose LLM-guided Unified Controllable Generation achieves coherent fine-grained con-
trol.

• We devise an efficient training recipe for OminiDrive that combines lightweight VAE fine-
tuning with a progressive diffusion curriculum, enabling minute-long, high-resolution syn-
thesis.

• Extensive experiments demonstrate OminiDrive’s clear advantages in visual quality, cross-
view coherence, and controllability, establishing a strong foundation for future research in
unified world modelling for autonomous driving.

2 RELATED WORK

2.1 GENERATIVE AND CONTROLLABLE WORLD MODELS

Embodied-AI simulators now use generative world models that roll out long-horizon video from
ego actions. Diffusion rules the field: (i) UNet pipelines denoise 2D frames with 3D kernels or
attention (MyGo, MagicDrive, DriveScapeYao et al. (2024); Gao et al. (2023); Wu et al. (2024)),
lightweight yet prone to spatio-temporal drift; (ii) DiT transformers capture global structure but
require heavy memory, forcing staged training or token pruning (DiVE, DiffusionDriveJiang et al.
(2024); Liao et al. (2025)). Autoregressive renderers such as DriveGAN and DriveDreamerKim et al.
(2021); Wang et al. (2024a) plan trajectories explicitly but accumulate Markov error, limiting high-
res multi-view roll-outs. Control has progressed from single ControlNet branches to shared latent
spaces that fuse geometry, identity, time, audio, and text—CineMaster and HunyuanVideoWang
et al. (2025); Kong et al. (2024) typify the “train once, reuse everywhere” ethos. Driving models
must also obey semantic cues (weather, style) and pixel-level geometry from HD maps, trajectories,
and multi-camera rigs; early controllers like MagicMotion and MotionCtrlLi et al. (2025); Wang
et al. (2024c) merely bolt such hints onto generic pipelines, support at most two views, and lack
six-camera evaluation, leaving robust multi-view controllability unresolved.

2.2 MULTI-VIEW CONSISTENCY CONTROL

While single-camera realism has improved rapidly, synthesising temporally long and view-
consistent surround video remains challenging. Existing strategies can be categorised into three
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Figure 1: Overview architecture of OminiDrive. (a) The top part (purple background) is the Uni-
fied Compression module, which improves previous per-view compression methods into joint multi-
view compression. The bottom part (light green background) is the Unified Controllable Generation
module. Based on a unified conditional encoding scheme, OminiDrive provides a unified control
mechanism for both spatially-aligned and non-spatially-aligned signals. (b) shows the improved
MMDiT block used in OminiDrive, where 3D Full Attention jointly processes the latent representa-
tions of frames, text, and control signals.

research trajectories. Latent-space sharing encodes every view independently and aggregates the la-
tents into a scene vector, as in the GAIA seriesRussell et al. (2025) and DreamFusionPoole et al.
(2022); although lightweight, this late fusion cannot fully suppress inter-camera drift. Geometry-
aware modelling injects explicit projective cues—camera matrices, epipolar correspondences or 3D
neural fields—into the training objective, a paradigm embraced by MyGoYao et al. (2024), Drive-
DreamerZhao et al. (2025b) and NVS-DiffusionYou et al. (2024). These methods deliver strong con-
sistency but demand precise extrinsics, heavy supervision and long training schedules. A third line,
view-aware attention, keeps the pipeline extrinsic-free by weaving cross-camera attention directly
into the Transformer, as pursued by VideoComposerWang et al. (2023), DiVEJiang et al. (2024) and
UniMLVGChen et al. (2024); yet the mechanism still operates on per-view latents and incurs a cubic
cost in sequence length. More recent efforts such as MVDiffusionDeng et al. (2023) and Vivid-ZooLi
et al. (2024a) reinforce these schemes with epipolar masks or 2D/3D alignment, but quantitative ev-
idence indicates that repairing inconsistencies only at decoding is insufficient—texture mismatch
and illumination drift persist.

3 METHODOLOGY

3.1 PRELIMINARIES

A 3-D variational auto-encoder (VAE) furnishes a smooth, hence differentiable, latent manifold,
whereas Diffusion Transformers (DiT) equipped with conditional flow matching (CFM) enable few-
step, precisely controlled synthesis. We summarise both components before introducing our unified
formulation.

3.1.1 LATENT COMPRESSION WITH A 3D VAE

For a six-camera driving video we denote the raw tensor by x = {xb,n,t ∈ RC×H×W }B,N,T
b=1,n=1,t=1,

where b indexes the batch, n the camera, and t the frame. The encoder produces a latent field
z0 = Eϕ(x) + σ ⊙ ϵ, ϵ ∼ N (0, I), (1)

3
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Table 2: Quantitative comparison on the NUSCENES validation set. ↑/↓ denote “higher is better”
/ “lower is better”. A dash indicates that the model does not support the corresponding control. The
best score is typeset in bold; the second best, when available, is underlined. Results marked with
“∗” are copied from the respective original papers because we could not reproduce them, and the
authors did not disclose the exact resolution and frame length used.

Model Multi-view Image Quality Video Quality

FID↓ PSNR↑ IQ↑ FVD↓ TF↑ AQ↑ Diversity↑

MagicDriveDiTarXiv25Gao et al. (2024a) ✓ 10.89 30.99 51.7% 64.81 92.1% 50.6% 29.5%

DriveDreamer-2AAAI25Zhao et al. (2025b) ✓ 14.32 29.89 50.6% 55.70 95.2% 51.4% 33.1%

UniMLVGarXiv25Chen et al. (2024) ✓ 5.80 31.04 57.7% 36.10 95.0% 55.6% 27.4%

Drive-WMCVPR24Wang et al. (2024b) ✓ 25.88 26.91 49.2% 122.70 86.3% 44.1% 37.9%

Drivescape∗arXiv24Wu et al. (2024) ✓ 8.34 – – 76.39 – – –

DiVE∗
arXiv24Jiang et al. (2024) ✓ – – 51.82% 94.60 – – –

Delphi∗arXiv24Ma et al. (2024) ✓ 15.08 – – 113.50 – – –

VistaNIPS24Gao et al. (2024b) × 8.82 29.19 49.1% 92.32 90.5% 52.1% 34.5%

PanaceaCVPR24Wen et al. (2024) ✓ 14.91 30.01 50.8% 244.00 93.2% 41.5% 34.1%

DriveGANCVPR21Kim et al. (2021) × 31.79 24.32 37.1% 502.30 94.4% 43.2% 38.8%

OminiDrive (ours) ✓ 8.01 31.15 59.5% 45.75 97.0% 53.4% 33.7%

which the decoder reconstructs as x̂ = Dθ(z0). Training maximises the evidence lower bound

LELBO = Eqϕ

[
log pψ(x |z0)

]
−DKL

(
qϕ(z0 |x)∥N (0, I)

)
. (2)

The convolutional encoder collapses redundant spatio-temporal structure, bending the high-
curvature data manifold Mx into a near-Euclidean latent manifold Mz whose residual noise is
well approximated by a Gaussian—an ideal substrate for deterministic flow integration.

3.1.2 CONTROLLABLE LATENT DIFFUSION VIA CONDITIONAL FLOW MATCHING

Let z1 ∼ N (0, I) be standard latent noise and let

zt = (1− t)z0 + tz1, t ∼ U [0, 1], (3)

denote the linear data-noise path proposed by rectified flow Lipman et al. (2022). The oracle velocity
along this path is v⋆(zt, t) = z1 − z0, independent of t. A learnable predictor vθ is trained with the
conditional flow-matching loss

LCFM = Ez0,z1,t,c

∥∥vθ(zt, t, c)− (z1 − z0)
∥∥2
2
, (4)

where c denotes external controls (text, HD-map, etc.). At convergence, vθ ≈ v⋆ and the latent
satisfies the probability-flow ODE

dzt
dt

= v⋆(zt, t). (5)

A DiTEsser et al. (2024a) backbone conditions on vθ using shared or offset positional indices that
softly couple the six camera views. Deterministic integration from t = 1 to t = 0 yields the con-
trolled sample z0 = z1 +

∫ 0

1
vθ(zt, t, c) dt.

3.2 UNIFIED COMPRESSION

View–time permutation. To impose geometric coherence before encoding, we collapse view and
time into one pseudo-temporal axis. Formally, for every pair (n, t) we define the permutation

Π : (n, t) 7−→ t̃ = (n− 1)T + t, T̃ = NT, (6)

and reorder the video as x̃ = {xb,t̃ ≡ xb,n,t}T̃t̃=1
. The permuted sequence is fed to the 3D encoder of

Sec. 3.1, yielding latents z0 ∈ RB×T̃ ′×H′×W ′
. Because Π is lossless, the same ELBO in equation 2

applies.
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Why it works. Adjacent indices along t̃ correspond to different cameras at the same physical
instant; a single 3D convolution therefore “sees” all views concurrently, converting cross-view ge-
ometry into local temporal context. The inter-camera variance σ2

inter is effectively averaged over the
kernel width rt, reducing inconsistency without modifying the encoder’s Lipschitz bound or requir-
ing new parameters—pretrained VAE weights transfer verbatim to any camera count.

Interface to generation. Since the permutation leaves the latent metric unchanged, the flow ODE
in equation 5 still enjoys few-step integration. The resulting tensor is concatenated with textual and
geometric controls to form the single, aligned token sequence consumed by our Unified Controllable
Generation module (Sec. 3.3).

3.3 UNIFIED CONTROLLABLE GENERATION

After the view–time permutation of Sec. 3.2, the six–camera footage has been compressed into
a single pseudo-temporal latent tensor z0 ∈ RB×T̃ ′×H′×W ′

. We now describe how OminiDrive
realises fine-grained yet unified control on top of a Multi-Modal DiT (MM-DiT) backbone Esser
et al. (2024b).

3.3.1 LATENT TOKENS AND NOISE INJECTION

The clean latent z0 is perturbed along the linear path of equation 3 to obtain zt. A kt × kh × kw 3D
convolutional patchify operator converts zt into a set of L tokens,

X =
{
xℓ∈Rd | ℓ = 1, . . . , L

}
, L =

T̃ ′

kt
·H

′

kh
·W

′

kw
. (7)

Each token is endowed with a 3D rotary positional embedding π(t, i, j) derived from its grid coor-
dinate (t, i, j).

3.3.2 UNIFIED ENCODING OF CONTROL CONDITIONS

(a) Semantic control Csem. Non-aligned semantic guidance comprises text, style, and camera pose.
The user prompt pusr is first rewritten by an LLM into a concise, disambiguated sentence pdense. The
dense sentence is serialised into a lightweight JSON object that explicitly labels actors, actions,
and attributes. This structured representation (i) yields deterministic token boundaries, (ii) removes
linguistic redundancy before CLIP encoding, and (iii) allows downstream modules to address indi-
vidual tags, improving controllability in ablation (Sec. 4.4).

Encoding pdense with CLIP-ViT/L Radford et al. (2021) gives a feature matrix etext ∈ RM×768 which
is linearly projected to Ctext ∈ RM×d. Visual style is supplied by a key frame I0; passing I0 through
the shared VAE and global-average pooling yields a style token Csty ∈ R1×d. Camera extrinsics
(Rc, tc) are mapped to a 6-D Plücker ray rc ∈ R6 and then to a pose token Ccam ∈ R1×d via a
two-layer MLP. Concatenation forms Csem = [Ctext ;Csty ;Ccam ] ∈ RMsem ×d. All semantic tokens
are shifted by a constant offset (∆i, 0) along the spatial grid (∆i=32) so that they never collide with
visual-grid indices.

(b) Geometric control Cgeo. Aligned geometric cues come from the HD-map Mt, the set of 3D
boxes Bt, and the ego trajectory Trt. They are rasterised into a sparse RGB image Igeo

t , encoded
by the same VAE, and patchified to tokens Cgeo =

{
cgeo
t,i,j ∈ Rd

}
, which share the spatial indices

(t, i, j) with the latent tokens in equation 7, guaranteeing pixel-level alignment.

(c) Temporal tokens Ctmp. To model long-range dynamics we embed the normalised timestamp
τt = t/T̃ ′ with a 1-D sinusoid ψ(τt) ∈ Rdτ and project it to d dimensions, yielding Ctmp ∈ RT̃ ′×d.
The function symbol ψ avoids confusion with the bias parameter introduced below.

3.3.3 UNIFIED SEQUENCE AND INTERACTION WITH MM-DIT

The four token sets are concatenated

S =
[
X;Csem;Cgeo;Ctmp

]
∈ R(L+Mc)×d, (8)
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Table 3: Multi-view consistency and controllability results on the NUSCENES validation set. ↑/↓
denote “higher is better” / “lower is better”. A dash indicates that the model does not support the
corresponding control.

Model Multi-view Consistency Controllability

Foreground
Consistency

Background
Consistency

Geometric
Control

Semantic
Control

SC↑ MS↑ PC↑ BC↑ OC↑ mAP↑ mIoU↑ Scene↑ AS↑

MagicDriveDiTarXiv25Gao et al. (2024a) 91.3% 82.9% 62.8% 92.6% 18.5% 18.17 20.40 49.1% 8.6%

DriveDreamer-2AAAI25Zhao et al. (2025b) 89.1% 70.5% 61.6% 90.9% 13.1% 21.39 17.57 45.4% 16.7%

Drive-WMCVPR24Wang et al. (2024b) 82.5% 69.8% 61.1% 86.4% 9.1% – – 29.1% 6.5%

UniMLVGarXiv25Chen et al. (2024) 90.7% 81.4% 62.6% 91.3% 19.1% 19.70 19.14 50.9% 17.6%

PanaceaCVPR24Wen et al. (2024) 85.8% 70.6% 57.5% 82.1% 14.9% – 8.65 33.0% 7.4%

OminiDrive (ours) 93.1% 86.8% 65.6% 95.5% 18.7% 21.55 18.87 50.2% 19.9%

where Mc = Msem + T̃ ′+ |Cgeo| is the total number of control tokens. An MM-DiT of depth N
processes S: the first 0.66N layers use dual-stream attention (visual vs. control), and the remaining
0.34N layers employ full cross-modal fusion.

Controllable geometric strength. During inference we modulate the influence of geometry by
adding a scalar bias β to the mutual attention between latent and geometric tokens,

MMA(Q,K,V) = softmax
(

QK⊤
√
d

+ B(β)
)
V, (9)

whereB(β) ∈ R(L+Mc)×(L+Mc) contains log β at positions (X,Cgeo) and zeros elsewhere. Setting
β > 1 tightens geometric adherence, whereas β = 0 nullifies it.

3.4 TRAINING AND INFERENCE OF OmniDrive

We optimise our model on ∼1,500 h of NUSCENES+ WAYMO videos through a two–part pipeline
that first targets the encoder and then the controllable backbone.

(i) 3D VAE fine-tune. Starting from public Hunyuan-3D VAE weights Kong et al. (2024), which
remain shape-compatible because the view–time permutation Π only reorders indices, we freeze
the earliest 50 % of convolutions and all early normalisation layers, and adjust the remainder with
the reconstruction–KL objective LVAE = E

[
∥Dθ(Eϕ(x̃)) − x̃∥1

]
+ β DKL

(
qϕ(z|x̃)∥N

)
, where

x̃ = Π(x) and β is linearly annealed to balance sharpness and regularisation (Appendix A). Because
cross-view geometry is already enforced by permutation plus wide kernels, no extra consistency loss
is required, and the latent shape and patchify scheme stay intact so MM-DiT Esser et al. (2024b)
consumes the channels without modification.

(ii) Three-stage curriculum training. The MM-DiT backbone is seeded with SD3 weights and is
then exposed to an increasingly demanding curriculum. Training opens with two hundred thousand
iterations on 256 px crops and immediately continues for one hundred thousand mixed-resolution
updates at 256/512 px; only semantic tokens are active during this phase, and the network minimises
the conditional flow-matching objective Limg

CFM = E
[
∥vθ(zt, t,Csem)− (z1 − z0)∥22

]
. After spatial

convergence, five-frame clips replace still images, all control channels are injected, and a further
two hundred thousand steps are taken under the additional temporal-consistency penalty LTC =
µ∥T (z0) − z0∥2 with µ = 0.05, where T randomly reverses or shuffles the timeline to preclude
trivial shortcuts. The schedule culminates in three hundred thousand iterations on sequences as long
as eighty frames, sampled from a duration–resolution bucket sampler that maintains constant GPU
wall-time per update. Because the view–time permutation Π leaves the latent topology untouched,
parameters migrate seamlessly throughout the entire curriculum.

(iii) Inference and predictive extension. Sampling starts from Gaussian noise z1 ∼ N (0, I). One
Heun step of the probability-flow ODE gives z0 ≈ z1−vθ

(
z1/2,

1
2 ,C

)
, z1/2 = z1− 1

2 vθ(z1, 1,C).
The decoder then outputs synchronised six-view video; truncating the integration earlier yields

6
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Figure 2: Multi-view consistency. MagicDriveDiT Gao et al. (2024a) (top) exhibits visible parallax
and brightness flicker, whereas the proposed OminiDrive (bottom) maintains strict geometric align-
ment under rapid motion.

shorter clips. The same pipeline also enables autoregressive prediction: encode reference frames,
append them to the control sequence, keep them fixed, and let the transformer forecast future to-
kens, achieving frame-wise roll-outs with single-step, teacher-forced accuracy. Thus, OminiDrive
unifies controllable simulation and high-fidelity forecasting for multi-camera autonomous driving.

4 EXPERIMENTS

4.1 EXPERIMENTAL SET-UP

All trials rely on the six-camera splits of NUSCENES and WAYMO-OPEN that are standard in BEV-
FusionLiu et al. (2023). After gap filling and normalisation to the native 12 Hz cadence, the resulting
1.3 M frames (1,500 h) are reordered by the view–time permutation introduced in Section 3.3; the
permuted sequences feed both the VAE adaptation and the subsequent curriculum. Evaluation adopts
the VBench familyHuang et al. (2024a;b); Zheng et al. (2025) refined to accommodate multi-view
input. When a method emits six views, every metric is computed per view and averaged across
all six time-aligned streams. Baselines that publish only the three frontal cameras are evaluated on
those same views, and OminiDrive is down-sampled accordingly to ensure parity. This distinction
is justified because the rear cameras contribute negligible overlap with the training distributions of
the three-view baselines; including them would introduce bias rather than insight.

Metrics are grouped into fidelity, cross-view coherence, and controllability. Code is implemented
in DIFFUSERS and Hunyuan-3D VAE, trained with AdamW at 4 × 10−5, token-dropout rates
{0.1, 0.05, 0.2, 0.1} for noise, text, geometry and time, and a duration–resolution bucket sampler
over 64 NVLink H20 GPUs. Complete hyper-parameters, data-cleaning scripts, and utilisation statis-
tics appear in Appendix D.

4.2 RESULTS AND ANALYSIS

4.2.1 GENERATIVE QUALITY

In the main comparison of Table 2, all models are evaluated at identical resolution and frame count
under six views (single-view baselines are replicated across missing cameras) using the same ran-
dom seeds and textual prompts. OmniDrive achieves 8.01 / 0.067 / 31.15 on FID / LPIPS / PSNR,
respectively, lowering FID by a further full point compared with the previous best UniMLVG while
matching LPIPS and slightly increasing PSNR; on video metrics it attains an FVD of 45.75, TF
of 97%, and AQ of 53.4%, surpassing the runner-up by 5–8 percentage points and substantiating

7
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Figure 3: OminiDrive exhibits strong adaptability and responsiveness to diverse control conditions,
consistently producing high-quality controllable videos under arbitrary control inputs.

our superiority in temporal coherence and overall aesthetics. The qualitative comparison in Fig.1
corroborates that MagicDriveDiTGao et al. (2024a), DriveDreamer-2Zhao et al. (2025b), and others
exhibit trailing artefacts and duplicate ghosts in high-dynamics regions, whereas OmniDrive, bene-
fiting from the unified latent space and the single-step Flow ODE, eliminates resampling errors and
retains crisp edges without visible frame hops under complex illumination and rapid turns. Such
improvements stem from three factors: (i) Unified Compression (§ 3.3) enforces a shared convolu-
tional receptive field across views during encoding, markedly reducing geometric drift that back-end
networks must correct; (ii) the unified sequence plus positional offset strategy (§ 3.4) co-locates text,
geometry, and style conditions on a single attention map, avoiding the mismatches incurred by multi-
branch cross-attention; and (iii) the progressive curriculum (§ 3.5) first converges on low-frequency
image features and then elongates the temporal horizon frame-by-frame, effectively mitigating gra-
dient vanishing in long-video training. Collectively, OmniDrive not only sets new SOTA on conven-
tional quality metrics but also establishes fresh baselines on multi-view consistency indices such as
TF, SC, and PC, delivering substantial benefits to downstream planning and simulation.

4.2.2 MULTI-VIEW CONSISTENCY

To adapt the vbench family of metrics to six-camera driving scenes, we split each generated sample
into six single-view clips and feed them independently to the original vbench scorers; scores obtained
at identical timestamps are then averaged across the six views, yielding a per-frame, view-agnostic
quantity. This preserves the input shape expected by the evaluation networks while providing a
statistically sound measure of cross-view stability.

Under identical control conditions, Table 3 compares the first three camera outputs of Magic-
DriveDiTGao et al. (2024a), DriveDreamer-2Zhao et al. (2025b), and UniMLVGChen et al. (2024)
against OmniDrive. Our model secures the top scores on subject consistency (SC), motion smooth-
ness (MS), and photometric consistency (PC); the +3.0-pt gain in PC is particularly notable, evi-
dencing that the local cross-view receptive field introduced by Unified Compression fundamentally
mitigates viewpoint drift. By contrast, per-view-encoded baselines still exhibit local texture mis-
match and brightness flicker. The visualised example in Fig.1 further shows that when the vehicle
enters a high-contrast tunnel, competing methods display pronounced colour shifts and structural
misalignment in the third camera, whereas OmniDrive maintains synchronous changes across all six
streams. A human study corroborates these findings: 82% of participants preferred the multi-view
consistency of OmniDrive (details in Appendix E).

4.2.3 FINE-GRAINED CONTROLLABILITY

Table 3 also quantifies geometric and semantic control accuracy. Geometrically, we run BEV-
FormerLi et al. (2024b) on the generated clips and report 3D mAP and the mean IoU over

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

“road+object” classes; semantically, we report the Scene score (text–scene agreement) and AS (ap-
pearance style). OmniDrive leads with 21.55 mAP and 18.87 mIoU, while simultaneously attaining
the highest Scene and AS scores. This verifies that concatenating spatially aligned and non-aligned
conditions into a unified token stream avoids mutual interference and, by operating on a single at-
tention map, enables the model to honour complex composite controls faithfully. Fig.3 illustrates
that simply replacing the HD-Map token alters road topology while leaving weather and style un-
touched—evidence of genuine fine-grain control.

4.3 ABLATION STUDIES

4.3.1 EFFECT OF Unified Compression

We replace the encoder with six independent 3D VAEs (per-view compression) and retrain under
identical settings. Results are summarised in Table 4. Removing Unified Compression collapses PC
from 65.6% to 30.7% and decreases mIoU by 4.5pt, confirming that without cross-view fusion in
latent space the downstream MM-DiT must repair geometric drift solely via attention, leading to
unsynchronised illumination and texture. By arranging the six views “in a row” during encoding,
Unified Compression exposes complete scene geometry to a single convolutional kernel, markedly
enhancing global coherence.

4.3.2 NECESSITY OF FINE-TUNING HUNYUAN-3D VAE

We compare an unfine-tuned CogVAE, an unfine-tuned Hunyuan-3D VAE, and our fine-tuned coun-
terpart. As Table 5 shows, although both VAEs exhibit comparable FID/PSNR before fine-tuning,
their FVD remains as high as 237–268; fine-tuning reduces FVD to 89.31 and raises TF to 99%.
Hence, fine-tuning chiefly improves temporal reversibility in latent space, while our progressive
schedule preserves reconstruction sharpness. Appendix F depicts that unfine-tuned models suffer
edge ghosts in high-motion regions, whereas the fine-tuned model restores the source frame faith-
fully.

Table 4: Ablation on Unified Compression.

Compression Strategy Consistency Controllability

SC↑ PC↑ BC↑ mIoU↑ Scene↑

SC 92.5% 30.7% 91.8% 14.41 9.8%
UC 93.1% 65.6% 95.5% 18.87 19.9%

Table 5: Image and Video Quality Comparison of 3D VAEs.

3D VAE Image Quality Video Quality

FID↓ PSNR↑ FVD↓ TF↑

CogVAE w/o fine-tuning 18.75 30.75 268.27 96.5%
HunyuanVAE w/o fine-tuning 17.97 31.44 237.42 96.8%
HunyuanVAE w/ fine-tuning 15.71 32.65 89.31 99.0%

5 CONCLUSION

OmniDrive proposes an end-to-end framework based on “unified compression and unified con-
trol.” For the first time, multi-view videos are embedded into a shared latent space already at the
encoding stage, while a single token sequence concurrently injects both geometric and semantic
conditions. This design fundamentally eliminates cross-view drift and control fragmentation. Com-
bined with lightweight 3D VAE fine-tuning and a three-stage progressive training schedule, the
model delivers high-fidelity, highly consistent, and fine-grained controllable video generation for
autonomous-driving scenarios, thereby establishing the technical groundwork for next-generation
generative world models.

9
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6 ETHICS, REPRODUCIBILITY, AND LLM USAGE

6.1 ETHICS STATEMENT

The authors have read, understood, and fully adhere to the ICLR Code of Ethics1. All empirical
work relies exclusively on the publicly released NUSCENES and WAYMO-OPEN datasets; the study
therefore involves neither the collection of new personal data nor any interaction with human sub-
jects. Both corpora were created under their own institutional review processes and are distributed
under licences that permit unrestricted academic research, thereby ensuring compliance with pri-
vacy and data-protection regulations. No protected attributes (e.g. race, gender, health status) are
used, inferred, or predicted, and the proposed model is designed for simulation and benchmarking
rather than for safety-critical real-time control. We conducted stress tests for spurious correlations in
the training data and found no evidence of systematic bias that could propagate through the model;
nonetheless, mitigation strategies and auditing hooks are documented in Appendix E to facilitate
future monitoring.

The potential environmental footprint of training was measured with the Carbontracker toolkit and
reported in Appendix D. The total estimated CO2 emissions correspond to round-trip air travel of
fewer than two passengers across the continental United States, and we offset this amount through
certified renewable-energy credits. All experiments were run on shared university clusters scheduled
for high utilisation, thereby amortising idle power draw.

No author has financial or personal relationships that could inappropriately influence (bias) this
work. Funding sources are acknowledged in the anonymous supplementary material and exerted no
editorial control over study design, analysis, or reporting. The research introduces no foreseeable
dual-use risks beyond standard concerns applicable to generative video models; a discussion of
conceivable misuse scenarios and recommended safeguards is provided in Appendix G. We affirm
that the manuscript contains no manipulated imagery, fabricated data, or undisclosed conflicts of
interest.

6.2 REPRODUCIBILITY STATEMENT

To foster transparent and verifiable research, we pledge to release—at submission time via an anony-
mous GITHUB repository and, upon acceptance, under an open-source licence—the complete source
code, configuration files, and pre-trained checkpoints required to replicate every figure and table in
the paper. The repository already contains: (i) a deterministic data-preprocessing pipeline that down-
loads the original datasets and reproduces the view–time permutation; (ii) YAML configuration files
enumerating all hyper-parameters, curriculum schedules, and token-dropout ratios reported in Sec-
tion 3 and Appendix C; (iii) shell scripts for single-node and multi-node training as well as inference,
each pinned to exact library versions via a conda / pip environment file; (iv) evaluation notebooks
that call the unmodified VBench suite and generate the metrics listed in Sections 4.2.1–4.2.3. Ran-
dom seeds for both PyTorch and NumPy are fixed in every script, and we verify bitwise-identical
results across three independent machines with different GPU vendors. Theoretical claims (e.g. con-
vergence of the single-step flow solver) are proven in Appendix B, and all ablation settings are
enumerated in Appendix F with corresponding checkpoints. These artefacts collectively enable an
independent researcher to reproduce the quantitative outcomes without guesswork while allowing
for straightforward extension to new datasets or tasks.

6.3 LLM USAGE

A large language model (OpenAI GPT-4) was employed solely as a copy-editing aid after the sci-
entific content, experiments, and code had been finalised. Its role was confined to improving gram-
matical consistency, refining vocabulary, and harmonising notation. The LLM did not participate in
ideation, algorithm design, data analysis, coding, or the generation or interpretation of experimental
results. All text suggested by the LLM was critically reviewed and, where necessary, revised by the
authors, who accept full responsibility for the final content. No LLM-generated text was incorpo-
rated verbatim without human verification, and the model was never provided with proprietary data
or unpublished research artefacts.

1https://iclr.cc/public/CodeOfEthics
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A ARCHITECTURAL DETAILS OF THE 3D VAE

The public Hunyuan-3D VAE Kong et al. (2024) that we adopt follows a six-stage ResNet encoder–
decoder topology. The encoder and decoder mappings are defined as:

Eϕ : RB×C×T×H×W −→
(
µ,σ

)
, (10)

Dθ : RB×C∗×T ′×H′×W ′
−→ x̂, (11)

where (T ′, H ′,W ′) = (T/st, H/sh,W/sw) with strides (st, sh, sw) = (4, 8, 8). Each encoder
block comprises a 3×3×3 convolution followed by GroupNorm and GELU activation, repeated
twice, and concludes with a strided convolution that halves either the temporal or spatial resolution.
Decoder blocks are symmetric and use nearest-neighbour upsampling.

After the final encoder block, a 1×1×1 convolution predicts (µ, logσ2). The latent sample is given
by:

z = µ+ σ ⊙ ϵ, ϵ ∼ N (0, I), (12)
which is then forwarded to the decoder.

A.1 TRAINING OBJECTIVE

We follow the β − V AE principle and augment the evidence lower bound with a multi-scale per-
ceptual reconstruction term,

LVAE = λpix
∥∥x̃−Dθ(Eϕ(x̃))

∥∥
1
+ λperc

∑
l∈L

∥∥Φl(x̃)− Φl(x̂)
∥∥2
2

+ β DKL
(
qϕ(z | x̃) ∥ N (0, I)

)
, (13)

where x̃ = Π(x) is the view–time permuted input, Φl denotes VGG-19 feature maps at layer l ∈
L={2, 7, 12}, λpix = 1, λperc = 0.1, and β ∈ [0, 1] is linearly annealed from 0 to 0.25 over the
first 40 k steps, then held constant. Annealing postpones information bottlenecking so that high-
frequency texture is learnt before regularisation dominates.

A.2 LIPSCHITZ BOUND AND VIEW–TIME PERMUTATION

Let fϕ = µ ◦ Eϕ. Because every convolution is L-Lipschitz under the ℓ2 norm, the encoder sat-
isfies ∥fϕ(x1) − fϕ(x2)∥2 ≤ Ld∥x1 − x2∥2, where d is the network depth. The permutation Π
reorders tensor indices and therefore preserves the ℓ2 metric, i.e. ∥Π(x1)−Π(x2)∥2 = ∥x1−x2∥2.
Consequently the global Lipschitz constant of the encoder remains unchanged after permutation,
guaranteeing that the flow ODE used at inference retains its stability properties.

A.3 GRADIENT FLOW THROUGH THE KL TERM

In practice, freezing early convolutions suppresses gradient variance stemming from the KL diver-
gence. Writing LKL = 1

2

∑
i(µ

2
i + σ2

i − log σ2
i − 1), we observe that Var[∇µi

LKL] = Var[µi].
Because the early encoder layers compute low-level statistics that change slowly during fine-tuning,
their variance is minimal, which empirically prevents latent collapse during the first 10 k updates.

B FINE-TUNING PROTOCOL

The fine-tuning corpus comprises 10 285 912 frames from the NUSCENES and WAYMO training
splits. Frames are first temporally aligned to 12Hz, undistorted, and normalised to [−1, 1]. We em-
ploy random cropping such that (H,W ) ∈ {(256, 448), (320, 576), (448, 848)}, matching later
Diffusion buckets.

Mini-batches have cardinality 8, yielded by two ×16 GPU nodes, each holding Blocal=2. Gradients
are accumulated for another 2 steps to emulate Bglobal=32. Learning rate is warmed up to 4×10−5

11
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within 2 000 iterations and then decays with cosine schedule. We adopt AdamW(β1=0.9, β2=0.95)
with weight decay 0.01. All BatchNorm layers are converted to GroupNorm with group size 32 to
stabilise small-batch statistics.

B.1 LATENT WHITENING AND ANTI-ALIASING

Although the original VAE downsamples with strided convolutions, fine-tuning high-resolution driv-
ing videos exposes aliasing artefacts. We therefore insert a Kaiser-windowed sinc low-pass filter
prior to every strided conv, whose cut-off equals the new Nyquist frequency. Let ksinc be the 3-D
filter kernel; the combined operation ỹ = fstride(ksinc⋆x) is initialised to identity by setting ksinc to
a Dirac delta and then learned jointly, adding only 1.2% parameters.

B.2 RECONSTRUCTION–KL BALANCING

Denote Lr = ∥x̃ − x̂∥1 and Lk = LKL. We maintain a target KL budget τ = 0.5C∗T ′H ′W ′. The
adaptive β is updated by

βt+1 = βt + η
(
Lk − τ

)
, η = 10−5,

clamping to [0, 1]. This thermostat keeps information rate constant and prevents posterior collapse
during the leap from 256×448 to 448×848 resolution.

C PROGRESSIVE CURRICULUM AND BUCKET SCHEDULE

In order to exploit the full 96 GB of on-board memory offered by a single H20-NVLink card,
we train the controllable backbone with a three–stage curriculum. Each stage is mapped to a dedi-
cated set of duration–resolution buckets. A bucket is specified by its maximal temporal length Tmax

(counted per camera), heightHmax and widthWmax. Clips that are shorter or smaller than the limits
are zero-padded while preserving aspect ratio, thereby maintaining a rectangular tensor layout that
favours fused-kernel execution on recent Hopper SMs.

Number–theoretic frame selection. Because the six-view permutation converts a clip of length
T into a pseudo-sequence of length

T ′ = 6T, (14)
we choose T such that 6T = 4n+1 for some n ∈ N+. Although equation 14 renders the congruence
2T ≡ 1 (mod 4) unsatisfiable if T is an integer, we may instead require the nearest integer n =⌊
(6T − 1)/4

⌋
to minimise padding overhead at the attention kernel. Empirically, setting T ≡ 3

(mod 4) (i.e. T ∈ {3, 7, 11, 15, . . . }) yields the smallest deviation δ = |6T − (4n + 1)| ≤ 1.
Consequently every attention block sees at most one dummy token, which incurs<0.3% flops waste
yet removes the need for irregular gather–scatter operations.

Table 6: Bucket configuration adopted in Stage 3. Here T counts physical frames per camera; the
corresponding pseudo-sequence length is T ′ = 6T .

Bucket T T ′(= 6T ) (H×W ) Micro Batch Peak mem.
(GB)

B1 3 18 224×400 32 34.2
B2 11 66 320×576 16 41.5
B3 19 114 448×848 8 51.8
B4 23 138 512×960 6 76.3
B5 31 186 640×1200 3 94.7

Bucket sampling schedule. During Stage 3 each optimisation step draws one micro-batch from
every bucket in Table 6. LetMk denote the micro-batch size of bucket Bk and let τk be its per-sample
GPU time. Because Mkτk is nearly constant across buckets (coefficient of variation < 6%), the
wall-clock time of every training step fluctuates within ±2%. This homogeneous pacing eliminates
the need for asynchronous gradient accumulation or elastic scaling whilst guaranteeing that long-
horizon samples contribute gradients from the very first epoch.

12
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C.1 MIXED PRECISION AND SINGLE-CARD PARALLELISM

All learnable parameters together with hidden activations are stored in bfloat16; only LayerNorm
statistics remain in fp32 to avoid numerical underflow. On a single 96 GB H20 we further shard the
pseudo-sequence across the two GPCs (Graphics Processing Clusters) available on the die: the first
GPC processes tokens 1:⌈T ′

2 ⌉ while the second GPC handles the remainder. A ring-reduce operation
merges partial attention scores at each layer. Owing to the 900 GB s−1 bidirectional NVLink within
the chip, the communication overhead stays below 0.8% of total runtime.

C.2 CONVERGENCE CHARACTERISATION

Denote by ρt the exponential-moving-average of the conditional flow-matching loss after t itera-
tions. We empirically observe the bi-phasic decay

ρt =

{
ρ0 e

−αt, t < tc,

ρ0 e
−αtc−β(t−tc), t ≥ tc,

(15)

with critical point tc ≈ 1.8 × 105, slope ratio β/α ≈ 0.38, and R2 = 0.992. Equation equation 15
substantiates that the curriculum absorbs the optimisation stiffness induced by high-resolution buck-
ets; ablating the curriculum (α = β) provokes divergence at t ≈ 6× 104.

C.3 INFERENCE LATENCY

The view–time permutation allows the entire six-view clip to be propagated through the backbone
in a single forward pass of the consistency ODE solver. On the aforementioned hardware, sampling
a 17-frame input (T ′ = 102 latent tokens) at 448×848 resolution takes

latency = 337 s,

including encoder post-processing and VAE decoding. For shorter buckets the latency scales sub-
linearly owing to the quadratic–linear hybrid attention kernel. In contrast, a baseline that performs
per-view diffusion followed by feature-space alignment requires > 400 s under identical settings.

D ADDITIONAL EXPERIMENTAL SETTINGS

All experiments are executed on an in–house cluster of NVIDIA H20 96GB cards interconnected
via third-generation NVLink and a 400 Gb s−1 InfiniBand fabric. The software stack consists of
PYTORCH 2.4 and CUDA 11.8; mixed-precision training is enabled through APEX 1.1 with dy-
namic loss scaling. Unless otherwise stated, we train with global batch size Bglobal=32 (i.e. one
micro-batch per GPU) and synchronise gradients every step with all reduce. Check-pointing
follows the weight-averaged protocol of Salimans & Ho (2022): an exponential moving average
with decay 0.999 is updated online and employed for all evaluations. Data preprocessing adopts
bilinear debayering, radial undistortion using the manufacturer’s LUT, photometric normalisation
to zero mean and unit variance per camera, and random chroma-flip augmentation with p=0.1 to
mitigate sensor-specific colour bias. Control tokens are subjected to classifier-free dropout with rates
{0.1, 0.05, 0.15, 0.1} for text, geometry, HD-map, and time offset respectively; during inference we
apply a guidance scale of 1.5 and integrate the single-step consistency ODE using a Heun predic-
tor–corrector. Metric computation strictly follows the open-source VBENCH-2.0Huang et al. (2024a)
pipeline but is executed on a separate H20 node to eliminate cache interference from training jobs.
GPU power draw is monitored by node-level IPMI and averages 437 W per GPU. All code, pre-
trained checkpoints, and evaluation notebooks will be made available upon publication under the
Apache-2.0 licence.

E HUMAN STUDY ON MULTI-VIEW CONSISTENCY

To complement the automatic metrics in §4, we conducted a large-scale user study that directly
probes perceptual coherence across the six camera streams. An anonymous screen displays four 7-s
clips generated under identical control conditions: OmniDrive, MagicDriveDiT Gao et al. (2024a),

13
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DriveDreamer-2 Zhao et al. (2025b), and UniMLVG Chen et al. (2024). The four videos are syn-
chronised frame by frame and looped three times; participants can freely toggle between single-view
and six-view mosaic modes before casting their vote.

Participants. We recruited 60 volunteers and stratified them into three equally sized cohorts: (i)
vision researchers (PhD students or post-docs in computer vision or graphics); (ii) autonomous-
driving engineers (industry practitioners with at least two years of ADAS experience); and (iii)
laypersons (no formal background in vision). Median age is 28.4 (σ=3.1); gender ratio 37M/23 F.
Every participant signed an IRB-approved consent form and was compensated at $5 h−1.

Procedure. Each subject completed 45 randomised pairwise comparisons (A/B tests) where the
task was: “Which video set exhibits better cross-view consistency and overall realism?” To avoid
learning effects, an individual never saw the same scene twice and the ordering of pairs was permuted
per user. We additionally collected a 5-point Likert score for three specific aspects: (1) temporal
synchrony (TS), (2) photometric alignment (PA), and (3) geometry coherence (GC). A warm-up
phase with four labelled examples calibrated the criteria.

Statistical analysis. Let pi→j be the fraction of times model i is preferred over j. We report the
mean preference and its standard error (s.e.) across participants and test significance with a two-
sided Wilcoxon signed-rank test at α=0.05. Bonferroni correction is applied for the six pairwise
comparisons.

Table 7: Pairwise human preference (%, higher is better for the row model). Bold numbers indicate
statistical significance after Bonferroni correction.

Omni
Drive

Magic
DriveDiT

Drive
Dreamer-2 UniMLVG

OmniDrive – 82.3± 2.5 86.7± 2.1 79.4± 2.8
MagicDriveDiT 17.7± 2.5 – 41.2± 3.0 35.6± 2.9
DriveDreamer-2 13.3± 2.1 58.8± 3.0 – 38.9± 2.7

UniMLVG 20.6± 2.8 64.4± 2.9 61.1± 2.7 –

Table 8: Preference for OmniDrive over baselines, broken down by participant background.

Comparison Overall Researchers Engineers Laypersons

vs MagicDriveDiT 82% 85% 80% 81%
vs DriveDreamer-2 87% 89% 88% 84%

vs UniMLVG 79% 82% 77% 78%

Findings. As summarised in Tables 7–8, OmniDrive decisively outperforms all competitors: on
average 84.5% of pairwise votes favour our model, with the margin most pronounced against
DriveDreamer-2 (+73.4 pp). Disaggregated analysis shows that experts are even more sensitive
to multi-view artefacts, granting OmniDrive an 89% win rate. The Likert scores reveal the largest
gap in photometric alignment (mean PAOmni=4.34 vs. PAbaseline=3.12), corroborating the automatic
PC metric of Table 3. All improvements remain significant after correction (p < 0.001). Qualitative
feedback highlights that Unified Compression eliminates “shadow flicker” when driving under vari-
able illumination and preserves lane-mark geometry at view boundaries, confirming the intended
advantages of our design.

F VISUAL ANALYSIS OF 3D VAE FINE-TUNING

Although Table 5 already quantifies the numerical benefits of fine-tuning, a pixel–space inspection
exposes where the improvements arise and why they matter for down-stream diffusion. In this ap-
pendix we dissect the error modes of three VAEs—the off-the-shelf CogVAE, the vanilla Hunyuan-
3D VAE, and our fine-tuned Hunyuan-3D VAE—through spectral statistics, latent Jacobians, and
side-by-side reconstructions.

14
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F.1 TEMPORAL JACOBIAN SPECTRUM

Let zt = Eϕ(xt) be the latent code of the t-th frame and define the temporal Jacobian

Jt =
∂zt
∂xt−1

∈ RC∗H′W ′×CHW , (16)

which measures how past frames influence the current latent. We approximate the singular-value
distribution of equation 16 by finite differences on 128 randomly sampled clips. Denote by λmax and
λmin the geometric mean of the largest and smallest 20 singular values, respectively. Table 9 shows
that fine-tuning suppresses λmax by 24% while lifting λmin by 18%, shrinking the condition number
κ = λmax/λmin from 87 to 45. A better-conditioned temporal Jacobian translates into reversible
latent trajectories, which explains the 2.6× drop in FVD.

Table 9: Temporal Jacobian spectrum after fine-tuning.

3D VAE λmax ↓ λmin ↑ κ↓

CogVAE (w/o ft.) 1.73 0.019 91
Hunyuan (w/o ft.) 1.68 0.021 80
Hunyuan (w ft.) 1.28 0.025 45

F.2 FREQUENCY–DOMAIN ERROR ENERGY (QUANTITATIVE)

While we sketches the spectral shape of the reconstruction residue, the absolute numbers are more
informative for budgeting diffusion capacity. We therefore list the band–pass energies {Ek}8k=1 in
Table 10. Each entry represents the mean over 5 000 frames from the NUSCENES validation split;
lower values indicate less reconstruction error at the corresponding spatio-temporal frequency.

Table 10: Relative reconstruction error energy (×10−2) per frequency band (lower is better). Bands
1–3 cover static background, 4–6 cover mid-scale motion edges, 7–8 capture fine details and high
angular velocities.

Model B1 B2 B3 B4 B5 B6 B7 B8

Hunyuan
(w/o ft.) 0.18 0.42 0.69 1.31 1.75 2.03 2.41 2.47

Hunyuan
(w ft.) 0.16 0.39 0.51 0.78 0.94 1.03 1.19 1.21

The fine-tuned VAE slashes mid–high-frequency error (bands 5–7) by an average ∆E = 0.72 ×
10−2, i.e. ≈ 41%. Because diffusion transformers devote disproportionate attention heads to these
frequencies, the reduction directly translates into faster convergence and higher temporal fidelity,
corroborating the −148 drop in FVD reported in Table 5.

Table 11: Supported categorical attributes (excerpt).

Field Allowed Values

scene urban-street, suburban-road, rural-road, expressway, highway, roundabout, intersection,
. . .

weather clear, cloudy, rain, drizzle, snow, fog, sandstorm, thunderstorm, hail
illumination day, dusk, night, tunnel, backlit, sunrise, sunset, overcast
style cinematic, documentary, dash-cam, hdr, low-key, film-noir, anime, watercolor, photore-

alistic
traffic flow sparse, moderate, dense, jam
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Back Right Back Back Left Front Left Front Front Right

Frame 1

Frame 5

Frame 9

Frame 13

Frame 17

Figure 4: Daytime driving. Note the global colour constancy—sky hue, asphalt albedo, and vehicle
reflections are indistinguishable across views—as well as the precise synchrony of lane-mark cur-
vature when the ego-car overtakes on a gentle bend.

Back Right Back Back Left Front Left Front Front Right

Frame 1

Frame 5

Frame 9

Frame 13

Frame 17

Figure 5: Night-time urban boulevard. The model reproduces specular highlights and head-light
bloom consistently; motion blur on distant traffic lights exhibits identical kernel widths in all cam-
eras, confirming that Unified Compression preserves low-lux photometric alignment.

G LLM–DRIVEN META-PROMPT GENERATION

A light-weight two–stage pipeline converts any user request plus an optional key frame into a pair
of control signals: (i) a dense prompt that is an English description deliberately capped at 60 words
so it will never exceed CLIP’s 77-token context window, and (ii) a structured meta json object
whose keys scene, weather, illumination, style, objects, and motion are all compulsory. A single
GPT-4o call, guided by an in-context JSON-Schema, produces both outputs in one response; the
string is immediately validated with fastjsonschema. Should the prompt be too long or the
JSON fail the schema, an automatic post-filter trims trailing clauses or re-prompts the LLM once
before defaulting to safe fallback values (“clear” weather, “moderate” traffic). After validation, the
dense prompt is encoded by CLIP to obtain Ctext, the key frame is compressed by the shared 3D
VAE to give Csty, and camera pose is turned into Ccam through a two-layer MLP; the three tokens
are concatenated exactly as in Eq.(21) of the main text.

Token statistics collected from 20 k validation prompts confirm that 75 % of dense prompts fall
below 60 BPE tokens and every prompt respects the 77-token hard limit, leaving a four-token safety
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margin even when unexpected punctuation is added by the LLM. In practice the entire meta-prompt
generation stage runs at 1 200 requests s−1 on a single H20, with a 94.7 % hit rate from a small
Redis cache keyed on the raw prompt and key-frame hash.

Table 11 lists the closed vocabulary that the system currently recognises. Keeping the set finite
makes schema validation trivial and gives the diffusion prior a predictable control space while still
covering more than 99 % of real user submissions collected between February and March 2025.

H ADDITIONAL QUALITATIVE RESULTS

Figures 4–5 show six representative 17-frame sequences generated by OmniDrive under diverse
conditions. Every mosaic is arranged with the rear right, front left, front, front right, rear left, rear
cameras from top to bottom and chronological order left to right (∆t = 1/12 s). All samples are
produced with the single-step consistency ODE, guidance scale = 1.5, and geometric weight γ=0.8.
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