
Appendix

A PCMCI Algorithm

The PCMCI algorithm is proposed by Runge et al. [2019], aiming to detect time-lagged causal
relations in a window causal graph. There are two stages of PCMCI: the condition-selection stage
and the causal discovery stage. In the first stage, unnecessary edges are removed based on the
conditional independencies from an initialized partially connected graph where Assumption A4-A5
should be satisfied. In the second stage, Momentary Conditional Independence tests (MCI) are
used to further remove the false positive edges caused by autocorrelations in time series data. More
specifically, these two steps can be briefly formalized as follows:

• PC1 in Algorithm A1: Condition selection stage. PC1 is a variant of the skeleton-discovery
part of the PC algorithm in a more robust version named stable-PC Le et al. [2016]. The goal
in this stage is to obtain a superset of the parents P̂a(Xj

t ) for all variables Xj∈[n]
t∈[τmax+1,T ] ∈ V.

Initialize P̂a(Xj
t ) = {Xi

t−τ}i∈[n],τ∈[τmax]. P̂a(X
j
t ) will remove Xi

t−τ if

Xi
t−τ ⊥⊥ Xj

t

∣∣∣P̂a(Xj
t )\{Xi

t−τ} (1)

• MCI in Algorithm A2: Causal discovery stage. In this stage, do MCI tests for all variable
pairs (Xi

t−τ , X
j
t ) with i, j ∈ [n] and time delays τ ∈ [τmax]:

MCI(Xi
t−τ , X

j
t |P̂a(X

j
t )\{Xi

t−τ}, P̂a(Xi
t−τ )) (2)

where P̂a(Xj
t ) and P̂a(Xi

t−τ ) are estimated from the PC1 stage.

Note that τmax in this section is the same as τub in the main paper, serving as the upper bound for the
time lag that exhibits causal effects. On the other hand, τmax in the main paper denotes the maximum
time lag observed within the multivariate time series. Essentially, in the main paper, τub is a parameter
that must be fed into the algorithm, and τmax is observed from the true causal graph. As a default, we
assume τub is configured with a value greater than τmax, ensuring that the algorithm uncovers the
correct causal relations. See Fig.1 for more detail.

Figure 1: Set τub to be 5, then all parent candidates of variables at t = 15 are included in the large
orange box, ranging from t = 10 to t = 14. Consequently, the algorithm will only examine causal
effects with a time lag not exceeding 5. In the causal graph, τmax is 3, representing the maximum
time lag observed among the 3-variate time series. Specifically, the maximum time lag for each
component time series is τ1 = 2, τ2 = 3, τ3 = 1, respectively, and τmax represents the largest value
among these three maximum lags.
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Algorithm A1 PCqmax

1: Input: A n-variate time series V = (X1,X2,X3, ...,Xn), target time series Xj , maximum
time lag τmax, significance threshold αPC , maximum condition dimension pmax (default pmax =
nτmax), maximum number of combinations qmax (default qmax = 1), conditional independence
test function CI

2: function CI(X,Y,Z)
3: Test X ⊥⊥ Y |Z using test statistic measure I
4: return p-value, test statistic value I

5: Initialize preliminary set of parents P̂ a(Xj
t ) = {Xi

t−τ : i ∈ {1, ..., n}, τ ∈ {1, ..., τmax}}
6: Initialize dictionary of test statistic values Imin(Xi

t−τ → Xj
t ) =∞ ∀Xi

t−τ ∈ P̂ a(Xj
t )

7: for p = 0, 1, 2, ..., pmax do
8: if |P̂ a(Xj

t )| − 1 < p then
9: Break for-loop

10: end if
11: for all Xi

t−τ in P̂ a(Xj
t ) do

12: q = −1
13: for all lexicographically chosen subsets S ⊆ P̂ a(Xj

t ) \ {Xi
t−τ} with |S| = p do

14: q = q + 1
15: if q ≥ qmax then
16: Break from inner for-loop
17: end if
18: Run CI test to obtain (p-value, I)← CI(Xi

t−τ , X
j
t ,S)

19: if |I| < Imin(Xi
t−τ → Xj

t ) then ▷Store min. I of parent among all tests
20: Imin(Xi

t−τ → Xj
t ) = |I|

21: end if
22: if p-value > αPC then ▷Removed only after all Xi

t−τ have been tested
23: Mark Xi

t−τ for removal from P̂ a(Xj
t )

24: Break from inner for-loop
25: end if
26: end for
27: end for
28: Remove non-significant parents from P̂ a(Xj

t )

29: Sort parents in P̂ a(Xj
t ) by Imin(Xi

t−τ → Xj
t ) from largest to smallest

30: end for
31: return P̂ a(Xj

t )

Algorithm A2 MCI

1: Input: A n-variate time series V = (X1,X2,X3, ...,Xn), sorted parents P̂ a(Xj
t ) for all

variables Xj estimated with Algorithm A1, maximum time lag τmax, maximum number pX of
parents of variable Xi, and conditional independence test function CI

2: for all (Xi
t−τ , X

j
t ) with i, j ∈ {1, ..., n}, τ ∈ {0, ..., τmax}, excluding (Xj

t , X
j
t ) do

3: Remove Xi
t−τ from P̂ a(Xj

t ) if necessary
4: Define P̂ apX

(Xi
t−τ ) as the first pX parents from P̂ a(Xi

t), shifted by τ

5: Run MCI test to obtain (p-value, I)← CI(Xi
t−τ , X

j
t ,Z = {P̂ a(Xj

t ), P̂ apX
(Xi

t−τ )})
6: end for
7: Optionally adjust p-value of all links by False Discovery Rate-approach (FDR)
8: return p-value and MCI test statistic values
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B PCMCIΩ

For simplicity’s sake, define sets: [b] := {1, 2, ..., b} and [a, b] := {a, a+ 1, ..., b}, where a, b ∈ N.

Algorithm B1 PCMCIΩ

1: Input: A n-variate time series V = (X1,X2,X3, ...,Xn), periodicity upper bound ωub, time
lag upper bound τub. By default, we assume τub and ωub are larger than their true value.

2: A superset of parent set is obtained using PCMCI with τub and denote it by ŜPa(Xj
t ) ∀j, t.

3: for Xj where j ∈ [n] do
4: for a guess ω ∈ [ωub] of ωj do
5: Let Π̂j := {Π̂j

k|k ∈ [ω]} where Π̂j
k = {2τub + k, 2τub + ω + k, 2τub + 2ω + k, · · · }.

6: for k ∈ [ω] do
7: Initialize the parent set for Xj

t , t ∈ {t : t ≥ 2τub, t ∈ Π̂j
k} (with guess ω) denoted by

P̂aω(X
j
t )← ŜPa(Xj

t ).
8: Consider Xi

t−τ ∈ P̂aω(X
j
t ). Remove Xi

t−τ from P̂aω(X
j
t ) if Xi

t−τ ⊥⊥ Xj
t |(

ŜPa(Xj
t ) ∪ ŜPa(Xi

t−τ )
)
\Xi

t−τ using a CI Test with samples t ∈ {t : t ≥ 2τub, t ∈ Π̂j
k}.

9: Store P̂aω(X
j
t ) for Xj

t , t ∈ {t : t ≥ 2τub, t ∈ Π̂j
k}.

10: end for
11: end for
12: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
13: if there exists turning points Sj , Sj ∈ [ωub] then
14: ω̂j ← minSj

15: else
16: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
17: ω̂j ← argminω∈[ωub] maxk∈[ω] |P̂aω(Xj

t∈Π̂j
k

)|.
18: end if
19: Set P̂a(Xj

t )← P̂aω̂j
(Xj

t ) for Xj
t , t ∈ {t : t ≥ 2τub}.

20: end for
21: return ω̂j and P̂a(Xj

t ) ∀j ∈ [n], t ≥ 2τub.

C Soundness of PCMCIΩ

C.1 Stationary Markov Chain

Claim: Any discrete-valued time series V with Semi-Stationary Structural Causal Model (SCM)
satisfying assumption A1, A2, A4, A5 can be written as a Markov chain {Zn} as long as this Markov
chain satisfies Pa(Zn) ⊂ Zn ∪ Zn−1 for all n, where Zn is a set of variables in V . This Markov
chain has a finite number of states if all time series in V are discrete-valued time series.

Note that when the notation n is related to a Markov chain Zn, it means the running index. In the
context of Xj∈[n]

t , n represents the index of component time series within the n-variate time series.

To simplify, assume that one associated Markov chain of V = {X,Y} has Zn =
{Xt, Yt, Xt−1, Yt−1} with t ∈ {t ∈ N+ :, t ≤ T} satisfying Pa(Zn) ⊂ Zn ∪ Zn−1. Here, the
notation for the time points of variables is simplified as t and t − 1, even though it should be a
function of n, the running index of the Markov chain. Note that Zn−1 = {Xt−2, Yt−2, Xt−3, Yt−3}
rather than {Xt−1, Yt−1, Xt−2, Yt−2}, as the simplified notation could erroneously suggest the latter
sequence. A simple proof is shown below through Markov assumption (A2).
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Figure 2: Partial causal graph for 3-variate time series V = {X1,X2,X3} with a Semi-Stationary
SCM where τmax = 3, ω1 = 3, ω2 = 2, ω3 = 1, Ω = 6 and δ = 6. The first 3(=τmax) time slices
{Xt}1≤t≤3 are the starting points. The same color edges denote the same causal mechanism. E.g.
for X1: there are 3 (= ωj) time partition subsets {Π1

k}1≤k≤3. The time points t of nodes X1
t sharing

the same filling color are in the same time partition subsets. The time points t of nodes X1
t sharing

both the same filling color and the same outline shape are in the same homogenous time partition
subsets. There are 6 (= δ) different Markov chains in this multivariate time series V , and the first
element of these 6 Markov chains is shown as {Zq

1}1≤q≤6 and are tinted with a gradient of blue hues.
Z1
1 and Z1

2 denote the first two elements of the first Markov chain while Z2
1 and Z2

2 denote the first
two elements of the second Markov chain.

Proof.
p(Zn|Zn−1, Zn−2, ...) (3)
= p(Xt, Yt, Xt−1, Yt−1|Zn−1, Zn−2, ...) (4)

= p(Xt|Zn ∪ Zn−1 \Xt, Zn−2, · · · )p
(
Yt|Zn ∪ Zn−1 \ (Xt ∪ Yt), Zn−2, · · ·

)
· · · (5)

= p

(
Xt|Pa(Xt), Zn ∪ Zn−1 \ (Xt ∪ Pa(Xt))

)
(6)

× p

(
Yt|Pa(Yt), Zn ∪ Zn−1 \ (Xt ∪ Yt ∪ Pa(Yt))

)
× p

(
Xt−1|Pa(Xt−1), Zn ∪ Zn−1 \ (Xt ∪ Yt ∪Xt−1 ∪ Pa(Xt−1))

)
· · ·

= p(Xt|Zn ∪ Zn−1 \Xt)p

(
Yt|Zn ∪ Zn−1 \ (Xt ∪ Yt)

)
· · · (7)

= p(Xt, Yt, Xt−1, Yt−1|Zn−1) (8)
= p(Zn|Zn−1) (9)

Assume that the space of both Xt and Yt with t < T are {1, 2}. There are total 24 = 16 states of
Markov Chain {Zn} = {{Xt, Yt, Xt−1, Yt−1}}. The transition probability P for this Markov Chain
is illustrated as a 16× 16 matrix:

P =

(1, 1, 1, 1) (2, 1, 1, 1) · · ·[ ]
(1, 1, 1, 1) p1,1 p1,2 · · ·
(2, 1, 1, 1) p2,1 p2,2 · · ·

· · · · · · · · · · · · 16×16

where (1, 1, 1, 1) means Xt = 1, Yt = 1, Xt−1 = 1, Yt−1 = 1. Each row in this transition probability
matrix is a conditional distribution of Zn given one realization of Zn−1. Each entry is a probability
of having one specific realization of Zn given one realization of Zn−1. This probability can be
decomposed by conditional distributions based on Markov assumption (A2). Take p1,1 as an example:
p1,1 = p(Xt = 1, Yt = 1, Xt−1 = 1, Yt−1 = 1|Xt−2 = 1, Yt−2 = 1, Xt−3 = 1, Yt−3 = 1) (10)

= p(Xt = 1|Pa(Xt))p(Yt = 1|Pa(Yt))p(Xt−1 = 1|Pa(Xt−1))p(Yt−1 = 1|Pa(Yt−1)) (11)
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where Pa(.) here are realizations, not random variables.

For time series V with Semi-Stationary SCM, there are (potentially) δ different Markov chains
{Zq

n}, q ∈ [δ]:

Zq
n = {Xτmax+q+(n−1)δ,Xτmax+q+1+(n−1)δ, ...,Xτmax+q−1+nδ},

where n ∈ {n : n ∈ N+, τmax + q − 1 + nδ ≤ T}, δ = ⌈ τmax+1
Ω ⌉Ω. As proved in the claim, such a

Markov chain exists as long as Pa(Zq
n) ⊂ Zq

n ∪ Zq
n−1 for all n. The value of δ can guarantee the

existence of such Markov chain because δ is larger than τmax + 1 and is a multiple of Ω, that is,
a multiple of all {ωj}j∈[n]. By doing so, Pa(Zq

n) ⊂ Zq
n ∪ Zq

n−1 is satisfied; for any variable Xj
t ,

there exists q ∈ [δ] and n ∈ N+ such that variable Xj
t and its parent set Pa(Xj

t ) can be included in
Zq
n; and the causal mechanism generating Zq

n is invariant for different n. The state space of {Zq
n}

is the set containing all possible realizations of {Xτmax+q+(i−1)+(n−1)δ}i∈[δ],n∈N. The transition
probabilities between the states are the product of associated causal mechanisms based on Markov
assumption (A2).

Determined by the starting slice Xt where τmax < t ≤ τmax + δ, there should be δ potentially
different Markov chains {Zq

n} where 1 ≤ q ≤ δ. To be more specific, those Markov chains are:

Markov Chain 1: Z1
n = {Xτmax+1+(n−1)δ,Xτmax+2+(n−1)δ, ...,Xτmax+nδ}, (12)

where n ∈ {n : n ∈ N+, τmax + nδ ≤ T}.
Markov Chain 2: Z2

n = {Xτmax+2+(n−1)δ,Xτmax+3+(n−1)δ, ...,Xτmax+1+nδ}, (13)

where n ∈ {n : n ∈ N+, τmax + 1 + nδ ≤ T}.
...

Markov Chain δ: Zδ
n = {Xτmax+nδ,Xτmax+1+nδ, ...,Xτmax−1+(n+1)δ}, (14)

where n ∈ {n : n ∈ N+, τmax − 1 + (n+ 1)δ ≤ T}.
Given Irreducible and Aperiodic Markov Chain assumption (A7), discrete-time Markov chain
{Zq

n}0<n, q ∈ [δ] with finite states should be a stationary and ergodic Markov chain, and there is a
unique stationary distribution πq (Bertsekas and Tsitsiklis [2008], Karlin [2014]). Additionally, the
large power of the associate transition matrix Pq will eventually converge to a matrix in which each
row is the stationary distribution πq . Equivalently,

lim
n→∞

p(Zq
n = a|Zq

1 = b) = p(Zq
n = a),∀a, b ∈ S. (15)

where S is the state space of Zq
n.

In other words, after a sufficiently long time, equivalently, n is large enough, the distribution of {Zq
n}

does not change with increasing n. That is, for large enough n:

p(Zq
n1
) = p(Zq

n2
),∀n1, n2 > n. (16)

Returning from the stationary and ergodic Markov chains {Zq
n}, q ∈ [δ] back to the original data

V through Eq.(12) to Eq.(14), the distribution of the original data V must adhere to the following
condition:

p(Xτmax+q+n1δ,Xτmax+q+1+n1δ, ...,Xτmax+q+δ−1+n1δ)

= p(Xτmax+q+n2δ,Xτmax+q+1+n2δ, ...,Xτmax+q+δ−1+n2δ) (17)

for any q ∈ [δ] and n1, n2 > n.

Given these clarifications, we can naturally introduce a more refined time partition that is based on,
yet finer than, the time partition defined in Definition 2.3 in the main paper.
Definition C.1 (Homogenous Time Partition). For a univariate time series Xj in a Semi-Stationary
SCM with periodicity ωj , the time partition Πj

k of Xj can be further divided into a series of non-
overlapping and non-empty subsets {πj

(k,s)}1≤s≤ δ
ωj

. For each t ∈ [τmax + 1, T ], there exists

k ∈ [ωj ] so that t ∈ Πj
k and further there exists s ∈ [ δ

ωj
] so that t ∈ πj

(k,s). π
j
(k,s) can be written as:

πj
(k,s) := {t : τmax + 1 ≤ t ≤ T, (t mod ωj) + 1 = k, (t mod

δ

ωj
) + 1 = s}. (18)
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With this definition, we have ∪
δ
ωj

s=1π
j
(k,s) = Πj

k. While time partition Πj
k guarantees that all variables

in {Xj
t }t∈Πj

k
share the same causal mechanism, homogenous time partition πj

(k,s) guarantees that all

variables in {Xj
t }t>t′,t∈πj

(k,s)
share the same distribution where t′ represent the steps needed by the

associated Markov chain to achieve equilibrium.

Fig.2 shows a partial causal graph for a 3-variate time series with Semi-Stationary SCM. τmax = 3
means that the causal mechanisms start from t = 4, and the random variables with t ∈ {1, 2, 3} are
random noises. For the first time series X1, the periodicity ω1 is 3. And the periodicity of the time
series X2 and X3 is 2 and 1, respectively. The periodicity of the whole time series V is obtained by
LCM(3, 2, 1) = 6. δ = ⌈ τmax+1

Ω ⌉Ω = ⌈ 3+1
6 ⌉ × 6 = 1× 6 = 6.

In Fig.2, periodicity ω1 = 3 means that the causal mechanisms repeat every three time points and
hence there are three time partition subsets Π1

k, k ∈ [3]. More specifically, Π1
1 = {4, 7, 10, 13, ..., 4 +

3N, ...},Π1
2 = {5, 8, 11, 14, ..., 5 + 3N, ...},Π1

3 = {6, 9, 12, 15, ..., 6 + 3N, ...} where N ∈ N+.
Random variables {X1

t } with t in the same time partition subset share the same causal mechanism.
However, they may not share the same marginal distribution.

Still in Fig.2, based on the definition of homogenous time partition, time partition subset Π1
1 for

X1 can be further decomposed as π1
(k=1,s=1) = {4, 10, ..., 4 + δN, ...}, π1

(k=1,s=2) = {7, 13, ..., 7 +
δN, ...}. where s ∈ [ δ

ω1
]. After a long run n, Z1

n and Z1
n+1 will eventually share the same distri-

bution, that is, all the variables inside Zq
n will share the same joint or marginal distribution as the

corresponding variables inside Zq
n+1. To illustrate this, we assume that this Markov chain has already

achieved its equilibrium at time point t = 4. Based on Eq.(12) and Eq.(17), we have:

p(X4,X5, ...,X9) = p(X10,X11, ...,X15) = p(X16,X17, ...,X21) = · · · (19)

From the identical joint distribution, we can further have:

p(X1
4 ) = p(X1

10) = p(X1
16) = · · · (20)

as X1
4 ∈ X4, X1

10 ∈ X10 and X1
16 ∈ X16.

Therefore, for sufficiently large values of t ensuring that Z1
n has reached its stationary distribution, all

variables within {Xj
t }t∈πj(k,s) will share the same distribution.

In Fig.2, there are 6(= δ) potentially different Markov chains {Zq
n}, q ∈ [δ] in V . For any time

window with length δ, {Xt, ...,Xt+δ−1}, there exists q ∈ [δ], n ∈ N+, so that this time window
can be completely included in Zq

n. For instance, set {X5,X6, ...,X10} is in Z2
1 , which is the first

element of Markov chain {Z2
n}.

Constructing Markov chains and applying the Irreducible and Aperiodic Markov Chain assumption
(A7) enable us to obtain a consistent estimator for the conditional and joint distributions of interest.

C.2 Consistent Estimator

The conditional distributions for variables in {Xj
t }t∈Πj

k
are the same, that is, p(xj

t1 |Pa(x
j
t1)) =

p(xj
t2 |Pa(x

j
t2)), ∀t1, t2 ∈ Πj

k. For simplicity, denote

pt∈Πj
k
(xj

t |Pa(x
j
t )) := p(xj

t |Pa(x
j
t )), ∀t ∈ Πj

k (21)

Consider an indicator function such that 1(xj
t ,Pa(x

j
t )) = 1 if configuration (xj

t ,Pa(x
j
t )) has realized,

otherwise 1(xj
t ,Pa(x

j
t )) = 0.

Since every t ∈ πj
(k,s) is apart from each other with Nδ steps where N ∈ N+, and there must exist

q ∈ [ωj ] and n1 ∈ N+ so that {xj
t ,Pa(x

j
t )} ∈ Zq

n1
, then for the same q, there must exist another n2 so

that {xj
t+Nδ,Pa(x

j
t+Nδ)} ∈ Zq

n2
. Hence, we have {1(xj

t ,Pa(x
j
t ))}t∈πj

(k,s)
= {f(Zq(t)

n1(t)
)}t∈πj

(k,s)

with some function f : Rn×δ → R1 satisfying E|f(Zq(t)
n1(t)

)| < ∞. Since the value of t deter-
mines q and n1, we use q(t) and n1(t) to emphasize their relations. For large enough t > t′,
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{1(xj
t ,Pa(x

j
t ))}t>t′,t∈πj

(k,s)
are identical samples where t′ is the time point needed by the associate

Markov chain to achieve its equilibrium after n1(t
′) steps.

Without loss of generality, we assume T is a multiple of δ all the time.

We can construct an estimator of p(xj
t ,Pa(x

j
t )) with large enough t as:

p̂(xj
t ,Pa(x

j
t )) =

δ

T

∑
t∈πj

(k,s)

1(xj
t ,Pa(x

j
t )) (22)

where k, s is determined by t and there must exist one and only one k, s satisfying t ∈ πj
(k,s). Now,

we are going to show this estimator is consistent.

We first decompose the estimator into two parts: time point t ≤ t′ and t > t′, where t′ represents the
time point when the equilibrium of the associated Markov chain is achieved.

δ

T

∑
t∈πj

(k,s)

1(xj
t ,Pa(x

j
t )) (23)

=
δ

T

( ∑
t≤t′,t∈πj

(k,s)

1(xj
t ,Pa(x

j
t )) +

∑
t>t′,t∈πj

(k,s)

1(xj
t ,Pa(x

j
t ))

)
(24)

=
δ

T

∑
t≤t′,t∈πj

(k,s)

1(xj
t ,Pa(x

j
t )) +

δ

T

∑
t>t′,t∈πj

(k,s)

1(xj
t ,Pa(x

j
t )) (25)

=
δ

T

∑
t≤t′,t∈πj

(k,s)

1(xj
t ,Pa(x

j
t )) +

δ

T − t′
T − t′

δ

δ

T

∑
t>t′,t∈πj

(k,s)

1(xj
t ,Pa(x

j
t )) (26)

=
δ

T

∑
t≤t′,t∈πj

(k,s)

1(xj
t ,Pa(x

j
t )) +

δ

T − t′
T − t′

δ

δ

T

∑
t>t′,t∈πj

(k,s)

1(xj
t ,Pa(x

j
t )) (27)

=
δ

T

∑
t≤t′,t∈πj

(k,s)

1(xj
t ,Pa(x

j
t )) +

T − t′

T

(
δ

T − t′

∑
t>t′,t∈πj

(k,s)

1(xj
t ,Pa(x

j
t ))

)
(28)

(29)

Take a limit of Eq.(23), we have:

lim
T→∞

δ

T

∑
t∈πj

(k,s)

1(xj
t ,Pa(x

j
t )) (30)

= lim
T→∞

δ

T

∑
t≤t′,t∈πj

(k,s)

1(xj
t ,Pa(x

j
t )) + lim

T→∞

T − t′

T

(
δ

T − t′

∑
t>t′,t∈πj

(k,s)

1(xj
t ,Pa(x

j
t ))

)
(31)

= 0 + lim
T→∞

T − t′

T

(
1

n1(T )− n1(t′)

n1(T )∑
n1(t)>n1(t′)

f(Z
q(t)
n1(t)

)

)
,where t > t′, t ∈ πj

(k,s) (32)

Birkhoff’s Ergodic Theorem
================ 0 + E

(
f(Z

q(t)
n1(t)

)

)
(33)

= E

(
1(xj

t ,Pa(x
j
t ))

)
,where t > t′, t ∈ πj

(k,s) (34)

= p(xj
t ,Pa(x

j
t )),where t > t′, t ∈ πj

(k,s) (35)

Denote

pt∈πj
(k,s)

(xj
t ,Pa(x

j
t )) := p(xj

t ,Pa(x
j
t )),where t > t′, t ∈ πj

(k,s) (36)

7



Based on the definition of homogenous time partition and time partition, pt∈πj
(k,s)

(xj
t |Pa(x

j
t )) =

pt∈Πj
k
(xj

t |Pa(x
j
t )), ∀s ∈ [ δ

ωj
].

Similar to Eq.(22), one estimator of pt∈Πj
k
(xj

t |Pa(x
j
t )), ∀k = [ωj ] is

p̂t∈Πj
k
(xj

t |Pa(x
j
t )) =

∑
t∈Πj

k
1(xj

t ,Pa(x
j
t ))∑

t∈Πj
k
1(Pa(xj

t ))
(37)

=

∑ δ
ωj

s=1

∑
t∈πj

(k,s)
1(xj

t ,Pa(x
j
t ))∑ δ

ωj

s=1

∑
t∈πj

(k,s)
1(Pa(xj

t ))

(38)

=

∑ δ
ωj

s=1
T
δ

∑
t∈πj

(k,s)
1(xj

t ,Pa(x
j
t ))∑ δ

ωj

s=1
T
δ

∑
t∈πj

(k,s)
1(Pa(xj

t ))

(39)

Take a limit of Eq.(37), we have:

lim
T→∞

p̂t∈Πj
k
(xj

t |Pa(x
j
t )) (40)

Eq.(35)
=====

∑ δ
ωj

s=1 pt∈πj
(k,s)

(xj
t ,Pa(x

j
t ))∑ δ

ωj

s=1 pt∈πj
(k,s)

(Pa(xj
t ))

(41)

=

∑ δ
ωj

s=1 pt∈πj
(k,s)

(xj
t |Pa(x

j
t ))pt∈πj

(k,s)
(Pa(xj

t ))∑ δ
ωj

s=1 pt∈πj
(k,s)

(Pa(xj
t ))

(42)

p
t∈π

j
(k,s)

(xj
t |Pa(x

j
t)) are same for all s

========================
pt∈Πj

k
(xj

t |Pa(x
j
t ))

∑ δ
ωj

s=1 pt∈πj
(k,s)

(Pa(xj
t ))∑ δ

ωj

s=1 pt∈πj
(k,s)

(Pa(xj
t ))

(43)

= pt∈Πj
k
(xj

t |Pa(x
j
t )) (44)

Hence, p̂t∈Πj
k
(xj

t |Pa(x
j
t )) is a consistent estimator of pt∈Πj

k
(xj

t |Pa(x
j
t )).

Similarly, we construct an estimator of p(xj
t | ∪h Pah(x

j
t )) where t ∈ [T ]:

p̂(xj
t | ∪h Pah(x

j
t )) =

∑
t

1(xj
t | ∪h Pah(x

j
t )) (45)

=

∑
t 1(x

j
t ,∪hPah(x

j
t ))∑

t 1(∪hPah(x
j
t ))

. (46)

We will prove that this estimator is converged as T goes to infinity in Lemma D.2. Hence, it is a
consistent estimator.

In this section, we have proved that p̂(xj
t ,Pa(x

j
t )) in Eq.(22) is a consistent estimator of p(xj

t ,Pa(x
j
t ))

using samples with t in the same homogenous time partition subset and p̂(xj
t |Pa(x

j
t )) in Eq.(37) is a

consistent estimator of p(xj
t |Pa(x

j
t )) using samples with t in the same time partition subset.

D Theorem

Theorem D.1. Let Ĝ be the estimated graph using the Algorithm PCMCIΩ. Under assumptions
A1-A7 and with an oracle (infinite sample size limit), we have that:

Ĝ = G (47)
almost surely.
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Lemma D.2. Denote that {Pak(Xj
t )}k∈[ωj ] contain the true and illusory parent sets, where ωj is

the true periodicity of Xj . For any random variable Xj
t with large enough t, under assumptions

A1-A7 and with an oracle (infinite sample size limit), we have:

p

(
p(Xj

t | ∪
ωj

k=1 Pak(X
j
t )) ̸= p(Xj

t | ∪
ωj

k=1 Pak(X
j
t ) \ y)

)
= 1, ∀y ∈ ∪ωj

k=1Pak(X
j
t ) (48)

Here, p(Xj
t | ∪

ωj

k=1 Pak(X
j
t )) = limT→∞ p̂(Xj

t | ∪
ωj

k=1 Pak(X
j
t )).

Proof. We first prove that there exist a sequence of coefficients {αk}k∈[ωj ] satisfying
∑ωj

k=1 αk = 1
so that:
∀ configuration ∪h Pah(x

j
t ),

p̂(xj
t | ∪h Pah(x

j
t )) =

ωj∑
k=1

αkp̂k(x
j
t |Pa(x

j
t )) (49)

If this is correct, then p̂(xj
t | ∪h Pah(x

j
t )) would be a consistent estimator of p(xj

t | ∪h Pah(x
j
t )).

Based on Eq.(46), we have:

p̂(xj
t | ∪h Pah(x

j
t )) (50)

=

∑
t 1(x

j
t ,∪hPah(x

j
t ))∑

t 1(∪hPah(x
j
t ))

(51)

=

∑
t

∑
k 1(x

j
t ,∪hPah(x

j
t ))1(t ∈ Πj

k)∑
t 1(∪hPah(x

j
t ))

(52)

=
∑
k

∑
t 1(x

j
t ,∪hPah(x

j
t ))1(t ∈ Πj

k)∑
t 1(∪hPah(x

j
t ))

(53)

=
∑
k

∑
t∈Πj

k
1(xj

t ,∪hPah(x
j
t ))∑

t 1(∪hPah(x
j
t ))

(54)

=
∑
k

(∑t∈Πj
k
1(xj

t ,∪hPah(x
j
t ))

((((((((∑
t 1(∪hPah(x

j
t ))

((((((((∑
t 1(∪hPah(x

j
t ))∑

t∈Πj
k
1(∪hPah(xj

t ))

∑
t∈Πj

k
1(∪hPah(xj

t ))∑
t 1(∪hPah(x

j
t ))

)
(55)

=
∑
k

(∑t∈Πj
k
1(xj

t ,∪hPah(x
j
t ))∑

t∈Πj
k
1(∪hPah(xj

t ))

∑
t∈Πj

k
1(∪kPat∈Πj

k
(xj

t ))∑
t 1(∪hPah(x

j
t ))

)
(56)

=
∑
k

(
p̂t∈Πj

k
(xj

t | ∪h Pah(x
j
t ))

∑
t∈Πj

k
1(∪hPah(xj

t ))∑
t 1(∪hPah(x

j
t ))

)
(57)

=
∑
k

(
p̂t∈Πj

k
(xj

t |Pa(x
j
t ),∪hPah(x

j
t ) \ Pa(x

j
t ))

∑
t∈Πj

k
1(∪hPah(xj

t ))∑
t 1(∪hPah(x

j
t ))

)
(58)

=
∑
k

(
p̂t∈Πj

k
(xj

t |Pa(x
j
t ))

∑
t∈Πj

k
1(∪hPah(xj

t ))∑
t 1(∪hPah(x

j
t ))

)
(59)

=
∑
k

αk(T )p̂t∈Πj
k
(xj

t |Pa(x
j
t )), (60)

where αk(T ) =

∑
t∈Πj

k
1(∪hPah(xj

t ))∑
t 1(∪hPah(x

j
t ))

. (61)
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Using the same logic in Eq.(30)-(35), we can decompose the numerator and denominator of αk with
homogenous time partition until each component converges to a stationary distribution.

αk(T ) =

∑
t∈Πj

k
1(∪hPah(xj

t ))∑
k

∑
t∈Πj

k
1(∪hPah(xj

t ))
(62)

=

∑ δ
ωj

s=1
T
δ

∑
t∈πj

(k,s)
1(∪hPah(xj

t ))∑
k

∑ δ
ωj

s=1
T
δ

∑
t∈πj

(k,s)
1(∪hPah(xj

t ))

(63)

lim
T→∞

αk(T ) =

∑ δ
ωj

s=1 pt∈πj
(k,s)

(∪hPah(xj
t ))∑

k

∑ δ
ωj

s=1 pt∈πj
(k,s)

(∪hPah(xj
t ))

(64)

Without loss of generality, assume y ∈ Pa(xj
t ),where t ∈ Π1

j and y /∈ Pa(xj
t ),where t /∈ Π1

j . Then
we have

p̂(xj
t | ∪h Pah(x

j
t ) \ y) =

∑
t 1(x

j
t ,∪hPah(x

j
t ) \ y)∑

t 1(∪hPah(x
j
t ) \ y)

(65)

=

ωj∑
k=2

(
p̂t∈Πj

k
(xj

t | ∪h Pah(x
j
t ) \ y)

∑
t∈Πj

k
1(∪hPah(xj

t ) \ y)∑
t 1(∪hPah(x

j
t ) \ y)

)
(66)

+

∑
t∈Πj

1
1(xj

t ,∪hPah(x
j
t ) \ y)∑

t∈Πj
1
1(∪hPah(xj

t ) \ y)

∑
t∈Πj

1
1(∪hPah(xj

t ) \ y)∑
t 1(∪hPah(x

j
t ) \ y)

=

ωj∑
k=2

βk(T )p̂t∈Πj
k
(xj

t |Pa(x
j
t )) + β1(T )p̂t∈Πj

1
(xj

t |Pa(x
j
t ) \ y) (67)

where βk(T ) =

∑
t∈Πj

k
1(∪hPah(xj

t ) \ y)∑
t 1(∪hPah(x

j
t ) \ y)

(68)

Similarly, we have:

βk(T ) =

∑
t∈Πj

k
1(∪hPah(xj

t ) \ y)∑
k

∑
t∈Πj

k
1(∪hPah(xj

t ) \ y)
(69)

=

∑ δ
ωj

s=1
T
δ

∑
t∈πj

(k,s)
1(∪hPah(xj

t ) \ y)∑
k

∑ δ
ωj

s=1
T
δ

∑
t∈πj

(k,s)
1(∪hPah(xj

t ) \ y)
(70)

lim
T→∞

βk(T ) =

∑ δ
ωj

s=1 pt∈πj
(k,s)

(∪hPah(xj
t ) \ y)∑

k

∑ δ
ωj

s=1 pt∈πj
(k,s)

(∪hPah(xj
t ) \ y)

(71)

Proving p(xj
t | ∪h Pah(x

j
t )) ̸= p(xj

t | ∪h Pah(x
j
t ) \ y) is equal to proving:

p(xj
t | ∪h Pah(x

j
t ))− p(xj

t | ∪h Pah(x
j
t ) \ y) ̸= 0 (72)
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Substitutes Eq.(60) and Eq.(67) in Eq.(72), we have the following derivation:

p(xj
t | ∪h Pah(x

j
t ))− p(xj

t | ∪h Pah(x
j
t ) \ y) (73)

= lim
T→∞

( ωj∑
k=1

αk(T )p̂t∈Πj
k
(xj

t |Pa(x
j
t ))

)
− (74)

lim
T→∞

( ωj∑
k=2

βk(T )p̂t∈Πj
k
(xj

t |Pa(x
j
t )) + β1(T )p̂t∈Πj

1
(xj

t |Pa(x
j
t ) \ y)

)

=

ωj∑
k=1

∑ δ
ωj

s=1 pt∈πj
(k,s)

(∪hPah(xj
t ))∑

k

∑ δ
ωj

s=1 pt∈πj
(k,s)

(∪hPah(xj
t ))

pt∈Πj
k
(xj

t |Pa(x
j
t )) (75)

−
( ωj∑

k=2

∑ δ
ωj

s=1 pt∈πj
(k,s)

(∪hPah(xj
t ) \ y)∑

k

∑ δ
ωj

s=1 pt∈πj
(k,s)

(∪hPah(xj
t ) \ y)

pt∈Πj
k
(xj

t |Pa(x
j
t ))

+

∑ δ
ωj

s=1 pt∈Πj
(1,s)

(∪hPah(xj
t ) \ y)∑

k

∑ δ
ωj

s=1 pt∈πj
(k,s)

(∪hPah(xj
t ) \ y)

pt∈Πj
1
(xj

t |Pa(x
j
t ) \ y)

)

After equating the denominators, the numerator is:

( ωj∑
k=1

δ
ωj∑
s=1

pt∈πj
(k,s)

(∪hPah(xj
t ))pt∈Πj

k
(xj

t |Pa(x
j
t ))

)( ωj∑
k=1

δ
ωj∑
s=1

pt∈πj
(k,s)

(∪hPah(xj
t ) \ y)

)

−
( ωj∑

k=2

δ
ωj∑
s=1

pt∈πj
(k,s)

(∪hPah(xj
t ) \ y)pt∈Πj

k
(xj

t |Pa(x
j
t ))

+

δ
ωj∑
s=1

pt∈Πj
(1,s)

(∪hPah(xj
t ) \ y)pt∈Πj

1
(xj

t |Pa(x
j
t ) \ y)

)

×
( ωj∑

k=1

δ
ωj∑
s=1

pt∈πj
(k,s)

(∪hPah(xj
t ))

)
(76)

For the sake of simplicity, denote

ak :=

δ
ωj∑
s=1

pt∈πj
(k,s)

(∪hPah(xj
t )) (77)

bk :=

δ
ωj∑
s=1

pt∈πj
(k,s)

(∪hPah(xj
t ) \ y) (78)

ck := pt∈Πj
k
(xj

t |Pa(x
j
t )) (79)

c′1 := pt∈Πj
1
(xj

t |Pa(x
j
t ) \ y) (80)
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After substituting the simple notations in Eq.(76):

(

ωj∑
k=1

akck)(

ωj∑
k=1

bk)− (

ωj∑
k=2

bkck + b1c
′
1)(

ωj∑
k=1

ak) (81)

=

ωj∑
k=1

(ck − c1′)akb1 +

ωj∑
k=1

ωj∑
i>1,i̸=k

(ck − ci)akbi (82)

= b1

ωj∑
k=1

ckak − c1′b1

ωj∑
k=1

ak +

ωj∑
k=1

ckak

ωj∑
i>1,i̸=k

bi −
ωj∑
k=1

ak

ωj∑
i>1,i̸=k

cibi (83)

Define

Vt = {Xt′ |0 < t′ < t} (84)

That is, Vt contains all the nodes before time point t.

Denote {bti}i∈[n] = ∪hPah(xj
t ) and assume {bti}1≤i≤n1<n = Pa1(x

j
t ), where t ∈ Πj

(k,s)

We express pt∈Πj
(k,s)

(∪hPah(xj
t )) by marginalizing all other random variables occurring before the

latest variables in ∪hPah(xj
t ) and utilizing the Causal Markov assumption (A2):

pt∈Πj
(k,s)

(∪hPah(xj
t )) (85)

= p(∪hPah(xj
t )|t ∈ Πj

(k,s)) (86)

=
∑

Vh\{bti}i∈[n]

p(bt1 , bt2 , ...btn , Vh \ {bti}i∈[n]|h = max{ti, 1 ≤ i ≤ n}, t ∈ Πj
(k,s)) (87)

=
∑

{Pa(bti )}i∈[n]

p(bti |Pa(bti))
∑

Vτmax

∑
τmax<t′≤h

∑
j∈[n]

∑
xj

t′ ,Pa(x
j

t′ )

p
(
xj
t′ |Pa(x

j
t′)

)
p(Vτmax) (88)

Note that xj
t′ ∈ Vh \ {bti}i∈[n].

This joint distribution is now represented by conditional distributions of one related variable given its
parents.

Similarly, assume y = bt1 , we have

pt∈Πj
(k,s)

(∪hPah(xj
t ) \ y) (89)

= pt∈Πj
(k,s)

(∪hPah(xj
t ) \ bt1) (90)

= p(∪hPah(xj
t \ y)|t ∈ Πj

(k,s)) (91)

=
∑

Vtn\{bti}i̸=1

p(bt2 , ...btn−1
, btn , Vtn \ {bti}i ̸=1|h = max{ti, 2 ≤ i ≤ n}) (92)

=
∑

{Pa(bti )}i̸=1

p(bti |Pa(bti))
∑

Vτmax

∑
τmax<t′≤h

∑
j∈[n]

∑
xj

t′ ,Pa(x
j

t′ )

p
(
xj
t′ |Pa(x

j
t′)

)
p(Vτmax) (93)

Note that xj
t′ ∈ Vtn \ {bti}i ̸=1.
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pt∈Πj
1
(xj

t |Pa(x
j
t ) \ y) can also be represented by those conditional distributions based on Bayes rule.

pt∈Πj
1
(xj

t |Pa(x
j
t ) \ bt1) (94)

=
pt∈Πj

1
(xj

t , bt2 , .., btn1
)

pt∈Πj
1
(bt2 , ..., btn1

)
(95)

=

∑
bt1

pt∈Πj
1
(xj

t , bt1 , ..., btn1
)∑

bt1
pt∈Πj

1
(bt1 , ..., btn1

)
(96)

=

∑
bt1

pt∈Πj
1
(xj

t ,Pa1(x
j
t ))∑

bt1
pt∈Πj

1
(Pa1(x

j
t ))

(97)

=

∑
bt1

p(xj
t |Pa1(x

j
t ))pt∈Πj

1
(bt1 , ..., btn1

)∑
bt1

pt∈Πj
1
(bt1 , ..., btn1

)
(98)

=

∑
bt1

p(xj
t |Pa1(x

j
t ))

∑
Vh\{bti∈[n1]

} pt∈Πj
1
(bt1 , ...btn1

, Vh \ {bti∈[n1]
}|h = max{ti∈[n1]})∑

bt1

∑
Vh\{bti∈[n1]

} pt∈Πj
1
(bt1 , ...btn1

, Vh \ {bti∈[n1]
}|h = max{ti∈[n1]})

(99)

=

∑
bt1

AB∑
bt1

CD
(100)

where

A = p(xj
t |Pa1(x

j
t ))

∑
{Pa(bti )}i∈[n1]

p(bti |Pa(bti)) (101)

B =
∑

Vτmax

∑
τmax<t′≤h

∑
j∈[n]

∑
xj

t′ ,Pa(x
j

t′ )

p
(
xj
t′ |Pa(x

j
t′)

)
p(Vτmax) (102)

C =
∑

{Pa(bti )}i∈[n1]

p(bti |Pa(bti)) (103)

D =
∑

Vτmax

∑
τmax<t′≤h

∑
j∈[n]

∑
xj

t′ ,Pa(x
j

t′ )

p
(
xj
t′ |Pa(x

j
t′)

)
p(Vτmax

) (104)

Note that t ∈ Πj
1 for distributions in above section from Eq.(94) to Eq.(104) and that xj

t′ ∈ Vh \
{bti}i∈[n1].

Hence, every term in Eq.(83) can be expressed as a function of those conditional distributions.
Substituting Eq.(88), Eq.(93) and Eq.(100) in Eq.(83), we have a polynomial equation only composed
of conditional distributions {p

(
xj
t′ |Pa(x

j
t′)

)
}j∈[n],t′≤t except the joint distribution of the starting

points p(Vτmax
). Note that the conditional distributions of variables in {Xj

t }t∈Πj
k
, j ∈ [n], k ∈ [ωj ]

are the same. Since sets do not allow duplicate values, set {p
(
xj
t′ |Pa(x

j
t′)

)
}j∈[n],t′≤t contains

only different conditional distributions. There should be potentially total
∑n

j=1 ωj different causal
mechanisms. The total number of conditional probabilities should be jointly determined by the
number of causal mechanisms and also the number of realizations that variables can take. After
adjusting those conditional distributions by the linear restriction

∑
y p(x|y) = 1, all components

in the set {p
(
xj
t′ |Pa(x

j
t′)

)
}j∈[n],t′≤t are mutually independent, and p(Vτmax

) is also independent
of all the causal mechanisms because the first starting points are random noises. That is, upon
adjustments, all the terms in Eq.(83) should be rendered independent of each other, without any
imposed constraints across them.

After expanding all the summations in Eq.(83), the coefficients of this polynomial equation are
either 1 or −1. Each coefficient is accompanied by one unique monomial as index (k, s) in the joint
distribution pt∈πj

k,s
determined a unique product of conditional distributions, i.e., with a different

pair of (k, s), the product should be different. Considering all random and independent conditional
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distributions in {p
(
xj
t′ |Pa(x

j
t′)

)
}j∈[n],t′≤t, the polynomial is not identically zero, and the probability

of choosing a root of this polynomial is zero.

Denote the polynomial equation in Eq.(83) as A, we have:

p(A = 0) = 0 (105)

Back to the original Eq.(73), we finally have p
(
p(xj

t | ∪h Pah(x
j
t )) ̸= p(xj

t | ∪h Pah(x
j
t ) \ y)

)
=

1, ∀y ∈ ∪hPah(xj
t ).

Lemma D.3. Let ŜPa(Xj
t ) denote the estimated superset of parent set for Xj ∈ V obtained from

the Algorithm B1 (line 2). {Pak(Xj
t )}k∈[ωj ] contain the true and illusory parent sets, where ωj is

the true periodicity of Xj . Under assumptions A1-A7 and with an oracle (infinite sample size limit),
we have:

∪ωj

k=1Pak(X
j
t ) ⊆ ŜPa(Xj

t ), ∀t ∈ [τmax + 1, T ]

almost surely.

Proof. Assume the contrary, i.e., there exists s ∈ ∪kPak(Xj
t ) \ ŜPa(X

j
t ). From Lemma D.2,

we have Xj
t��⊥⊥s

∣∣∣∪ωj

k=1Pak(X
j
t ) \ s . By the Definition 2.4, we have Pa(Xj

t ) ⊂ ∪
ωj

k=1Pak(X
j
t ).

If s ̸∈ Pa(Xj
t ), by the causal Markov property (A2), the dependence relation can not be true,

because s is a non-descendant of Xj
t . If s ∈ Pa(Xj

t ), our Algorithm would have concluded that
Xj

t��⊥⊥s
∣∣∣ŜPa(Xj

t ) (line 2) with a consistent CI test, evident from the causal Markov property,
contradicting our assumption. Hence, the lemma.

Lemma D.4. Let P̂ a(Xj
t ) denote the estimated parent set for Xj ∈ V obtained from the Algorithm B1

(line 19) assuming that true ωj has obtained (line 17). {Pak(Xj
t )}k∈[ωj ] contain the true and illusory

parent sets. Under assumptions A1-A7 and with an oracle (infinite sample size limit), we have:

P̂ a(Xj
t ) = Pa(Xj

t ), ∀t ∈ [τmax + 1, T ] (106)

almost surely.

Proof. From Lemma D.3,

Pa(Xj
t ) ⊂ ∪

ωj

k=1Pak(X
j
t ) ⊆ ŜPa(Xj

t ), ∀t ∈ [τmax + 1, T ], j ∈ [n] (107)

In Runge et al. [2019], the author proved P̂ a(Xj
t ) = Pa(Xj

t ) if we run PCMCI on stationary time
series. Using the same logic, we have the following proof.

Suppose Xi
t−τ /∈ P̂ a(Xj

t ) but Xi
t−τ ∈ Pa(Xj

t ). With a consistent conditional independence test
and correct time partition, the MCI test (line 8 in Algorithm B1) will remove Xi

t−τ from P̂ aωj
(Xj

t )
if and only if:

Xi
t−τ ⊥⊥ Xj

t

∣∣∣ŜPa(Xj
t ) \ {Xi

t−τ}, ŜPa(Xi
t−τ ) (108)

Based on Eq.(107), the rule is equivalent to removing Xi
t−τ from P̂ aωj

(Xj
t ) if and only if:

Xi
t−τ ⊥⊥ Xj

t

∣∣∣∣∣
{
Pa(Xj

t ) \ {Xi
t−τ}, Pa(Xi

t−τ ) ,

ŜPa(Xj
t ) \ (Pa(Xj

t ) ∪ {Xi
t−τ}), ŜPa(Xi

t−τ ) \ Pa(Xi
t−τ )

}
(109)

⇒Xi
t−τ ⊥⊥ Xj

t

∣∣∣Pa(Xj
t ) \ {Xi

t−τ}, Pa(Xi
t−τ ) (110)
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Based on Causal Markov Condition assumption (A2) and Faithfulness Condition (A3), from Eq.(110)
we have Xi

t−τ /∈ Pa(Xj
t ). In other words, if Xi

t−τ /∈ P̂ a(Xj
t ) then Xi

t−τ /∈ Pa(Xj
t ). That is,

Pa(Xj
t ) ⊆ P̂ a(Xj

t )

Suppose Xi
t−τ ∈ P̂ a(Xj

t ) but Xi
t−τ /∈ Pa(Xj

t ). By the contraposition of Faithfulness (A1), we know

that Xi
t−τ��⊥⊥Xj

t

∣∣∣P̂ a(Xj
t ) \ {Xi

t−τ}, P̂ a(Xi
t−τ ) . Denote W =

{
P̂ a(Xj

t ) \ {Pa(Xj
t ), X

i
t−τ}

}
∪{

P̂ a(Xi
t−τ ) \ Pa(Xi

t−τ )
}

. Since Xi
t−τ /∈ Pa(Xj

t ), based on Causal Markov Condition assumption
(A2),

W ∪Xi
t−τ ⊥⊥ Xj

t

∣∣∣Pa(Xj
t )

=⇒W ∪Xi
t−τ ⊥⊥ Xj

t

∣∣∣Pa(Xj
t ), Pa(Xi

t−τ )

Weak Union
======⇒ Xi

t−τ ⊥⊥ Xj
t

∣∣∣{Pa(Xj
t ), Pa(Xi

t−τ )} ∪W

=⇒ Xi
t−τ ⊥⊥ Xj

t

∣∣∣P̂ a(Xj
t ) \ {Xi

t−τ}, P̂ a(Xi
t−τ )

This is contrary to the assumption so that there is no such Xi
t−τ satisfying Xi

t−τ ∈ P̂ a(Xj
t )

but Xi
t−τ /∈ Pa(Xj

t ). In other words, if Xi
t−τ ∈ P̂ a(Xj

t ), then Xi
t−τ ∈ Pa(Xj

t ). That is,
P̂ a(Xj

t ) ⊆ Pa(Xj
t ). Combined with the previous conclusion that Pa(Xj

t ) ⊆ P̂ a(Xj
t ), we have

P̂ a(Xj
t ) = Pa(Xj

t ).

Based on Lemma D.2, Lemma D.3 and Lemma D.4, we can identify the true ωj for Xj through
Lemma D.5.
Lemma D.5. Let ωj denote the true periodicity for Xj ∈ V and P̂a(Xj

t∈Πj
k

) denote the estimated

parent set for Xj
t obtained from Algorithm B1 where t ∈ Πj

k. Define:

ω̂j = arg min
ω∈[ωub]

max
k∈[ω]

|P̂a(Xj

t∈Πj
k

)| (111)

Under assumptions A1-A7 and with an oracle (infinite sample limit), we have that ω̂j = ωj , ∀j ∈ [n]
almost surely.

Proof. Assume the contrary that ω̂j ̸= ωj , then in the Algorithm B1, we have an incorrect time
partition Π̂j . Hence, CI tests that are performed use samples with different causal mechanisms.
p̂(Xj

t | ∪
ωj

k=1 Pak(X
j
t )) in Eq.(50) is estimated from a mixture of two or more time partition subsets,

say Πj
1 and Πj

2. We can apply Lemma D.2 where ∪ωj

k=1Pak(X
j
t ) is replaced by ∪2k=1Pak(X

j
t ) and

then in Lemma D.3, ŜPa(Xj
t ) is replaced by P̂aω̂j (X

j
t ) and hence ∪2k=1Pak(X

j
t ) ⊆ P̂aω̂j (X

j
t )

where P̂aω̂j (X
j
t ) is obtained from samples with t from the mixture of two different partition subsets

(line 8). Hence, with ω̂j , |P̂aω̂j
(Xj

t )| ≥ | ∪2k=1 Pak(X
j
t )| using mixture samples t ∈ ∪2k=1Π

j
k.

However, with true ωj , we have |P̂aωj
(Xj

t )| = |Pa(X
j
t )| based on Lemma D.4. With Assumption

A6 the Hard Mechanism Change, | ∪2k=1 Pak(X
j
t )| > |Pa(X

j
t )| so that ωj always leads to a smaller

size of estimated parent sets than ω̂j , contrary to the definition of ω̂j . Hence, ω̂j = ωj .

With those lemmas, we can prove Theorem 1.

Proof. Assuming that a correct ωj has already been obtained, from Lemma D.4 we have

P̂ a(Xj
t ) = Pa(Xj

t ), ∀t ≥ 2τub, j ∈ [n]

From Lemma D.5, we know that a correct ωj must be obtained with consistent CI tests, that is,
ω̂j = ωj ,∀j ∈ [n]. Therefore from Algorithm B1, we have

P̂ a(Xj
t ) = Pa(Xj

t ), ∀t ≥ 2τub, j ∈ [n]

15



Figure 3: In the above illustration of the "turning point," the sizes of parent sets for different estimates
ω̂j are depicted as |P̂ak(Xj

t )|, k ∈ [ω̂j ]. It is worth noting that P̂ak(X
j
t ) represents either the true

parent set or the illusory parent set of Xj
t . In this context, we are interested in the sizes of these parent

sets. The first occurrence of the "turning point" happens at ω̂j = 3 since the sizes of parent sets
obtained when ω̂j = 2 and ω̂j = 4 are larger than the corresponding size when ω̂j = 3, respectively.
The term "turning point" denotes that as ω̂j increases, the size of the parent set initially decreases
and then starts increasing once the local minimum is reached. The corresponding relations exist
because as long as ω̂j is not a multiple of the true ωj , the estimated time partition subsets with ω̂j

must be a mixture of some correct time partition subsets with ωj . Therefore, it is reasonable to use
this trick rather than looking at the maximum size of the parent sets P̂ak(X

j
t ), k ∈ [ω̂j ] (line 17 in

Algorithm B1).

If the causal mechanism is fixed across time, i.e., ωj = 1, j ∈ [n], the proof of PCMCI Runge et al.
[2019] showed that for all Xj ∈ V ,

Xi
t−τ → Xj

t /∈ G =⇒ Xi
t−τ → Xj

t /∈ Ĝ

Xi
t−τ → Xj

t ∈ G =⇒ Xi
t−τ → Xj

t ∈ Ĝ

Therefore Ĝ = G.

If ∃ωj > 1, we can simply separate the whole graph G into sub graphs {Gωj

k }k∈[ωj ] consisting of
only target variable Xj

t with corresponding t ∈ {Πj
k}k∈[ωj ] and parent variables Xi

t′ ∈ Pa(Xj
t ).

Focusing only on one time partition subset Πj
k, k ∈ [ωj ], we have

Ĝωj

k = Gωj

k (112)

for any k ∈ [ωj ] and j ∈ [n] based on the proof of Proposition 1 in the supplementary materials of
Runge et al. [2019].
Each sub-graph Gωj

k includes only variable Xj
t , the edges entering Xj

t for time points t ∈ Πj
k and the

corresponding parent variables Xi
t′ ∈ Pa(Xj

t ). Given Πj = ∪
k∈[ωj ]

Πj
k and V = ∪

j∈[n]
Xj , we have:

Ĝ = ∪
j∈[n], k∈[ωj ]

Ĝωj

k (113)

G = ∪
j∈[n], k∈[ωj ]

Gωj

k (114)

On the basis of Eq.(112), we finally have:

Ĝ = G

E Turning Points

Given infinite samples, our estimate ω̂j (line 17 in Algorithm B1) is the exact value ωj (see Lemma
D.5). However, for finite samples, estimating ωj by the equation in line 17 in Algorithm B1 does
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not yield good performance when T is small. While searching, larger guesses ω lead to finer time
partitions in Πj , resulting in smaller sizes for Πk

j (see Line 5 in Algorithm B1). Due to the power
limit of CI tests on a smaller sample given by Πk

j , the number of false negative edges increases. In
order to solve this issue, we introduce turning points. A turning point is a guess ω̂ satisfying:

max
t
|P̂aω̂(Xj

t )| < min{max
t
|P̂aω̂−1(X

j
t )|,max

t
|P̂aω̂+1(X

j
t )|}

where |P̂aω̂(Xj
t )| is the estimated parent set for Xj

t with periodicity guess ω̂. See line 19 in Algorithm
B1.

We illustrate it with a special example in Fig.3. If there are several turning points, then ω̂j is the first
turning point. If there is no turning point, then we obtain ω̂j using Line 17 of Algorithm B1.

The concept of the turning point is not based on any formal theorem but rather on experimental
observations. In experiments, the turning point often corresponds to a multiple of the true periodicity
when T is not large. This occurs due to the limitations of CI tests on finite samples. In such cases,
the causal graph can still be correct because the estimated time partition remains accurate. In these
experiments, the accuracy rate is calculated by considering {Nωj}N∈⌊ωub

ωj
⌋ as correct estimations.

F Computational Complexity

Executing the PCMCI algorithm on the entire time series constitutes the initial phase of the proposed
approach (Algorithm B1 line 2). The algorithm’s worst-case overall computational complexity is
O(n3τ2ub) +O(n2τub), discussed in Runge et al. [2019]. Here, the symbol n denotes n-variate time
series and τub represents the upper boundary for time lags.

The subsequent computational load stemming from the remaining components of our algorithm
follows a complexity of O(ω2

ubn
2τub) . This encompasses the O(n2τub) complexity associated with

conducting Momentary Conditional Independence (MCI) tests on all n univariate time series. The
parameter ω2

ub here arises due to the search procedure involving ω, iterating through values from 1 to
ωub for all n univariate time series.

The runtime of the computation is further influenced by the scaling behavior of the CI test concerning
the dimensionality of the conditioning set and the temporal series length T . For further details, see
section 5.1 in Runge et al. [2019].

G Experiments

All experiments, including those detailed in the main paper, are conducted on a single node with one
core, utilizing 512 GB of memory in the Gilbreth cluster at Purdue University.

Here, we describe how to calculate the metrics (F1 score, Adjacency Precision, and Adjacency Recall)
in our setting. In stationary time series, the output of the causal discovery algorithm is typically
an adjacency matrix with dimensions [n, n, τmax + 1]. Within the three-dimensional binary array,
the value 1 signifies an edge pointing from one variable to another with a specific time lag, while 0
indicates the absence of an edge. For instance, if element [i, j, k] in the matrix is 1, then there is an
edge pointing from Xi

t−k to Xj
t . In semi-stationary time series, due to the presence of multiple causal

mechanisms, the binary edge matrix is a four-dimensional array with dimensions [n,Ω, n, τmax + 1],
where Ω is defined as Eq.(7) in the main paper. This expanded binary matrix is constructed based on
the edge matrix of each variable Xj

t , j ∈ [n], through repetition. For instance, if Ω = 2ωj, setting
the third dimension of the large binary matrix to j should yield ωj potentially different parent sets
(including illusory and true parent sets), each appearing twice.

We should have two such binary arrays, one representing the ground truth with dimensions
[n,Ω, n, τmax + 1] and one obtained from the algorithm with dimensions [n, Ω̂, n, τmax + 1]. If
the estimator Ω̂ is incorrect, those two binary arrays will have different sizes, so we can not directly
compare them. To solve this problem, we do the same operation and calculate the least common multi-
ple of Ω and Ω̂. Denoting this least common multiple as LCM(Ω,Ω̂), we create two four-dimensional
binary arrays with dimensions of [n,LCM(Ω, Ω̂), n, τmax + 1] based on the true edge array and the
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estimated edge array, respectively, through repetition. The metrics are then computed by comparing
the values in these two arrays.

G.1 More Discussion regarding the Case Study

As stated in the main paper, we express our inability to comment on the significance of the case study
results. We open a door for the related experts; if assumptions A1-A7 are satisfied, the stationary
assumption may not hold in this real-world dataset, and such periodicity exists. However, if the
finding is not correct from an expert’s viewpoint, the following assumptions may be violated:

• Assumption A4 No Contemporaneous Causal Effects: There is a possibility of potential
causal effects from X ta

t to Xcp
t that the algorithm is unable to capture.

• Assumption A6 Hard Mechanism Change combined with limited power of CI tests: If there
is a soft mechanism change in the variables, the reliability of the CI test of two variables
given their parents will be influenced by the skewed distribution of the parent variables. This
effect will be exacerbated by the fact that the sample size will be shrunk by ω̂.

We provide a sound and robust algorithm for experts in various fields who are interested in validating
the presence of periodicity within the causal mechanisms specific to their domain.

G.2 Experiments on Continuous-valued Time Series with Exponential Noise

Considering that VARLiNGAM is a temporal extension of LiNGAM and LiNGAM is an algorithm
designed for non-Gaussian data, following the work in Pamfil et al. [2020], we also construct
experiments on continuous-valued time series data with Exponential noise. Shown as Fig.4(a), the
performance of PCMCIΩ, PCMCI and VARLiNGAM, are quite similar with their performance on
Gaussian noise. The recall rate of DYNOTEARS, however, gets worse with Exponential noise.

G.3 Experiments on Binary Time Series

Similar to the process of generating continuous-valued time series, the generation of binary time series
also involves three steps. However, the main difference lies in the last two steps. In the third step,
we simulate the conditional distributions of each child variable based on all possible combinations
of parent variable values. Subsequently, we randomly generate the value of the child variable by
considering the corresponding conditional distribution given its parent sets.

For discrete-valued time series, a longer time length is required. To evaluate performance, we
conduct a series of experiments following the same methodology as described in section 4.1. Fig.4(b)
illustrates the variation in comprehensive performance with respect to ωmax. PCMCIΩ demonstrates a
similar performance to PCMCI in terms of the F1 score, indicating a well-balanced trade-off between
precision and recall. This outcome is expected since discrete-valued time series demand larger sample
sizes, and the increases in ωmax negatively impact the power of MCI tests. This observation is further
supported by Fig.5(a), where an increase in time length T from 4000 to 12000 does not lead to a
significant improvement in the accuracy rate of ω̂, while the accuracy decreases rapidly with higher
values of ωmax.

Comparing these results to the experiments conducted on continuous-valued time series, it becomes
evident that the demand for efficient samples is even more substantial for binary time series, and the
influence of increasing ωmax on performance becomes more pronounced.

Fig.5(b) shows how the performance of the algorithm varies across τmax and the same trade-off
between recall and precision has been shown.

G.4 More experiments on Continuous-valued time series

In this section, we conduct more experiments with continuous-valued time series with Gaussian
noises.

In Fig.6(a), we test our algorithm with and without utilizing the turning point rule. See lines 13-14
in Algorithm B1 and section E for more information about the turning point rule. Let PCMCIΩ TP

18



1 3 5 7 9
0.0
0.2
0.4
0.6
0.8
1.0

F 1
 S

co
re

T = 500

1 3 5 7 9

T = 2000

1 3 5 7 9

T = 8000

1 3 5 7 9
0.0
0.2
0.4
0.6
0.8
1.0

Pr
ec

isi
on

1 3 5 7 9 1 3 5 7 9

1 3 5 7 9
0.0
0.2
0.4
0.6
0.8
1.0

Re
ca

ll

1 3 5 7 9 1 3 5 7 9
max

n = 5, max = 5

PCMCI
PCMCI
VARLiNGAM
DYNOTEARS

(a) Exponential noise

1 2 3 4 5
0.0
0.2
0.4
0.6
0.8
1.0

F 1
 S

co
re

T = 4000

1 2 3 4 5

T = 8000

1 2 3 4 5

T = 12000

1 2 3 4 5
0.0
0.2
0.4
0.6
0.8
1.0

Pr
ec

isi
on

1 2 3 4 5 1 2 3 4 5

1 2 3 4 5
0.0
0.2
0.4
0.6
0.8
1.0

Re
ca

ll

1 2 3 4 5 1 2 3 4 5
max

n = 3, max = 3

PCMCI
PCMCI

(b) Binary time series

Figure 4: a)F1 Score, Adjacency Precision, and Adjacency Recall when ωmax varies for experiments
on continuous-valued time series with Exponential noise, length T = {500, 2000, 8000}, τmax =
5 and n = 5. b) F1 Score, Adjacency Precision, and Adjacency Recall when ωmax varies for
experiments on binary time series with length T = {4000, 8000, 12000}, τmax = 3 and n = 3.
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Figure 5: PCMCIΩ is tested on 3-variate binary time series. Every marker corresponds to the average
accuracy rate or average running time over 100 trials. a) The accuracy rate of ω̂ for different time
series lengths and different ωmax. b) F1 Score, Adjacency Precision, and Adjacency Recall when
τmax varies for experiments with time series length T = 4000, ωmax = 3 and n = 3.

denote the version of PCMCIΩ that the turning point rule is utilized in choosing ω. PCMCIΩ non-TP
means that the turning point rule is not applied and ω is chosen directly according to Lemma D.5.

Fig.6(a) shows that the algorithm PCMCIΩ non-TP and PCMCIΩ TP have similar performance
with various T and ωmax. With T = 500, PCMCIΩ non-TP yields slightly larger standard errors
for those metrics, compared to PCMCIΩ TP. As time length T increases, the performance of the
algorithm PCMCIΩ non-TP has consistently increased and is even slightly better than PCMCIΩ TP.
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The consistent performance of PCMCIΩ under different chosen rules of ω supports our theoretical
result; that is, the correct periodicity leads to the most sparse causal graph.

In Fig.6(b), non-stationary time series are produced instead of semi-stationary ones. Consequently,
the causal mechanisms for each univariate time series no longer appear sequentially and periodically.
The proposed method performs slightly better in terms of F1 score and precision. However, the recall
rate is the worst compared to other baselines.

In Fig.6(c), we conduct experiments in the nonlinear setting. The proposed algorithms PCMCIΩ TP
and PCMCIΩ non-TP perform the best.

In Fig.6(d), with ωub < ωmax, the performance of the proposed algorithm is significantly worse
compared to the scenario where ωub > ωmax. However, with ωub < ωmax, the proposed algorithm
can still detect a less dense graph in comparison to other baselines. Based on these outcomes, it is
essential to maintain a slightly higher ωub without significantly impacting the number of efficient
samples utilized in each CI test.
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(a) Performance with and without turning point
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(b) Performance in non-stationary setting with-
out periodicity
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(d) Performance when ωub > ωmax and ωub <
ωmax

Figure 6: Multiple algorithms are tested on 5-variate time series with different time lengths T . Every
line corresponds to a different algorithm. Every marker corresponds to the average performance over
50 trials. In (a), the consistent performance of PCMCI under different chosen rules of ω supports our
theoretical result; that is, the correct periodicity ω leads to the most sparse causal graph. In (b), data
sets are in a non-stationary setting without periodicity. In (c), the structural causal model (SCM) is
non-linear. In (d), algorithm PCMCIΩ are tested under conditions that ωub > ωmax and ωub < ωmax

respectively.
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