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A Proofs from Section 2

Lemma 2.1. For all distributions D supported on [0, 1] with mean p and variance �2
p, �2

p  p(1�p).

Further, E[D(k)] = p and Var(D(k)) = 1
kp(1� p) +

�
1� 1

k

�
�2
p.

Proof of Lemma 2.1. Firstly, note that,

�2
p = Ex⇠D[x

2]� p2  Ex⇠D[x]� p2 = p(1� p),

where the inequality follows from the fact that D is supported on [0, 1].

Next,

E[xi] =

Z 1

x=0
Pr(pi = x) Pr(Ber(x) = 1)dx =

Z 1

x=0
Pr(pi = x)xdx = p,

which by linearity of expectation implies that E[D(k)] = p.

By the Law of Total Variation, the variance of bpi is:

Var(bpi) = Epi [Varxi(bpi|pi)] + Varpi(Exi [bpi|pi])

= Epi [
1

ki
pi(1� pi)] + Varpi(pi)

=
1

ki
(p� �2

p � p2) + �2
p

=
1

ki
(p� p2) + (1� 1

ki
)�2

p.

=
1

ki
Var(Ber(p)) + (1� 1

ki
)�2

p.

B Proofs from Section 4.2

Theorem 4.1. For any ✏ > 0, � 2 [0, 1], Algorithm 2 is (✏, �)-DP. If,

• mean✏,� is such that given n/10 samples from D, with probability 1 � � |p � bpinitial✏ | 
fki
D (n,�2

p,�) and bpinitial✏ (1� bpinitial✏ ) 2
⇥
1
2p(1� p), 3

2p(1� p)
⇤
,

• variance✏,� is such that given log n samples from D(k), with probability 1 � �, b�2
p 2

[Var(D(k)), 8Var(D(k))],

• the kis are such that
k1

kn/2
 n/2�logn

logn ,

then with probability 1� 2�, Var(bprealistic✏ )  C ·Var(bpideal✏ ) for some absolute constant C.

First, let us show that the conditions of Theorem 4.1 imply that the variance and truncation parameter
estimates of each individual data subject are correct up to constant factors.

Lemma 4.2. Given bpinitial✏ , b�2
p, and ki, define b�i

2 = 1
ki
bpinitial✏ (1 � bpinitial✏ ) + ki�1

ki
b�2
p. Under the

conditions of Theorem 4.1, for all i > log n, we have b�i
2 2

⇥
1
2�

2
i , 9.5�

2
i

⇤
and |bbi � bai|  4|bi � ai|.

Proof of Lemma 4.2. Note that b�2
p is actually an estimate of the variance of D(klogn) since

it has access to samples from this distribution rather than D itself. Therefore, b�2
p 2

[Var(D(klogn)), 8 ·Var(D(klogn))] implies b�2
p 2

h
�2
p, 8

⇣
1

klog n
p(1� p) + �2

p

⌘i
. Then for every

15



i � log n (i.e., with ki  klogn),

b�2
i =

1

ki
bpinitial✏ (1� bpinitial✏ ) +

ki � 1

ki
b�2
p

� 1

ki

1

2
p(1� p) +

ki � 1

ki
�2
p

� 1

2

✓
1

ki
p(1� p) +

ki � 1

ki
�2
p

◆

=
1

2
�2
i ,

where the first inequality follows from the accuracy conditions on mean✏,� and variance✏,� in
Theorem 4.1, and the last equality follows from the definition of �2

i in Lemma 2.1. Also,

b�2
i =

1

ki
bpinitial✏ (1� bpinitial✏ ) +

ki � 1

ki
b�2
p

 1

ki

3

2
p(1� p) + 8

ki � 1

ki

✓
1

klogn
p(1� p) + �2

p

◆

=

✓
3

2
+ 8

ki � 1

klogn

◆
1

ki
p(1� p) + 8

ki � 1

ki
�2
p

 9.5

✓
1

ki
p(1� p) +

ki � 1

ki
�2
p

◆

= 9.5�2
i ,

where again, the first inequality follows from the accuracy conditions on mean✏,� and variance✏,� in
Theorem 4.1, and the last equality follows from the definition of �2

i in Lemma 2.1. The intermediate
steps are simply algebraic manipulations. These two facts give us the desired bounds on b�2

i .

Next we turn to the truncation parameters bai and bbi. Using the definition of bai in Algorithm 2, we
have,

bai = bpinitial✏ � ↵� fki
D (n,c�2

p,�/2)

 p� fki
D (n,c�2

p,�/2))

 p� fki
D (n,�2

p,�)

= ai,

where the two inequalities respectively follow from the accuracy conditions on mean✏,� and
variance✏,� in Theorem 4.1. A symmetric result that bbi � bi follows similarly.

Finally,

|bbi � bai| = 2↵+ 2fki
D (n,c�2

p,�)

 2fki
D (n,�2

p,�) + 2fki
D (n,�2

p,�)

= 4fki
D (n,�2

p,�)

= 4|bi � ai|.

The inequalities again follows from the accuracy conditions on mean✏,� and variance✏,� in Theorem
4.1.

Proof of Theorem 4.1. To see that Algorithm 2 is differentially private, consider the three cohorts
into which users are placed. The first cohort, containing the n/10 users with the smallest ki will
have their data used in mean✏,� , which is (✏, �)-DP. Similarly, the second cohort containing the log n
users with the largest ki will have their data used in variance✏,�, which is also (✏, �)-DP. The
intermediate estimators of b�2

i , T̂ ⇤, âi, b̂i, and sensitivity ⇤ are all computed as post-processing on the
private outputs of these initial estimation subroutines and on the public kis, and thus do not incur
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any additional privacy cost. The third cohort contains the middle users i 2 [log n+ 1, 9n/10]. These
users’ data are only used in the final estimate, which is an (✏, 0)-DP instantiation of the Laplace
Mechanism [12].

Since these cohorts are disjoint and private algorithms are applied to each cohort’s data separately,
parallel composition applies, and the overall privacy parameters are the maximum of those experienced
by any cohort, so the overall algorithm is (✏, �)-DP.

For accuracy of the bprealistic✏ estimator produced by Algorithm 2, first notice that under the assumption
that kmax

kmed
 n/2�logn

logn , if �2
kmax

= Var(bp1) and �2
kmed

= Var(bpn/2) then

�2
kmed

=
1

kmed
p(1�p)+

✓
1� 1

kmed

◆
�2
p  n/2� log n

log n

1

kmax
p(1�p)+

✓
1� 1

kmax

◆
�2
p  n/2� log n

log n
�2
kmax

.

Therefore, for any truncation parameter T ,

1

2

nX

i=1

min

⇢
1

�2
i

,
T

�i

�


n/2X

i=1

min

⇢
1

�2
i

,
T

�i

�

=
lognX

i=1

min

⇢
1

�2
i

,
T

�i

�
+

n/2X

i=logn+1

min

⇢
1

�2
i

,
T

�i

�

 log n ·min

(
1

�2
kmax

,
T

�kmax

)
+

n/2X

i=logn+1

min

⇢
1

�2
i

,
T

�i

�

 (n/2� log n) ·min

(
1

�2
kmed

,
T

�kmed

)
+

n/2X

i=logn+1

min

⇢
1

�2
i

,
T

�i

�

 2

n/2X

i=logn+1

min

⇢
1

�2
i

,
T

�i

�

 2

9n/10X

i=logn+1

min

⇢
1

�2
i

,
T

�i

�
, (10)

where the first, second, and fourth inequalities follow from our assumed ordering on the kis. The
third inequality comes from our assumption on kmax and kmed, and the final inequality follows from
the fact that the summands min{ 1

�2
i
, T
�i
} are positive so adding more terms only increases the sum.
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Therefore,

Var(bprealistic✏ ) =
1

(
P9n/10

j=logn+1 min{1/ b�j
2,

bT⇤

b�i
})2

0

@
9n/10X

i=logn+1

min{ 1

b�i
4 ,
bT ⇤2

b�i
2 }�

2
i +max

i

min{ 1
b�i

4 ,
bT⇤2

b�i
2 }|bbi � bai|2

✏2

1

A

 1

(
P9n/10

j=logn+1 min{1/ b�j
2,

bT⇤

b�i
})2

0

@
9n/10X

i=logn+1

min{ 1

b�i
4 ,
bT ⇤2

b�i
2 }2 b�i

2 +max
i

min{ 1
b�i

4 ,
bT⇤2

b�i
2 }|bbi � bai|2

✏2

1

A

 2
1

(
P9n/10

j=logn+1 min{1/ b�j
2,

bT⇤

b�i
})2

0

@
9n/10X

i=logn+1

min{ 1

b�2
i

, bT ⇤2}+max
i

min{ 1
b�i

4 ,
bT⇤2

b�i
2 }|bbi � bai|2

✏2

1

A

 2
1

(
P9n/10

j=logn+1 min{1/ b�j
2, T⇤

b�i
})2

0

@
9n/10X

i=logn+1

min{ 1

b�2
i

, T ⇤2}+max
i

min{ 1
b�i

4 , T⇤2

b�i
2 }|bbi � bai|2

✏2

1

A

 2
1

(
P9n/10

j=logn+1 min{1/10�2
j ,

p
2T⇤

�i
})2

0

@
9n/10X

i=logn+1

min{ 2

�2
i

, T ⇤2}+max
i

min{ 4
�4
i
, 2T⇤2

�2
i
}6|bi � ai|2

✏2

1

A

 480
1

(
P9n/10

j=logn+1 min{1/�2
j ,

T⇤

�i
})2

0

@
9n/10X

i=logn+1

min{ 1

�2
i

, T ⇤2}+max
i

min{ 1
�4
i
, T⇤2

�2
i
}|bi � ai|2

✏2

1

A

 480
1

1
16 (
Pn

j=1 min{1/�2
j ,

T⇤

�i
})2

0

@
nX

i=1

min{ 1

�2
i

, T ⇤2}+max
i

min{ 1
�4
i
, T⇤2

�2
i
}|bi � ai|2

✏2

1

A

= 7680 ·Var(bpideal✏ )

The first equality simply follows from the definition of the estimator and basic properties of the
variance, as well as the fact that Var([bpi]biai

)  �i. The first inequality follows from the fact that
�2
i  2�̂i

2, which was shown in Lemma 4.2. The second inequality is simply pulling out the constant
to the front. The third inequality follows from the definition of T̂ as the optimiser of the variance using
the approximations b�i

2, b̂i and âi. The fourth inequality follows from the fact that b�i
2 2

⇥
1
2�

2
i , 10�

2
i

⇤

and |bbi � bai|  4|bi � ai|, as shown in Lemma 4.2, and will hold with probability 1� 2�, by taking
a union bound over the � failure probabilities from each of the mean✏,� and variance✏,� subroutines.
The fifth inequality simply pulls out the constants (480=2*10*4*6). The final inequality follows
from Equation (10) above. The final equality follows from definition of bpideal✏ and the assumption
that 1

2�
2
i  Var([bpi]biai

).

C Special Case: The constant pi case.

In the previous section, we considered the setting where there was heterogeneity in both the users’
distributions (i.e., the pis were not constant), as well as the number of data points that they each held
(i.e., the kis were not constant). In the absence of variation in the pi, each user is sampling from the
same distribution Ber(p). When privacy is not a concern, this setting reduces to the single-data-point-
per-user setting where the sample size is increased to

Pn
i=1 ki. However, under the constraint of

user-level differential privacy, this setting is distinct from the single-data-point-per-user setting, since
we need to protect the entirety of each users data set. In fact, much of the complexity of Algorithm 2
is required even in this simpler case. In particular, the truncated inverse variance weighting is still
required in this case when there is variation in the ki. In fact, the only step of Algorithm 2 that is
not required is Step ??, since already know that �2

p = 0. Since there is no variance in D, the high
probability bound fki

D (n,c�2
p,�) is just due to the randomness in the binomial distribution Bin(ki, p),

which comes from averaging ki samples drawn from Ber(p).
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When �2
p = 0, �i has the simple formula �i =

p
p(1�p)

ki
and we can directly translate from the

truncation threshold T on �i to a truncation threshold k on ki, T =
p

p(1�p)

k . Further, if we
assume that all the ki are large enough (min ki � 2 ln(1/�)/p) then we also have the simple formula

fki
D (n,c�2

p,�) =
q

3p ln(2/�)
ki

. We can plug these into Equation (6) (recall that T ⇤ is defined as the
truncation threshold that minimizes the variance of bpideal✏ ) to obtain the following formula for the
variance of bpideal✏ , and hence bprealistic✏ :

min
k

p(1�p)
Pn

i=1 min{ki, k}+ 6p ln(2/�) k
✏2

(
Pn

j=1 min{ki,
p
kik})2

. (11)

Even in the private setting, one can reduce to the single-data-point-per-user setting by reducing the
sample size by a factor of 2, and forcing the n/2 users with the most data points to produce their
estimate p̂i using only kmed (the median ki) data points. Then each estimate p̂i is a sample from the
same distribution and we can compute their mean. To the best of our knowledge, all the prior work
in the private literature that handles variations in ki follows this formula. However, not only does
this algorithm reduce the sample size by a factor of 2, it also unnecessarily hinders the contribution
of users with many data points. As a simple example, suppose that all the users have a single data
point, except for

p
n users, which have n data points. Then the algorithm which forces n/2 of the

users to use the median number of data points has an error rate of ⇥( 1n + 1
n2✏2 ) assuming that p is

bounded away from 0 or 1. Letting k = n in Equation 11 implies that that the truncated inverse
variance weighted algorithm in the previous section is better able to utilise the data of the users with
high kis, resulting in an error rate of O( 1

n3/2 + 1
n2✏2 ).

D Extension: private-size user-level differential privacy setting

When defining user-level DP where users have heterogeneous quantities of data, we also need
to distinguish between settings where the number of data points held by each user is protected
information, and settings where it is publicly known. We’ll refer to the former as private-size user-

level differential privacy, where the entry that differs between neighboring databases can have
arbitrarily different number of data points, and the latter as public-size user-level differential privacy,
where the amount of data held by each user is the same in neighboring databases. Formally, let
Di = {x1

i , · · · , x
ki
i } be the data of user i for each i 2 [n]. For private-size user-level differential

privacy, we say D and D0 are neighbours if there exists an index i such that for all j 2 [n]\{i},
Dj = D0

j . For public-size user-level differential privacy, we say D and D0 are neighbours if they
are neighbours under private-size user-level differential privacy and additionally |Di| = |D0

i| for all
i 2 [n].

Let us now turn to our problem in the private-size user-level differential privacy setting, where the kis
are private information and require formal privacy protections. We will need to make several changes
to Algorithm 2 to make it private under this stronger notion of privacy. Under public-size user-
level privacy, the quantities T̂ ⇤ (the weight truncation parameter) and ⇤ (the sensitivity of the final
estimate) in Algorithm 2 do not pose privacy concerns since they only depend on the data points
bpi through the bpinitial✏ and b�2

i , which are both produced differentially privately. However, both
these quantities depend on the ki directly, and hence care needs to be taken when using them under
private-size user-level DP.

In Algorithm 3, we outline the extension of Algorithm 2 to satisfy private-size user-level differential
privacy. The core component of the final estimate is described in Algorithm 4. The function M as
described in Algorithm 4 incorporates the truncation in a slightly different (but equivalent) manner to
Algorithm 2, but is otherwise the same, without the addition of noise.

The first key difference is how the weights are truncated. Observe that choosing a truncation parameter
T is equivalent to choosing an integer k such that T = 1/Var(D(k)). So [klogn plays the role in
Algorithm 3 that T ⇤ plays in Algorithm 2. The statistic [klogn is a private estimate of the log n-th
order statistic of the set {k1, · · · , kn}. Since the only users that participate in the final estimate (and
hence have their data truncated) all have ki < klogn, this algorithm attempts to find the smallest
truncation parameter such that no data is actually truncated. We will show that provided ✏ is not too
small, this level of truncation is sufficient.
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Algorithm 3 Private Heterogeneous Mean Estimation p̂realistic, unknown size
✏

Input: (✏, �)-DP mean estimator mean✏,�, (✏, �)-DP variance estimator variance✏,�, ✏-DP estima-
tor of the `th order statistic EM✏(·; `), number of users n, number of samples held by each user
(k1, . . . , kn s.t. ki � ki+1), an upper bound on the total number of data points held by a single user
kmax, user-level estimates (bp1, · · · , bpn), a constant C > 0, error guarantee on mean✏,� ↵ > 0, and
desired high probability bound � 2 [0, 1].

1: Initial Estimates
2: bpinitial = mean✏,�(x19n/10+1, · · · , x1n) Initial mean estimate
3: b�2

p = variance✏,�(bp1, · · · , bplogn) Initial variance estimate

4: Compute Sensitivity Proposal
5: ckT = EM✏(k1, · · · , kn; 2 logn

✏ , kmax) Compute weight truncation
6: for i 2 [log n+ 1, n/2] do
7: k0i = min{ki,ckT }
8: b�0

i

2
= 1

k0
i
(bpinitial✏ � (bpinitial✏ )2) + (1� 1

k0
i
)c�p

2.

9: vi =
1
b�0
i

2 Compute truncated, unnormalised weights

10: d�min
2 = 1

ckT
(bpinitial✏ � (bpinitial✏ )2) + (1� 1

ckT
)c�p

2.

11: bN =
P9n/10

j=logn+1 vi + Lap
⇣

1
✏ d�min

2

⌘
� 1

✏ d�min
2 ln(2�) Compute noisy normalisation term

12: ⌥ = log(1/�)
✏ + ln(1/�) ln(1/�)

✏

13: ⇤ = 8
⇣p

⌥+ 1 log n+ log(1/�)p
⌥+1

⌘
fkmax
D (n,�̂p

2,�)

[�max
2 bN

Compute local sensitivity proposal

14: Propose-Test-Release on M(· ; [klogn, n, bpinitial✏ , b�2
p,↵)

15: DT = {(bpi, ki)}i2[logn+1:9n/10]

16: ⇤ = argmax{ 2 N | 8D0 s.t. D0 is a -neighbor of DT ,�(M(·;ckT , n, bpinitial✏ , b�2
p,↵);D

0) 
⇤} Compute distance to high sensitivity dataset

17: ̃ = ⇤ + Lap(1/✏)

18: if ̃ < log(1/�)
✏ then

19: return p̂realistic, unknown size
✏ = bpinitial✏ Return initial estimate if proposed local sens. too small

20: else
21: Sample Y ⇠ Lap

�
⇤
✏

�
Sample noise added for privacy

22: return p̂realistic, unknown size
✏ = M(DT ;ckT , n, bpinitial✏ , b�2

p,↵) + Y Final estimate

The second significant change in Algorithm 3 is how the sensitivity parameter ⇤ is chosen. The final
statistic is more sensitive under the view of private-size user level privacy; the weight of every user
can change as a result of a single user changing the amount of data they hold (due to the normalisation
constant changing). Thus, the formula for the scale of the noise given in Algorithm 3 is higher than
the noise added in Algorithm 2. Further, ⇤ as defined in Algorithm 3 is not an upper bound on the
local sensitivity for all databases, although with high probability it is an upper bound on the local
sensitivity of all databases that lie in a neighbourhood of D. So, we use a standard framework from
the differential privacy literature called propose-test-release (PTR) to privately verify that ⇤ is indeed
an upper bound on the local sensitivity of all databases in a neighbourhood of D, which allows us to
safely add noise proportional to ⇤ to privatise the final statistic.

There are several existing algorithms in the literature that can be used to privately estimate the logn
✏ -th

order statistic ckT . A simple algorithm [10, 32, 19, 3, 4] that estimates the order statistic using the
common differential privacy framework called the exponential mechanism [28] is sufficient up to a
constant factor. For a full description of this algorithm, as well as its accuracy guarantees see [4].
In order for this algorithm to produce accurate results, we need an upper bound on the maximum
number of data points a single user can have; we will call this number kmax.
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Algorithm 4 Truncated weighted mean, M(·; kmax, n, p̂, �̂p
2,↵)

Input: number of users n, number of samples held by each user (k1, . . . , kn), user-level estimates
(bp1, · · · , bpn), upper bound kmax, lower bound kmin, mean estimate p̂, variance estimate �̂2

p, accuracy
on mean estimate ↵

1: for i 2 [n] do
2: bai = p̂� ↵� fki

D (n, �̂p
2,�)

3:
4: bbi = p̂+ ↵+ fki

D (n, �̂p
2,�)

5:
6: k0i = min{ki, kmax}
7: b�2

i = 1
k0
i
(p̂� (p̂)2) + (1� 1

k0
i
)�̂2

p.

8: vi =
1
b�2
i

9: Return
P

i2[n] vi[bpi]
cbi
caiP

i2[n] vi

A -neighbour of D is a database D0 of size n that differs from D on the data of at most  data
subjects. Given a function f from the set of databases to R, and a database D, the local sensitivity of
f at D is defined by �(f ;D) = maxD0neighbour ofD |f(D)� f(D0)|.

Theorem D.1. For any ✏ > 0 and � 2 [0, 1], Algorithm 3 is (3✏, 2�)-DP. If the conditions of

Theorem 4.1 hold and

• ✏ � 2 logn
n ,

• kmax 
p
n and �  1/

p
n,

• if kmed is the median ki value then
kmax
kmed



min
n

1
2 (n�⌥� 1), n�1

⌥+1 ,
✏3(n/2�logn�1)

logn log(1/�) log(1/�) ,
(n/4�1)✏
3 ln(2/�) ,

n/2� log n
✏

log n
✏

o
,

• max{↵,�kmax}  fkmax
D (n, b̂�p

2
,�), and

• for any set I ⇢ {1,m} then with probability 1 � �,

���
P

i2I vibpiP
i2I vi

� p
��� 

2Var
⇣P

i2I vibpiP
i2I vi

⌘
log(1/�),

then with probability 1� 4�, Var(p̂realistic, unknown size

✏ )  Õ
⇣
Var(bprealistic) + Var(bprealistic

✏ )p
✏

⌘

Theorem D.1 implies that when ✏ is sufficiently large (✏ � logn
n ) then the variance of p̂realistic, unknown size

✏

is within a constant of bprealistic✏ , except that the final noise added for privacy is Õ(1/
p
✏) larger. While

the conditions of this theorem may seem intimidating, note that none of them are particularly stringent.
The first condition ✏ � 2 log n/n is a reasonable assumption on ✏ (we note that essentially no learning
is possible with ✏ < 1/n). The second condition on kmax is a reasonable assumption if the number of
users n is large, as may be the case in practice. The third condition, up to logarithmic factors, can
be viewed as kmax/kmed  ✏3n. This is a stronger assumption than was required for Theorem 4.1
but provided reasonable values of ✏s, it is not prohibitive in practice. The final condition is simply a
concentration bound on the weighted sums; this condition holds for Gaussians.

The proof that Algorithm 3 is (3✏, 2�)-DP is fairly routine so we will present it first. The population
is broken into three cohorts. Let us consider each cohort individually. First, consider the log n
individuals with the most data. They participate in private releases in lines (3) ((✏, �)-DP), and (5)
(✏-DP). Using the simple composition rule of differential privacy [12], Algorithm 3 is (2✏, �)-DP with
respect to these users.
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Next, consider the 1/10th of users with the least data. These users participate in lines (2) ((✏, �)-DP)
and (5) (✏-DP). Again using the simple composition rule of differential privacy, Algorithm 3 is
(2✏, �)-DP with respect to these users.

Finally, let us consider the the group consisting of users i 2 [log n + 1, 9n/10]. These users first
participate in line (5) (✏-DP). The post-processing inequality of differential privacy states that we
can now use these statistics in the subsequent computations without paying additionally for their
privacy. Lines (7) - (9) are pre-processing for the computation of Ñ . The algorithm releasing
Ñ is a simple application of the Laplace mechanism since each vi 2 [0, 1

d�min
2 ], and hence is ✏-

differentially private. The computation of ⇤ in line (13) does not additionally touch the users data.
The final estimate bprealistic✏ is an application of the propose-test-release framework on the function
M(· ;ckT , n, bpinitial✏ , b�2

p) with proposed sensitivity ⇤. This is a generic application of the propose-
test-release framework, so we refer the reader to [10] for a proof that this final step of the algorithm
is (✏, �)-differentially private. Therefore, again using the composition theorem, Algorithm 3 is
(3✏, 2�)-DP with respect to this final set of users.

For the remainder of this section, we will focus on outlining the proof of the utility claims. Let us
focus first on the impact of the use of propose-test-release (PTR). The two relevant components
for the how the PTR component of Algorithm 3 affects the utility are the scale of ⇤/✏ and the
probability that the proposed sensitivity is too small resulting in the algorithm ending in line (19),
rather than line (22). The impact of the former is easy to analyse since the noise added is simply
output perturbation. In order to show that the PTR ends in line (22) with high probability, we need
to show that with high probability (over the randomness in the samples), ⇤ as defined in line (16)
is large enough. Since this claim is really about M(·; kmax, n, p̂, �̂p

2), we will state and prove this
claim in the notation of Algorithm 4.
Lemma D.2. Given kmin < kmax, n 2 N, p̂ 2 [0, 1], �̂p

2 2 [0, 1], ⌥ 2 N, and a database

D = {(bpi, ki)}ni=1 such that bpi ⇠ D(ki). If the conditions of Theorem D.1 hold then with probability

1� �, D is such that for any -neighbour of D, D0
where 0    ⌥ then

�(M(·; kmax,m, p̂, �̂p
2,↵);D0)  8B
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kmax
D (n, �̂p

2,�)Pn
i=1 vi

,

where B =
p
⌥+ 1 log n+ log(1/�)p

⌥+1
.

Up to the factor B, the local sensitivity is exactly what we expect from the Algorithm 2. In order
for our application of propose-test-release in Algorithm 3 to end in the desired result, we need to
set ⌥ = log(1/�)

✏ + ln(1/�) ln(1/�)
✏ . This means that up to logarithmic terms, the additional factor B

is O(1/
p
✏). If ✏ is constant then this factor is also constant, although it may be a notable factor

when ✏ is small. This inclusion of this extra factor is actually a result of a union bound in the proof
of Lemma D.2, and we leave as an open question whether this factor can be improved or perhaps
removed entirely.

Proof of Lemma D.2. Let �2
max = 1

kmin
(p̂� (p̂)2) + (1� 1

kmin
)�̂2

p, �2
min = 1

kmax
(p̂� (p̂)2) + (1�

1
kmax

)�̂2
p, vmax = 1/�2

min and vmin = 1/�2
max, and A = 1

2
n�⌥�1
⌥+1 . Note that as in Equation (7), the

condition that kmax/kmin  A implies that �2
max  A�2

min and, equivalently, vmax  Avmin.

Let D = {(bpi, ki)}ni=1 be a dataset of size n where each bpi ⇠ D(ki) where D has mean p and
variance �2

p. It suffices to show that for any database D0, which is a -neighbour of D where
0    ⌥ + 1, and any j 2 [n], if D0

�j is D0 where the data of the jth data subject has been
removed, then,

��M(D0; kmax, n, p̂, �̂p
2,↵)�M(D0

�j ; kmax, n, p̂, �̂p
2,↵)
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 4
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⌥+ 1 log n+

log(1/�)p
⌥+ 1

◆
vkmaxf

kmax
D (n, �̂p

2,�)Pn
i=1 vi

. (12)

The final result is then a simple application of the triangle inequality.

Our proof that Equation (12) holds with high probability for all -neighbours of D relies on the fact
that the data points in D are samples from D(ki). In particular, it will rely on the fact that with
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probability 1� �, D is such that all subsets S of D of size at least n�⌥� 1, M(S; kmax, n, p̂, �̂p
2)

is concentrated around p. Let I be a subset of [n] of size n�  where   ⌥+ 1. Then
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where the first inequality follows from �2
i  2b�2

i (by Lemma 4.2), the second from the fact that
b�2
i  A�2

min for all i 2 [n] and the final from the definition of A. Let � =
P⌥+1

=0

�n


�
be the number

of subsets of D of size greater than n� � � 1. Therefore, by the concentration on the assumption of
M(S; kmax, n, p̂, �̂p

2), with probability 1� �
� ,
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2�min log
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Applying a union bound, with probability 1� �, eqn (13) holds simultaneously for all subsets of D
of sufficiently large size. For the remainder of the proof, let us assume that this holds.

Let D0 be a -neighbour of D where 0    ⌥ + 1. Without loss of generality, assume that
D0 = {(bp0i, k0i)}ni=1 where (bp0i, k0i) = (bpi, ki) for i 2 [n � k]. In order to use this simplification,
we will not assume that the k0i are in descending order. Let the vi be the un-normalised weights
corresponding to D0, as defined in line (8) of Algorithm 4. Note that the vi depends only on the data
of user i, not the data of any other individual in the data set. Then
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We will bound the two terms separately. For the first term in Equation (14), we will use the fact thatPn�
i=1 vibp0

iPn�
i=1 vi

is concentrated around p, and p̂0j is truncated to within ↵+ f
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Next, let us handle the second term in Equation (14):
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Note that �  n⌥+1. Taking the max over j, we again have that maxj vjf
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Proof of Theorem D.1. The main component remaining to prove is that truncating at 1
d�min

2 rather
than the optimal truncation does not affect the utility by more than a constant factor, provided ✏

is not too small. Recall k1 � k2 � · · · � kn. Firstly, we need to show that ckT is a sufficiently
good estimate of k 2 log n

✏
. A careful instantiation of the exponential mechanism provides us with

a ✏-DP estimator of the 2 logn
✏ -th order statistic that has the guarantee that with probability 1 � �,

k 2 log n
✏ + 1

✏ (ln kmax+ln(1/�))  ckT  k 2 log n
✏ � 1

✏ (ln kmax+ln(1/�)). Since by assumption k 
p
n and

�  1/
p
n, this implies that with probability 1� �, k 3 log n

✏
 ckT  k log n

✏
. That is, only logn

✏ more
data points than desired will be truncated.

Next, we need to show that truncating at any point within this range provides an estimator with
accuracy competitive with the optimal truncation. The variance of p̂realistic, unknown size

✏ can be written as
two terms, the variance that exists in the non-private setting, and the additional noise due to privacy;
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where ⌥ = log(1/�)
✏ + ln(1/�) ln(1/�)

✏ . The truncation has opposite effects on each of these terms.
As T increases, the private term decreases while the non-private term increases. When we set
T = 1/Var(D(k 2 log n

✏ +K)), where K 2 [� logn
✏ , logn

✏ ] then if K is negative, no truncation occurs
and the non-private term is optimal. If K is positive then only a small number of data points are
truncated so the non-private term is close to it’s optimal value:

P9n/10
i=logn+1 min

n
T⇤2

b�2
i
, 1

b�i
4

o
Var([bpi]

bbi
bai
])

⇣P9n/10
i=logn+1 min

n
T⇤

b�i
, 1
b�2
i

o⌘2  O

0

B@

P9n/10
i=logn+K

1
b�i

4Var([bpi]
bbi
bai
])

⇣P9n/10
i=logn+K

1
b�2
i

⌘2

1

CA

 O

0

B@

P9n/10
i=logn+1

1
b�i

4Var([bpi]
bbi
bai
])

⇣P9n/10
i=logn+1

1
b�2
i

⌘2

1

CA

where the first inequality follows from the fact that if kmax/kmed  n/2� log n
✏

log n
✏

 n/2� 2 log n
✏ �K

2 log n
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and
logn
✏  n/2 then deleting K points has only a constant factor impact on the variance (this argument

is identical to that made in eqn (10) in the proof of Theorem 4.1). The second inequality follows
from the fact that adding more high quality data points only improves the variance of the estimator.
Therefore, the non-private term in the variance is within a constant factor of optimal.

Next, we will show under the conditions outlines in the theorem, the non-private term is dominates
the variance. The normalisation term also appears in the private term but as an approximation:
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With probability 1� �,
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where the final inequality comes from high probability bounds on the Laplacian distribution, the
second inequality is simply separating the sum into two pieces and removing the contribution of users
i 2 [n/2 + 1, 9n/10], the third inequality comes from the fact that any user with more than kmed data
points has weight larger than 1/�̂2

kmed
. The fourth inequality follows from d�kmed

d�min
2  (n/4�1)✏

3 ln(2/�) . Now,
let us turn to the proof that the non-private noise is dominant when ✏ is not too large. To see this note
that the non-private term satisfies
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where the first inequality is simply because more than (n/2 � log n) of the user have weight
larger than the median weight, and the second inequality follows from the assumption that kmax

kmed


✏3(n/2�logn�1)
logn log(1/�) log(1/�) . Therefore, with high probability (based on the accuracy of ckT ), truncating at
1/�2

min rather than the optimal truncation T does not affect the variance of the estimator by more
than a constant factor.

Now that we have established that the noise added for privacy is not too large, the only remaining
potential point of failure for the algorithm is that the PTR component fails and the algorithm outputs
bpinitial✏ rather than the more accurate weighted estimate. The fact that this does not happen with high
probability is a direct corollary of Lemma D.2.

E Proofs from Section 5

Lemma 5.2. Given bpi ⇠ Dp(ki) with variance �2
i for all i 2 [n] and w 2 [0, 1]n such thatPn

i=1 wi = 1, let bp =
Pn

i=1 wibpi+Lap(maxi wi�i
✏ ). The variance of bp is minimized by the following

weights: w̃i
⇤ = min{1/�2

i ,T/�i}Pn
j=1 min{1/�2

j ,T/�j} for some T .

Proof of Lemma 5.2. Let

w⇤ = arg min
w2[0,1]nPn
i=1 wi=1

Var(bp) = arg min
w2[0,1]nPn
i=1 wi=1

nX

i=1

w2
i �

2
i +

maxk w2
k�

2
k

✏2

be an optimal weight vector that minimizes variance of bp. We start with a few observations on
structural properties of the optimal weights. Let M = {argmaxk w⇤

k�k} be the set of all users with
maximum weighted-variance contribution to the estimate bp.

First, notice that for all i, j 2 [n], if w⇤
i > w⇤

j then �2
i  �2

j . This follows since if �2
i > �2

j then
w⇤

i �
2
j + w⇤

j�
2
i < w⇤

i �
2
i + w⇤

j�
2
j and max{w⇤

i �
2
j , w

⇤
j�

2
i }  w⇤

i �i which implies that swapping the
weights of i and j would result in an estimator with lower variance. This is a contradiction given the
definition of w⇤.

Next, we show that if i, j /2 M then w⇤
i �

2
i = w⇤

j�
2
j . Suppose towards a contradiction that w⇤

i �
2
i <

w⇤
j�

2
j . Let ↵ = min{w⇤

j �
2
j�w⇤

i �
2
i

�2
i+�2

j
, maxk w⇤

k�k�w⇤
i �i

�i
, w⇤

j }. Then ↵ > 0, and (w⇤
j�↵)�j , (w⇤

i +↵)�i 2
[0,maxk w⇤

k�k]. Also,

(w⇤
j � ↵)2�2

j + (w⇤
i + ↵)2�2

i = w⇤
j
2�2

j + w⇤
i
2�2

i + ↵2(�2
i + �2

j )� 2↵(w⇤
j�

2
j � w⇤

i �
2
i )

= w⇤
j
2�2

j + w⇤
i
2�2

i + ↵(↵(�2
i + �2

j )� 2(w⇤
j�

2
j � w⇤

i �
2
i ))

< w⇤
j
2�2

j + w⇤
i
2�2

i .

This implies that shifting ↵ weight from w⇤
i to w⇤

j would reduce the variance of the estimator bp
without changing the maximum weighted-variance, which is a contradiction of the optimality of w⇤.

Define H = maxk w⇤
k�k and note that there exists R > 0 such that w⇤

i = R/�2
i for all i /2 M . From

these observations, there must exist some threshold T such that if �i � 1/T , then w⇤
i = R/�2

i , and if
�i < 1/T , then w⇤

i = H/�i. By continuity, H = RT , and we can write the optimal weights as: w⇤
i =

min{1/�2
i , T/�i}R. Since the weights w⇤

i must sum to 1, we know that R = 1Pn
j=1 min{1/�2

j ,T/�j} .

Thus the optimal weights are:

w⇤
i =

min{1/�2
i , T/�i}Pn

j=1 min{1/�2
j , T/�j}

,

for some appropriate threshold T .

Let us recall some notation. Let P be a parameterized family of distributions p 7! Dp, so E[Dp].
Given an estimator M , vector q 2 [0, 1]n and set I ⇢ [n], let

µM (x[n]\I ; q) = E8i2I,xi⇠Dqi (ki),M [M(x1, · · · , xn)]
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be the expectation taken only over the randomness of I and M . Note that in this notation, user i
is sampling from a meta-distribution with mean qi, which may be different for each user. We will
abuse notation slightly and for p 2 [0, 1], we will let µM (x[n]\I ; p) = µM (x[n]\I ; (p, · · · , p)). Let
µM (q) = µM (;; q). When the estimator M is clear from context, we will simply use the notation
µ(x[n]\I ;p). Recall that for p 2 [0, 1] and k 2 N, �p,k is the probability density function of Dp(k).
Lemma 5.3. Let P be a parameterized family of distributions p 7! Dp and suppose that M :
[0, 1]n ! [0, 1] is an ✏-DP estimator such that for all p 2 [1/3, 2/3], (1) M is unbiased, µM (p) = p,

and (2) the Fisher information of �p,ki is inversely proportional to the variance Var(Dp(ki)),R
( @
@p log �p,ki(xi))2�p,ki(xi)dxi = O( 1

Var(Dp(ki))
), then there exists an estimator MNL 2 NLE such

that

maxp2[1/3,2/3][Var8i2[n],xi⇠D(ki),MNL(MNL)]  O(maxp2[1/3,2/3][Var8i2[n],xi⇠D(ki),M (M)]).

Before we formally prove Lemma 5.3, let us start with some intuition for the proof. Given an
estimator MNL 2 NLE, the variance of MNL can be written as

Var(MNL) 
Pn

i=1 w
2
iVar(D(ki)) +O(maxwi�i

✏ )2. (15)

That is, it can be decomposed as the variance contribution of each individual coordinate, and the
variance contribution of the additional noise due to privacy. Lemma E.1 (proved in Appendix E)
shows that the variance of any estimator M can be lower bounded by a similar decomposition.
Since this involves considering the impact of each coordinate individually, the following notation
will be useful. Given an estimator M , vector q 2 [0, 1]n and set I ⇢ [n], let µM (x[n]\I ; q) =
E8i2I,xi⇠Dqi (ki),M [M(x1, · · · , xn)] be the expectation over only randomness in I and M . Note that
in this notation, user i is sampling from a meta-distribution with mean qi, which may be different for
each user. We will abuse notation slightly to let µM (q) = µM (;; q), and for p 2 [0, 1], we will let
µM (x[n]\I ; p) = µM (x[n]\I ; (p, · · · , p)). When the estimator M is clear from context, we will omit
it.

The following lemma is proved later, outside the proof of Lemma 5.3.
Lemma E.1. For any randomised mechanism M : [0, 1]n ! [0, 1],

Var8i2[n],xi⇠Dp(ki),M (M) (16)

= E8i2[n],xi⇠Dp(ki),M [(M(x1, ..., xn)� µ(p))2]

�
Pn

i=1 Exi⇠Dp(ki)[(µ(xi; p)� µ(p))2] + E8i2[n],xi⇠Dp(ki),M [(M(x1, ..., xn)� µ(x1, ..., xn; p))2]

In Equation (16), the first term is the sum of contributions to the variance of the individual terms
xi, and the second term is the contribution to the variance of the noise added for privacy. Now we
want to define a weight vector w such that the terms in Equation (16) are lower bounded by the
corresponding terms in Equation (15). The key component of the proof is the observation that if we
let

wi(p) =
@
@qi

µ(q)
��
q=(p,··· ,p) (17)

then we can show that there exists a constant c such that

Exi⇠Dp(ki)[(µ(xi; p)� µ(p))2] � c · wi(p)
2Var(Dp(ki)). (18)

This controls the contribution of each individual coordinate to the variance of M . It remains only
to control the contribution of the noise due to privacy. We show that there exists xi, x0

i such that
|µ(xi; p)� µ(x0

i; p)| � ⌦(wi(p) ·
p
Var(Dp(ki))),which we show implies that,

E8i2[n],xi⇠Dp(ki),M [(M(x1, · · · , xn)� µ(x1, · · · , xn; p))
2] � ⌦(wi(p)

2Var(Dp(ki))
✏2 ). (19)

Intuitively, the worst-case |µ(xi; p) � µ(x0
i; p)| plays an analogous role to the sensitivity, since it

captures the impact of changing one user’s data. Since M is an ✏-DP mechanism and |µ(xi; p) �
µ(x0

i; p)| is at least ⌦(wi(p) ·
p
Var(Dp(ki))), we show that it must include noise with standard

deviation of at least this magnitude over ✏. This is consistent with, e.g., the Laplace Mechanism that
adds noise with standard deviation ⇥(�f/✏).

Combining Lemma E.1 with Equations (18) and (19) gives that the variance of M is at least,
Var8i2[n],xi⇠Dp(ki),M (M) �

Pn
i=1 c · wi(p)2Var(Dp(ki)) + ⌦(wi(p)

2Var(Dp(ki))
✏2 ).
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Finally, we must create a corresponding MNL 2 NLE for comparison, using the same weights. SincePn
i=1 wi(p) as defined in Equation (17) need not equal 1, these weights will need to be normalized

to sum to 1 to create an estimator in NLE. We need to show this normalisation does not substantially
increase the variance of the resulting estimator. In order to show this, we show that there exists
a p⇤ 2 [1/3, 2/3] such that

Pn
i=1 wi(p⇤) � 1, since normalizing the estimator by a factor of

1Pn
i=1 wi(p⇤) will affect the variance by a factor of 1

(
Pn

i=1 wi(p⇤))2 , and thus if
Pn

i=1 wi(p⇤) � 1, then
this will decrease variance. This desired fact follows from the definition of wi, and the fact that M is
unbiased. Now, if we define

MNL(x) =

Pn
i=1 wi(p⇤)xi + Lap(

maxi wi(p
⇤)
p

Var(Dp(ki))

✏ )Pn
i=1 wi(p⇤)

,

then MNL 2 NLE and Var8i2[n],xi⇠Dp(ki),MTNL(MNL) = ⇥
�
Var8i2[n],xi⇠Dp(ki),M (M)

�
.

Proof of Lemma 5.3. We first apply Lemma E.1 to decompose the variance of the estimate computed
by M as:

Var8i2[n],xi⇠Dp(ki),M (M)

�
nX

i=1

Exi⇠Dp(ki)[(µ(xi; p)� µ(p))2] + E8i2[n],xi⇠Dp(ki),M [(M(x1, · · · , xn)� µ(x1, · · · , xn; p))
2]

The first term is the sum of contributions to the variance of the individual terms xi, and the second
term is the contribution to the variance of the noise added for privacy. We will proceed by bounding
these terms separately, starting with the first term.

First note that by definition,
Z
(µ(xi; q)� µ(q))�qi,ki(xi)dxi = Exi⇠Dqi (ki)[µ(xi; q)]� µ(q) = 0.

Therefore, by taking the partial derivative with respect to qi we have
Z ✓

@

@qi
(µ(xi; q)� µ(q))

◆
�qi,ki(xi) + (µ(xi; q)� µ(q))

@

@qi
�qi,ki(xi)

�
dxi = 0.

Note that µ(xi; q) is constant in qi so rearranging, and noting that @
@qi

�qi,ki(xi) =

�qi,ki(xi)
⇣

@
@qi

log �qi,ki(xi)
⌘

we have,
Z ✓

@

@qi
µ(q)

◆
�qi,ki(xi)dxi

=

Z
(µ(xi; q)� µ(q))�qi,ki(xi)

✓
@

@qi
log �qi,ki(xi)

◆
dxi (20)



vuut
✓Z

(µ(xi; q)� µ(q))2�qi,ki(xi)dxi

◆ Z ✓
@

@qi
log �qi,ki(xi)

◆2

�qi,ki(xi)dxi

!
.

(21)

Let

wi(p) =

Z ✓
@

@qi
µ(q)

◆
�qi,ki(xi)dxi

�����
q=(p,··· ,p)

=
@

@qi
µ(q)

�����
q=(p,··· ,p)

and note that by assumption there exists a constant c such that for all i 2 [n] and qi 2 [1/3, 2/3],
Z ✓

@

@qi
log �qi,ki(xi)

◆2

�qi,ki(xi)dxi 
1

c ·Var(Dqi(ki)
.

Then evaluating both sides of Equation (21) at the constant vector q = (p, · · · , p), we have
✓Z

(µ(xi; p)� µ(p))2�p,ki(xi)dxi

◆
� wi(p)2

R ⇣
@
@p log �p,ki(xi)

⌘2
�p,ki(xi)dxi

� c·wi(p)
2Var(Dp(ki)).
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Now we have controlled the contribution of each individual coordinate to the variance of M , and it
remains to control the contribution of the noise due to privacy.

We will show that for two independent samples xi, x0
i drawn from Dp(ki),

E[(µ(xi; p)� µ(x0
i; p))

2] � ⌦
⇣
wi(p)

2 ·Var(Dp(ki))
⌘
. (22)

Letting

↵ =
q
E[(µ(xi; p)� µ(x0

i; p))
2],

we can write

wi(p) =
@µ(q)

@qi

�����
q=(p,··· ,p)

=
@(µ(q)� µ(x0

i; q))

@qi

�����
q=(p,··· ,p)

=
@

@qi

Z

xi

(µ(xi; q)� µ(x0
i; q))�qi,ki(xi)dxi

�����
q=(p,··· ,p)

=

Z

xi

(µ(xi; p)� µ(x0
i; p))

0

@@�qi,ki(xi)

@qi

�����
q=(p,··· ,p)

1

A dxi

=

Z

xi

(µ(xi; p)� µ(x0
i; p))

0

@@ log �qi,ki(xi)

@qi

�����
q=(p,··· ,p)

1

A�p,ki(xi)dxi



vuuuut
✓Z

xi

(µ(xi; p)� µ(x0
i; p))

2�p,ki(xi)dxi

◆
0

B@
Z

xi

0

@@ log �qi,ki(x)

@qi

�����
q=(p,··· ,p)

1

A
2

�p,ki(x)dxi

1

CA

 ↵ ·

vuuut
Z

xi

0

@@ log �pi,ki(xi)

@pi

�����
p=(p,··· ,p)

1

A
2

�pi,ki(xi)dxi

 ↵ ·

s
1

c ·Var(Dp(ki))

The first equality is by definition. The second equality follows from the fact that µ(x0
i;q) is constant

with respect to qi, so its derivative is 0. The third inequality simply expands out the definition of
µ(q). The fourth equality follows from the linearity of derivatives, the fact that µ(xi;q)�µ(x0

i,q) is
constant with respect to qi, and the fact that (µ(xi;q)�µ(x0

i,q))|q=(p,··· ,p) = (µ(xi; p)�µ(x0
i, p)).

The fifth equality follows from the formula @
@x ln f(x) =

@
@x f(x)
f(x) , which holds for any differentiable

function f . The first inequality is a result of the Cauchy-Schwarz inequality. The second inequality
follows from the definition of ↵, and the final inequality follows from Assumption 2 of Lemma 5.3.

Therefore,
↵ � wi(p) ·

q
c ·Var(Dp(ki)).

We now argue that any (✏, ✏2/100)-differentially private mechanism should have variance
⌦(↵2 log 1

✏ /10✏
2). Suppose that we had a mechanism that violated this property. Then by run-

ning this mechanism 1
✏2 log 1

✏
times and averaging, the advanced composition theorem implies that this

average is (1, 1/100)-DP. This averaged output however has variance O(↵2/10). Thus given samples
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xi, and x0
i such that |µ(xi; p)� µ(x0

i; p)| � ↵/2, if the noise had variance O(↵2/10) on (xi, x�i) as
well as on (x0

i, x�i) (when x�i is drawn randomly), then these two inputs would be distinguishable
with probability at least 9/10. This however violates the (1, 1/100)-DP of the averaged algorithm.
This implies that for random xi, the noise added by the DP algorithm is at least ⌦(↵2 log 1

✏ /20✏
2)

Thus the variance of M is,

Var8i2[n],xi⇠Dp(ki),M (M) �
nX

i=1

c · wi(p)
2Var(Dp(ki)) + ⌦

⇣wi(p)2Var(Dp(ki))

✏2

⌘
(23)

Finally, since the weights wi(p) that we defined need not sum to 1, they will need to be normalized to
sum to 1 to satisfy the conditions of NLE. We need to show this normalisation does not substantially
increase the variance of the estimator in NLE defined by these weights. This is equivalent to showing
that the normalisation term,

Pn
i=1 wi(p) is large for some p. For p 2 [1/3, 2/3], let � : [1/3, 2/3] !

[0, 1]n, defined by �(p) = (p, · · · , p), be a path in [0, 1]n then by the fundamental theorem of line
integrals,

3

Z 2/3

1/3

nX

i=1

wi(p)dp = 3

Z 2/3

1/3

0

@
nX

i=1

✓
@

@qi
µ(q)

◆ �����
q=(p,··· ,p)

1

A dp

= 3

Z

�
rµ(q) · 1dq

= 3(µ(2/3, · · · , 2/3)� µ(1/3, · · · , 1/3))
= 1

This implies that there exists p⇤ 2 [1/3, 2/3] such that
Pn

i=1 wi(p⇤) � 1. Define

MNL(x1, · · · , xn) =
nX

i=1

wi(p⇤)Pn
j=1 wj(p⇤)xj

+ Lap

0

@
maxi

wi(p
⇤)Pn

j=1 wj(p⇤)

p
Var(Dp(ki))

✏

1

A

=
1Pn

i=1 wi(p⇤)

 
nX

i=1

wi(p
⇤)xi + Lap

 
maxi wi(p⇤)

p
Var(Dp(ki))

✏

!!
,

where the second equality follows from properties of the Laplace distribution. Now,

VarDp(MNL) 
1

(
Pn

i=1 wi(p⇤))2

 
nX

i=1

wi(p
⇤)2Var(Dp(ki)) +O

✓
maxi wi(p⇤)2Var(Dp(ki))

✏2

◆!


nX

i=1

wi(p
⇤)2Var(Dp(ki)) +O

✓
maxi wi(p⇤)2Var(Dp(ki))

✏2

◆
,

where the second inequality comes from the fact that
Pn

i=1 wi(p⇤) � 1. Comparing this with
Equation 23, we see that specifically, at p = p⇤,

VarDp⇤ (MNL)  O
�
VarDp⇤ (M)

�
.

Now, if p, p⇤ 2 [1/3, 2/3] then Var(Dp(ki)) = ⇥ (Var(Dp⇤(ki))) so VarDp(MNL) =
⇥(VarDp⇤ (MNL)). Therefore, the worst case variance of MNL is less than the worst case variance of
M over all p 2 [1/3, 2/3], as required.

Lemma E.1. For any randomised mechanism M : [0, 1]n ! [0, 1],

Var8i2[n],xi⇠Dp(ki),M (M) (16)

= E8i2[n],xi⇠Dp(ki),M [(M(x1, ..., xn)� µ(p))2]

�
Pn

i=1 Exi⇠Dp(ki)[(µ(xi; p)� µ(p))2] + E8i2[n],xi⇠Dp(ki),M [(M(x1, ..., xn)� µ(x1, ..., xn; p))2]

Proof of Lemma E.1. Let M : [0, 1]n ! [0, 1] be a randomised mechanism and suppose that
each xi ⇠ D(pi, ki) where pi ⇠ D. Now, our goal is to decompose the variance of M into
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the variance conditioned on each coordinate, and the variance inherent in the mechanism itself.
Let µ = Ex1⇠D(k1),··· ,xn⇠D(kn),M [M(x1, · · · , xn)] be the expectation and for any I ⇢ [n], let
µ(x[n]\I) = E8i2I,xi⇠D(ki),M [M(x)] be the expectation conditioned only on the randomness in I .
So,

Var(M) = Ex1⇠D(k1),··· ,xn⇠D(kn),M [(M(x1, · · · , xn)� µ)2]

= Ex1⇠D(k1)Ex2⇠D(k2),··· ,xn⇠D(kn),M [(M(x1, · · · , xn)� µ1(x1) + µ1(x1)� µ)2]

= Ex1⇠D(k1)Ex2⇠D(k2),··· ,xn⇠D(kn),M [(M(x1, · · · , xn)� µ1(x1))
2

+ 2(M(x1, · · · , xn)� µ1(x1))(µ1(x1)� µ) + (µ1(x1)� µ)2]

= Ex1⇠D(k1)[(µ1(x1)� µ)2] + Ex1⇠D(k1)Ex2⇠D(k2),··· ,xn⇠D(kn),M [(M(x1, · · · , xn)� µ1(x1))
2].

Now, by induction we obtain the following decomposition of the variance of M ,

Var(M) =
nX

i=1

Ex1⇠D(k1),··· ,xi⇠D(ki)[(µ(xji)� µ(xj<i))
2]

+ Ex1⇠D(k1),··· ,xn⇠D(kn),M [(M(x1, · · · , xn)� µ(x1, · · · , xn))
2]

�
nX

i=1

Exi⇠D(ki)[(µ(xi)� µ)2] + Ex1⇠D(k1),··· ,xn⇠D(kn),M [(M(x1, · · · , xn)� µ(x1, · · · , xn))
2]

where the second inequality follows from Jensen’s inequality:

Ex1⇠D(k1),··· ,xi⇠D(ki)[(µ(xji)� µ(xj<i))
2] � Exi⇠D(ki)[(Ex1⇠D(k1),··· ,xi�1⇠D(ki)[µ(xji)� µ(xj<i)])

2]

= Exi⇠D(ki)[(µ(xi)� µ)2].

Lemma 5.4. For any distribution D, n > 0 and � 2 [0, 1], if for all ki, fki
D (n,�2

p,�) =

Õ(Var(D(ki)) then for any w 2 [0, 1]n such that
Pn

i=1 wi = 1, we have Var(MTNL(· ;w)) =
Õ(Var(MNL(· ;w))). Further, the bias of MTNL is at most �.

Proof of Lemma 5.4. The variance claim follows immediately from noting that

Var

✓
[xi]

p+f
ki
D (n,�2

p,�)

p�f
ki
D (n,�2

p,�)

◆
 Var(xi), and the assumption that fki

D (n,�2
p,�) = Õ(Var(D(ki)). The

bias claim follows from noting that with probability 1� �, [xi]
p+f

ki
D (n,�2

p,�)

p�f
ki
D (n,�2

p,�)
= xi. This implies that

MTNL is within � in total variation distance to an unbiased estimator. Since MTNL takes values in
[0, 1], this implies the mean is in [p� �, p+ �].

Corollary 5.5. Given k1, · · · , kn 2 N, and �p, there exists a family of distributions Dp such that

min
M , unbiased

max
p2[1/3,2/3]

Var8i2[n],xi⇠Dp(ki)[M(x1, · · · , xn)] � ⌦̃(min{
k⇤
✏2

+
Pn

i=1 min{ki,k
⇤}

(
Pn

i=1 min{ki,
p
kik⇤})2 ,

�2
p

n
}).

Proof of Corollary 5.5. Firstly, suppose that �p = 0, so the meta-distribution is constant, and

Dp(ki) = Bin(ki, p). Then the Fisher information of �p,ki is
R ⇣

@
@p log �p,ki(xi)

⌘2
�p,ki(xi)dxi =

ki
p(1�p) and Var(Dp(ki)) =

p(1�p)
ki

, so Dp(ki) satisfies Condition 8 of Theorem 5.1. Additionally,

min
M , unbiased

max
p2[1/3,2/3]

VarDp [M ] = ⌦̃

✓
max

p2[1/3,2/3]
VarDp [bpideal✏ ]

◆
(under conditions of Thm 4.1)

We can view the truncation as simply choosing a maximum k⇤ so that T =
q

k⇤

p(1�p) . Now, the

un-normalised weights of bpideal✏ are

min

(
1

Var(Dp(ki))
,

Tp
Var(Dp(ki))

)
= min

⇢
ki

p(1� p)
,

p
kik⇤

p(1� p)

�
.
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Further, Var([bpi]biai
)  Var(D(ki)) and we assume thoughout this paper that Var([bpi]biai

) �
[(1/2)Var(D(ki)). So, Var([bpi]biai

) = ⇥(Var(D(ki))) = ⇥(p(1�p)
ki

). Finally, since binomials

are highly concentrated, |bi � ai| = ⌦(�i), which implies that maxi w
⇤
i |bi�ai|
✏ as defined in eqn (3) is

achieved at ki = k⇤. Thus,

min
M , unbiased

max
p2[1/3,2/3]

VarDp [M ] = max
p2[1/3,2/3]

⌦
⇣

k⇤

p(1�p)✏2

⌘
+
Pn

i=1

⇣
min

n
ki

p(1�p) ,
p
kik⇤

p(1�p)

o⌘2
1
2
p(1�p)

ki

⇣Pn
i=1 min

n
ki

p(1�p) ,
p
kik⇤

p(1�p)

o⌘2

= ⌦̃

 
max

p2[1/3,2/3]
p(1� p)

k⇤

✏2 +
Pn

i=1 min{ki, k⇤}
(
Pn

i=1 min{ki,
p
kik⇤})2

!

= ⌦̃

 
k⇤

✏2 +
Pn

i=1 min{ki, k⇤}
(
Pn

i=1 min{ki,
p
kik⇤})2

!
,

where the first equality comes from Theorem 5.1, the second equality pulls out common factors, and
the third equality is because p is bounded away from 0 and 1.

For the other component of the bound we will let Dp be a truncated Gaussian distribution. Let � and
� respectively be the probability density function and cumulative density function of the standard
Gaussian N (0, 1). Let W be such that � := �(W ) � �(�W ) � 9/10 and � := 2W�(W )

�(W )��(�W ) 
1/2. Define the truncated Gaussian Dp with mean p on [p� �pp

1��
W, p+ �pp

1��
W ] by the probability

density function:

�p(q) =

(
1
��
⇣
(q � p)

p
1��
�p

⌘
q 2 [p� �pp

1��
W, p+ �pp

1��
W ]

0 otherwise.
.

Now, the variance of Dp is �2
p and the Fisher information of Dp is given by [29]

1

�2
p

(1� �)2 2


1

4�2
p

,
1

�2
p

�
. (24)

Since any sample from D can be post-processed into a sampling from D(k) for any k 2 N, we have

min
M , unbiased

max
p2[1/3,2/3]

Var8i2[n],xi⇠Dp(ki)[M(x1, · · · , xn)] � min
M , unbiased

max
p2[1/3,2/3]

Varp1,··· ,pn⇠Dp [M(p1, · · · , pn)]

� max
p2[1/3,2/3]

O

 
�2
p

n

!

= O(
�2
p

n
),

where the second inequality follows from the Cramer-Rao bound [30] and Equation (24).

F Example Initial Estimators

In this section we give example initial mean and variance estimation procedures that can be used in
the framework described in Section 4. For both estimators, we show that they satisfy the conditions of
Theorem 4.1, and thus can be used as initial estimators in Algorithm 2, assuming all other technical
conditions are satisfied. This also immediately implies that the set of initial mean and variance
estimators which satisfy the conditions of Theorem 4.1 is non-empty.

We note again that the estimators described in this section are examples of estimators that achieve
the conditions of Theorem 4.1, and that any private mean and variance estimators that satisfy these
conditions could be used instead. As discussed in Section 4.2, one may choose to use different
estimators of these initial quantities in different settings (for example, if local differential privacy is
required or if different distributional assumptions are known).
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F.1 Initial Mean Estimation

We will begin with the initial mean estimate bpinitial✏ . We consider the simplest mean estimation
subroutine, where the analyst collects a single data point from the n/10 users with the smallest
ki, then privately computes the empirical mean of these points using the Laplace Mechanism. The
following lemma shows that this process is differentially private and satisfies the accuracy conditions
of Theorem 4.1, i.e., that with high probability, bpinitial✏ is close to p and bpinitial✏ (1� bpinitial✏ ) is close
to p(1� p).
Lemma F.1. Fix any ✏ > 0 and let bpinitial✏ (x1

(9n/10)+1, · · · , x1
n) = 1

n/10

Pn
i=(9n/10)+1 xi +

Lap
�
10
✏n

�
. Then bpinitial✏ is ✏-differentially private, E[bpinitial✏ (x1

(9n/10)+1, · · · , x1
n)] = p and if

p � 20 log(1/�)
n , then for n sufficiently large,

Pr[|bpinitial✏ �p|  ↵]  � for ↵ = 2max{
r

12bpinitial
✏ log(4/�)

n/10 + 36 log2(4/�)
n2/100 + 6 log(4/�)

n/10 , log(2/�)
✏n/10 }  fki

D (n,�2
p,�).

Further, if min{p, 1 � p} � 12max
n

3 log(4/�)
n/10 , log(2/�)

✏n/10

o
then with probability 1 � �, bpinitial✏ 2

[ 12p,
3
2p] and bpinitial✏ (1� bpinitial✏ ) 2 [p(1�p)

2 , 3p(1�p)
2 ].

The concentration bound follows from noticing that D = Ber(p) and using the concentration of
binomial random variables.

Note that the expression of ↵ depends only on quantities known to the analyst – including bpinitial✏ ,
which will be observed as output – so that ↵ can be computed directly for use in Algorithm 2.
Although our presentation of Algorithm 2 requires ↵ to be specified up front as input to the algorithm,
it could equivalently be computed internally by the algorithm as a function of bpinitial✏ and other input
parameters.

Proof. Firstly, the privacy guarantees follows immediately from the Laplace Mechanism in differen-
tial privacy [12] noting that 10

n

Pn
i=(9n/10)+1 x

1
i has sensitivity 10

n .

Now, let us turn to the two accuracy guarantees. We will start with the guarantee that bpinitial✏ is
close to p with high-probability. Note that D is simply a Bernoulli random variable with mean p so
since each sample is independent, 10

n

Pn
i=(9n/10)+1 x

1
i = Bin(n/10, p). Thus, if n � 20 log(1/�)

p , a
Chernoff bound gives

Pr

2

4

������
10

n

nX

i=(9n/10)+1

x1
i � p

������
�

s
3min{p, 1� p} log(4/�)

n/10

3

5  �/2.

Therefore, combining with a high probability bound on the Laplace distribution,

Pr

"
��bpinitial✏ � p

�� �

s
3min{p, 1� p} log(4/�)

n/10
+

log(2/�)

✏n/10

#
 �.

We will condition on the following event for the remainder of the proof, which will occur with
probability 1� �:

��bpinitial✏ � p
��  2max

(s
3min{p, 1� p} log(4/�)

n/10
,
log(2/�)

✏n/10

)
.

Now if
��bpinitial✏ � p

��  2
q

3min{p,1�p} log(4/�)
n/10 . Since we need ↵ in terms of bpinitial✏ rather than p

(since bpinitial✏ is known to the algorithm), we need to rework this formula. Squaring both sides and
bringing all the terms to the same side, we obtain

p2 � 2

✓
bpinitial✏ +

6 log(4/�)

n/10

◆
p+ (bpinitial✏ )2  0.

Completing the square we obtain
✓
p� bpinitial✏ � 6 log(4/�)

n/10

◆2

+ (bpinitial✏ )2 �
✓
bpinitial✏ +

6 log(4/�)

n/10

◆2

 0.
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Now, rearranging and taking the square root, we obtain
����p� bp

initial
✏ � 6 log(4/�)

n/10

���� 

s✓
bpinitial✏ +

6 log(4/�)

n/10

◆2

� (bpinitial✏ )2

then by squaring both sides, using the fact that min{p, 1� p}  p, and rearranging we have

|bpinitial✏ � p| 

s
12bpinitial✏ log(4/�)

n/10
+

36 log2(4/�)

n2/100
+

6 log(4/�)

n/10

which implies that,

��bpinitial✏ � p
��  2max

8
<

:

s
12bpinitial✏ log(4/�)

n/10
+

36 log2(4/�)

n2/100
+

6 log(4/�)

n/10
,
log(2/�)

✏n/10

9
=

; .

We need to show that this expression is less than or equal to fki
D (n,�2

p,�) because ↵ = O(1/
p
n).

To see this, note that ↵ = O(1/
p
n) and fki

D (n,�2
p,�) is increasing towards 1 as n grows large. Thus

for n sufficiently large, ↵  fki
D (n,�2

p,�) will be satisfied.

Next we turn to proving the second accuracy claim, that bpinitial✏ (1� bpinitial✏ ) is concentrated around
p(1� p). Let E = bpinitial✏ � p so

bpinitial✏ (1� bpinitial✏ ) = (p+ E)(1� p� E) = p(1� p) + (1� 2p)E � E2

Now, if min{p, 1� p} � Kmax
n

3 log(4/�)
n/10 , log(2/�)

✏n/10

o
for some constant K, then

|E| 

s
3min{p, 1� p} log(4/�)

n/10
+

log(2/�)

✏n/10


r

min{p, 1� p}min{p, (1� p)}
K

+
min{p, (1� p)}

K

 2min{p, 1� p}
K

.

Thus, combining this with the fact that 1� 2p  max{p, 1� p} for p 2 [0, 1],

|(1� 2p)E � E2|  max{p, 1� p}2min{p, 1� p}
K

+

✓
2min{p, 1� p}

K

◆2

 6p(1� p)

K
Finally, choosing K = 12 gives,

bpinitial✏ (1� bpinitial✏ ) 2

p(1� p)

2
,
3p(1� p)

2

�
.

F.2 Initial Variance Estimation

We now turn to estimating �2
p. Let us first provide some background on privately estimating

the standard deviation of well-behaved distributions. Lemma F.2 guarantees the existence of a
differentially private algorithm for estimating standard deviation within a small constant factor with
high probability, as long as the sample size is sufficiently large. The following is a slight generalisation
of the estimation of the standard deviation of a Gaussian given in [21] due to [26].
Lemma F.2 (DP standard deviation estimation). For all n 2 N, �min < �max 2 [0,1], ✏ >
0, � 2 (0, 1

n ],� 2 (0, 1/2), ⇣ > 0, there exists an (✏, �)-differentially private algorithm M that

satisfies: if x1, . . . , xn are i.i.d. draws from a distribution P which has standard deviation � 2
[�min,�max] and absolute central third moment ⇢ = E[|x � µ(P )|3] such that

⇢
�3  ⇣, then if

n � c⇣2 min{ 1
✏ ln(

ln �max
�min

)

� ), 1
✏ ln(

1
�� )}, (where c is a universal constant), then M produces an

estimate b� of the standard deviation such that Prx1,...,xn⇠P,M(�2  b�2  8�2) � 1� �.
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In order to estimate �2
p, we will use the estimator promised by Lemma F.2 on the data of the log n

users with the largest ki. Let k = klogn, so the top log n individuals all have at least k data points.
We will have these individuals report bpki := 1

k

Pk
j=1 x

i
j , which is the empirical mean of their first

k data points. Thus, we are running the estimator promised in Lemma F.2 on D(k) with log n data
points. In order to utilise Lemma F.2, we first need to ensure that D(k) satisfies the moment condition
that ⇢/�3 is bounded, which is shown in Lemma F.3.
Lemma F.3. For k 2 N, suppose p 2 [ 1k , 1�

1
k ], �p � 1

k , k � 2, and there exists � > 0 such that

⇢D
�3
p
 � where ⇢D denotes the absolute central third moment of D. Then

⇢D(k)

Var(D(k))3/2
 8(3

p
3+ �).

Proof. Note that E[D(k)] = p. Then we can bound the absolute third central moment as follows,

Ex⇠D(k)[|x� p|3] = Epi⇠DEy⇠Bin(k,pi)[|(
1

k
y � pi)� (p� pi)|3]

 4

✓
Epi⇠DEy⇠Bin(k,pi)[|

1

k
y � pi|3] + Epi⇠D[|p� pi|3]

◆

 4

✓
1

k3
Epi⇠D

hq
Ey⇠Bin(k,pi)[|y � k · pi|2]Ey⇠Bin(k,pi)[|y � pi|4]

i
+ ��3

p

◆

(by Cauchy-Schwarz inequality)

 4

✓
1

k3
Epi⇠D

hp
k2(pi(1� pi))2(1 + 3kpi(1� pi))

i
+ ��3

p

◆

 4

✓
1

k3
Epi⇠D[k(pi(1� pi))] +

1

k3
Epi⇠D[

p
3k3(pi(1� pi))3] + ��3

p

◆

 4

 
1

k2
p(1� p) +

p
3

k3/2
Epi⇠D[

p
(pi(1� pi))3] + ��3

p

!

(by Jensen’s inequality)

 4

 
1

k3/2
p
(p(1� p))3 +

p
3

k3/2
Epi⇠D[

p
(pi(1� pi))3] + ��3

p

!
,

where the first inequality follows from the following inequality that holds for all real valued a and
b: |a � b|3  4(|a|3 + |b|3). The second to last inequality follows from Jensen’s inequality since
h(x) = x(1�x) is concave, and the last inequality follows since 1p

k

p

p(1� p). Now, we will use
a generalised form of Jensen’s inequality to bound Epi⇠D[

p
(pi(1� pi))3]. Let h(x) = (x(1�x))3/2

and

�(x) =
h(x)� h(p)

(x� p)2
� h0(p)

x� p
.

Since p 2 [ 1k , 1�
1
k ],

max
x2[ 1

2k ,1� 1
2k ]

�(x)  (1/2) max
x2[ 1

2k ,1� 1
2k ]

h00(x)  h00
✓

1

2k

◆
=

3(8( 1
2k )

2 � 8( 1
2k ) + 1)

4
q

(1� 1
2k )

1
2k

=
3(8� 16k + 4k2)

8k
p

(2k � 1)
 3

2

p
k.

If x /2 [ 1
2k , 1�

1
2k ] then |x� p| � 1

2k and h(x) < h(p), so

�(x)  |h0(p)|
|x� p| =

3|1� 2p|
p
p(1� p)

2|p� x|  3

2

p
p(1� p)

|p� x|  max

8
<

:
3

2

q
1
k (1�

1
k )

| 1k � x|
,
3

2

q
1
k (1�

1
k )

|1� 1
k � x|

9
=

;  3
p
k � 1  3

p
k.

Therefore, by the generalised Jensen’s inequality,

Epi⇠D[
p
(pi(1� pi))3] 

p
(p(1� p))3 + �2

p · 3
p
k 

p
(p(1� p))3 + �2

p · 3
p
k.
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Continuing to bound the absolute central third moment as above,

Ex⇠D(k)[|x� p|3]  4

 
1

k3/2
p
(p(1� p))3 +

p
3

k3/2
Epi⇠D[

p
(pi(1� pi))3] + ��3

p

!

 4

 
1

k3/2
p
(p(1� p))3 +

p
3

k3/2
p
(p(1� p))3 + 3

p
3
�2
p

k
+ ��3

p

!

 4

 
1

k3/2
p
(p(1� p))3 +

p
3

k3/2
p
(p(1� p))3 + 3

p
3�3

p + ��3
p

!

 4(3
p
3 + �)

✓
1

k3/2
p
(p(1� p))3 + �3

p

◆

 4(3
p
3 + �)

✓
1

k
p(1� p) + �2

p

◆3/2

 8(3
p
3 + �)

✓
1

k
p(1� p) +

k � 1

k
�2
p

◆3/2

,

where the first and second inequalities follow from above, the third inequality follows because k � 1,
the fourth is simply rearranging the terms, the fifth follows from the fact that for all positive, real
numbers a and b: a3/2 + b3/2 < (a + b)3/2, and the last inequality follows since if k � 2 then
(k � 1)/k > 1/2.

With this result, we can apply Lemma F.2 to our setting to privately achieve an estimate b�2
p,k that is

close to the true population-level variance �2
p, as shown in Lemma F.4. Note that as k grows large,

the allowable range for p approaches the full support [0, 1] and the allowable standard deviation �p

approaches any non-negative number.

Lemma F.4 combines these two results to show that Lemma F.2 can be applied to the individual
reports bpki from the top log n users, and the resulting variance estimate will satisfy the accuracy
conditions of Theorem 4.1.
Lemma F.4. Given �min < �max 2 [0,1], ✏ > 0, � 2 (0, 1

n ],� 2 (0, 1/2), and ⇣ > 0, let M be

the (✏, �)-differentially private mechanism given by Lemma F.2, and let b�2
p,k = M(bpk1 , · · · , bpklogn),

where bpk1 , · · · , bpklogn ⇠ D(k). If there exists ⇣ > 0 such that
⇢D
�3
p

 ⇣ where ⇢D = Ex⇠D[|x �

p|3],
q

1
kp(1� p) + k�1

k �2
p 2 [�min,�max], �p > 1

k , p 2
⇥
1
k , 1�

1
k

⇤
, and log n � c(8(3

p
3 +

⇣))2 min{ 1
✏ ln(

ln(�max
�min

)

� ), 1
✏ ln(

1
�� )}, then with probability 1� �, b�2

p,k 2 [Var(D(k)), 8Var(D(k))].

Proof. Note that the conditions are sufficient to ensure from Lemma F.3 that ⇢D(k)

Var(D(k))3/2
 8(3

p
3+

�). Then Lemma F.2 and Lemma 2.1 imply that

Var(D(k)) =
1

k
p(1� p) +

k � 1

k
�2
p  b�2

p,k  8

✓
1

k
p(1� p) +

k � 1

k
�2
p

◆
= 8Var(D(k)).

G Interpretation and Estimation of Concentration Functions

Recall that fki
D (n,�2

p,�) describes the concentration of bpi ⇠ D(ki) and is defined as fki
D (n,�2

p,�) =
arg inf{↵ | Prbp1,··· ,bpn⇠D(ki) (maxi |bpi � p| � ↵)  �}. In the main body of the paper, we assumed
that this function was known to the analyst, even if the input value �2

p was unknown and had to be
estimated. In this appendix, we interpret the structure of this concentration function and show that
even when this informational assumption is relaxed, our Algorithm 2 can still be implemented with
some minor modifications.
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We start by introducing two additional functions: fD(n,�2
p,�), which describes the concentration

of pi ⇠ D, and fBin(ki, pi,�), which describes the high probability tail bound on the binomial
Bin(ki, pi):

fD(n,�
2
p,�) = arg inf{↵ | Pr

p1,··· ,pn⇠D
(max

i
|p� pi| � ↵)  �}.

fBin(ki, pi,�) = arg inf{↵ | Pr
x⇠Bin(ki,pi)

(| 1
ki
x� pi| � ↵)  �}

In this appendix, we will assume that only the function fD(n, ·,�) is known to the analyst, but the
input variance parameter �2

p of the distribution are not known. For example, the analyst may know
that D is Gaussian with unknown mean and variance, and thus she can express the concentration
of pi as a function of the variance. Also note that for any values ki, pi and �, we can empirically
compute fBin(ki, pi,�).

The following lemma shows how we can translate high probability bounds on D to high probability
bounds on D(k), using this binomial tail bound of Bin(ki, pi). Specifically, it shows that our quantity
of interest fki

D (n,�2
p,�) of the p̂is can be upper and lower bounded by concentration of the pis (as

described by fD(n,�2
p,�)) plus a binomial tail bound.

Lemma G.1. Suppose that D is supported on [0, 1/2]. Given ki, n 2 N, �2
p, and � 2 [0, 1], define

�0 = 2
p
1� n

p
1� � = ⇥(

p
�/n) and assume that for all pi in the support of D,

Pr
bpi⇠Bin(ki,pi)

(pi�bpi � fBin(ki, pi,�
0)) � 1

2
�0

and Pr
bpi⇠Bin(ki,pi)

(bpi�pi � fBin(ki, pi,�
0)) � 1

4
�0.

Then for all � 2 [0, 1], for all i 2 [n],

fki
D (n,�2

p,�)  fD(n,�
2
p,�/2) + fBin(ki, pmax,�/n),

where pmax = min{1/2, p+ fD(n,�p,�/2)}. Further, for all i 2 [n],

fki
D (n,�2

p,�) � fD(1,�
2
p,�

0) + fBin(ki, pmax,�
0).

We note that the conditions on D and Bin(ki, pi) are mild. The condition on the tails of Bin(ki, pi)
is intuitively claiming that Bin(ki, pi) is symmetric. This occurs whenever ki is large enough, and pi
is bounded away from 0 or 1. We conjecture that the condition that D is supported on [0, 1/2] can be
relaxed but leave the relaxation to future work.

Proof of Lemma G.1. Notice that if p < q < 1/2 then fBin(ki, p,�)  fBin(ki, q,�). Let us first
consider the upper bound first. With probability 1� �

2 ,

for all i, |p� pi|  fD(n,�p,�/2). (25)

Further if Equation 25 holds then we have that with probability 1� �
2n ,

|bpi � pi|  fBin(ki, pi,
�

2n
)  fBin(ki, pmax,

�

2n
).

Thus, for all i,

|p� pi|  fD(n,�p,�/2) + fBin(ki, pmax,
�

2n
).

Now, for the lower bound, let �0 =
p
8
p
1� n

p
1� � and ↵ = fD(1,�2

p,�
0). Note that either

Pr
pi⇠D

�
pi � p � fD(1,�

2
p,�

0)
�
� 1

2
�0 or Pr

pi⇠D

�
p� pi � fD(1,�

2
p,�

0)
�
� 1

2
�0.

Assume without loss of generality that Prpi⇠D
�
pi � p � fD(1,�2

p,�
0)
�
� 1

2�
0. Then by assump-

tion,

Pr
bpi⇠Bin(ki,pi)

(bpi � pi � fBin(ki, pi,�
0)) � 1

4
�0
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Then

Pr
⇣
max

i
|bpi � p| � fD(1,�

2
p,�

0) + fBin(ki, p+ ↵,�0)
⌘

� Pr
�
9i s.t. pi � p � fD(1,�

2
p,�

0) and bpi � pi � fBin(ki, pi,�
0)
�

= 1� Pr
�
8i, pi � p  fD(1,�

2
p,�

0) or bpi � pi  fBin(ki, p+ ↵,�0)
�

= 1�
�
Pr
�
pi � p  fD(1,�

2
p,�

0) or bpi � pi  fBin(ki, p+ ↵,�0)
��n

.

Now,

Pr
�
pi � p  fD(1,�

2
p,�

0) or bpi � pi  fBin(ki, p+ ↵,�0)
�

= 1� Pr
�
pi � p � fD(1,�

2
p,�

0) and bpi � pi � fBin(ki, p+ ↵,�0)
�

= 1� Pr
�
pi � p � fD(1,�

2
p,�

0)
�
Pr
�
bpi � pi � fBin(ki, p+ ↵,�0) | pi � p � fD(1,�

2
p,�

0)
�

 1� Pr
�
pi � p � fD(1,�

2
p,�

0)
�
Pr
�
bpi � pi � fBin(ki, pi,�

0) | pi � p � fD(1,�
2
p,�

0)
�

 1� Pr
�
pi � p � fD(1,�

2
p,�

0)
�
Pr (bpi � pi � fBin(ki, pi,�

0))

 1� 1

8
(�0)2

where the first inequality comes from pi � p+↵, so fBin(ki, p+↵,�0)  fBin(ki, pi,�0) So, finally,

Pr
⇣
max

i
|bpi � p| � fD(1,�

2
p,�

0) + fBin(ki, p+ ↵,�0)
⌘
� 1� (1� (�0/

p
8)2)n = �,

which implies the result.

G.1 Extending Our Results to Unknown fki
D (n,�2

p,�) settings

Lemma G.1 gives both upper bound and lower bounds on fki
D (n,�2

p,�), which can be used to modify
Algorithm 2 and extend Theorem 4.1 to apply in the setting where fki

D (n,�2
p,�) is unknown, but

fD(n,�
2
p,�) is known instead.

Recall that the concentration bound fki
D (n,�2

p,�) is used in Algorithm 2 to define the truncation
parameters bai and bbi, and that we would like to define a truncation window [bai, bbi] that both contains
[ai, bi] (so that with high probability none of the bpi are truncated), and is not too wide, so |bbi � bai| 
6|bi � ai| (in order to invoke Lemma 4.2).

The following lemma proposes new values for âi and b̂i for the setting where only fD(n,�
2
p,�) is

known, but not fki
D (n,�2

p,�). It combines the bounds on fki
D (n,�2

p,�) from Lemma G.1, with the
bounds on bpinitial from Lemma F.1 to show that |bbi � bai|  6|bi � ai|, as desired.
Lemma G.2. For ↵ > 0, let

bai = max
n
0, bp� ↵� fD(n,c�2

p,�/2)� fBin(ki, bp+ ↵+ fD(n,c�p,�/2),�/n)
o

and

bbi = min
n
1, bp+ ↵+ fD(n,c�2

p,�/2) + fBin(ki, bp+ ↵+ fD(n,c�2
p,�/2),�/n)

o
.

If c�2
p � �2

p, and |p� bp|  ↵, then for all i 2 [n],

[ai, bi] ⇢ [bai, bbi].

Further, if ↵  fki
D (n,�2

p,�) and fki
D (n,�2

p,�) � ⌦(fD(n,�2
p,�) + fBin(ki,min{1/2, p +

fD(n,�p,�/2)},�/n)) then

|bbi � bai|  6|bi � ai|.
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Proof of Lemma G.2. Let us first show that [bai,bbi] ⇢ [ai, bi]. Using our modified definition of bai
given above, we have,

bai = bpinitial✏ � ↵� fD(n,c�2
p,�/2)� fBin(ki, bpinitial✏ + ↵+ fD(n,c�2

p,�/2),�/n)

 p� fD(n,c�2
p,�/2)� fBin(ki, p+ fD(n,c�2

p,�/2),�/n)

 p� fD(n,�
2
p,�/2)� fBin(ki, p+ fD(n,�p,�/2),�/n)

 p� fki
D (n,�2

p,�)

= ai.

The first two inequalities respectively follow from the accuracy conditions on mean✏,� and
variance✏,� in Theorem 4.1; the third inequality comes from Lemma G.1; and the final equal-
ity is by the definition of ai. A symmetric result that bbi � bi follows similarly.

The second statement of this lemma ensures that the width of the truncation parameter is not more
than a constant factor larger than the ideal. Specifically,

|bbi � bai|  2↵+ 2
⇣
fD(n,c�2

p,�/2) + fBin(ki, bp+ ↵+ fD(n,c�2
p,�/2),�/n)

⌘

 2fki
D (n,�2

p,�) +O(fD(1,�
2
p,�

0)� fBin(ki, p+ ↵,�0))

 2fki
D (n,�2

p,�) + 2
⇣
2fki

D (n,�2
p,�)

⌘

 6fki
D (n,�2

p,�)

= 6|bi � ai|

We note that Lemma 4.2 as stated requires |bbi� bai|  4|bi�ai|, rather than 6|bi�ai|, this difference
of constants will only affect the constant C in Theorem 4.1, and the main claim of a constant
approximation in variance will still hold with these new âi and b̂i values.

We will, however, have to add an additional assumption to Theorem 4.1 in this setting. We
will need to assume that D is s.t. fki

D (n,�2
p,�) � ⌦(fD(n,�2

p,�) + fBin(ki,min{1/2, p +
fD(n,�p,�/2)},�/n)), to satisfy the condition of Lemma G.2. This condition is related to the
high probability bound on D(k). The right hand side of this condition is the high probability bound
on D(k) that is inherited directly from the high probability bounds on D and Bin(k, p). Without
further assumptions on D, this is the best upper bound on fki

D (n,�2
p,�) that we can obtain, and

hence is the bound used in the truncation in bprealistic✏ . The condition states that this upper bound is
within a constant multiplicative factor of the true value fki

D (n,�2
p,�). We note that this condition is

guaranteed by the lower bound on fki
D (n,�2

p,�) in Lemma G.1 for D with support on [0, 1/2], and
we conjecture that it holds more broadly.
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