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Abstract

Federated Learning (FL) emerged as a decentral-
ized paradigm to train models while preserving
privacy. However, conventional FL struggles with
data heterogeneity and class imbalance, which
degrade model performance. Clustered FL bal-
ances personalization and decentralized training
by grouping clients with analogous data distribu-
tions, enabling improved accuracy while adhering
to privacy constraints. This approach effectively
mitigates the adverse impact of heterogeneity in
FL. In this work, we propose a novel clustered FL
method, FedGWC (Federated Gaussian Weighting
Clustering), which groups clients based on their
data distribution, allowing training of a more ro-
bust and personalized model on the identified clus-
ters. FedGWC identifies homogeneous clusters by
transforming individual empirical losses to model
client interactions with a Gaussian reward mecha-
nism. Additionally, we introduce the Wasserstein
Adjusted Score, a new clustering metric for FL
to evaluate cluster cohesion with respect to the
individual class distribution. Our experiments on
benchmark datasets show that FedGWC outper-
forms existing FL algorithms in cluster quality
and classification accuracy, validating the efficacy
of our approach. Code is available at https:
//github.com/davedleo/FedGWC

1. Introduction

Federated Learning (FL) (McMahan et al.,, 2017) has
emerged as a promising paradigm for training models on
decentralized data while preserving privacy. Unlike tradi-
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tional machine learning frameworks, FL enables collabora-
tive training between multiple clients without requiring data
transfer, making it particularly attractive in privacy-sensitive
domains (Bonawitz et al., 2019). FL was introduced pri-
marily to address two major challenges in decentralized
scenarios: ensuring privacy (Kairouz et al., 2021) and re-
ducing communication overhead (Hamer et al., 2020; Asad
et al., 2020). In particular, FL algorithms must guarantee
communication efficiency, to reduce the burden associated
with the exchange of model updates between clients and the
central server, while maintaining privacy, as clients should
not expose their private data during the training process.

A core challenge in federated learning is data heterogeneity
(Li et al., 2020). This manifests in two key ways: through
imbalances in data quantity and class distribution both
within and across clients, and through the non-independent
and non-identical distribution (non-IID) of data across the
federation. In this scenario, a single global model often
fails to generalize due to clients contributing with updates
from skewed distributions, leading to degraded performance
(Zhao et al., 2018; Caldarola et al., 2022) compared to the
centralized counterpart. Furthermore, noisy or corrupted
data from some clients can further complicate the learning
process (Cao et al., 2020; Zhang et al., 2022), while non-IID
data often results in unstable convergence and conflicting
gradient updates (Hsieh et al., 2020; Zhao et al., 2018).
Despite the introduction of various techniques to mitigate
these issues — ranging from regularization methods (Li et al.,
2020) and optimizer modifications based on momentum
(Mendieta et al., 2022) or control variates (Karimireddy
et al., 2020b), to model-level strategies such as feature dis-
tillation (Yang et al., 2023), and deeper investigations into
solution landscape properties like achieving flatter minima
(Lee & Yoon, 2024; Fan et al., 2024) or preventing dimen-
sional collapse (Shi et al., 2023) — data heterogeneity persists
as a critical problem.

In this work, we address the fundamental challenges of
data heterogeneity and class imbalance in federated learn-
ing through a novel clustering-based approach. We pro-
pose FedGWC (Federated Gaussian Weighting Clustering),
a method that groups clients with similar data distributions
into clusters, enabling the training of personalized feder-
ated models for each group. Our key insight is that clients’
data distributions can be inferred by analyzing their empir-
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ical loss functions, rather than relying on model updates
as most existing approaches do. Inspired by (Cho et al.,
2022), we hypothesize that clients with similar data distribu-
tions will exhibit similar loss landscapes. FedGWC imple-
ments this insight using a Gaussian reward mechanism to
form homogeneous clusters based on an inferaction matrix,
which encodes the pairwise similarity of clients’ data dis-
tributions. This clustering is achieved efficiently by having
clients communicate only their empirical losses to the server
at each communication round. Our method transforms these
loss values to estimate the similarity between each client’s
data distribution and the global distribution, using Gaussian
weights as statistical estimators. Each cluster then trains
its own specialized federated model, leveraging the shared
data characteristics within that group. This approach pre-
serves the knowledge-sharing benefits of federated learning
while reducing the negative effects of statistical heterogene-
ity, such as client drift (Karimireddy et al., 2020b). We
develop a comprehensive mathematical framework for this
approach and rigorously prove the convergence properties
of the Gaussian weights estimators.

To evaluate our method, we introduce the Wasserstein
Adjusted Score, a new clustering metric tailored for
assessing cluster cohesion in class-imbalanced FL scenarios.
Through extensive experiments on both benchmark (Caldas
et al., 2018) and large-scale datasets (Hsu et al., 2020), we
demonstrate that FedGWC outperforms existing clustered
FL algorithms in terms of both accuracy and clustering
quality. Furthermore, FedGWC can be integrated with any
robust FL aggregation algorithm to provide additional
resilience against data heterogeneity.

Contributions.

* We propose FedGWC, an efficient federated learning
framework that clusters clients based on their data distri-
butions, enabling personalized models that better handle
heterogeneity.

* We provide a rigorous mathematical framework to mo-
tivate the algorithm, proving its convergence properties
and providing theoretical guarantees for our clustering
approach.

* We introduce a novel clustering metric specifically de-
signed to evaluate cluster quality in the presence of class
imbalance.

* We demonstrate through extensive experiments that 1)
FedGWC outperforms existing clustered FL approaches
in terms of both clustering quality and model performance,
2) our method successfully handles both class and domain
imbalance scenarios, and 3) the framework can be effec-
tively integrated with any FL aggregation algorithm.

2. Related Work

FL with Heterogeneous Data. Handling data heterogene-
ity, especially class imbalance, remains a critical challenge
in FL. FedProx(Li et al., 2020) was one of the first at-
tempts to address heterogeneity by introducing a proximal
term that constrains local model updates close to the global
model. FedMD (Li & Wang, 2019) focuses on heterogeneity
in model architectures, allowing collaborative training be-
tween clients with different neural network structures using
model distillation. Methods such as SCAFFOLD (Karim-
ireddy et al., 2020b) and Mime (Karimireddy et al., 2020a)
have also been proposed to reduce client drift by using con-
trol variates during the optimization process, which helps
mitigate the effects of non-IID data. Furthermore, strategies
such as biased client selection (Cho et al., 2022) based on
ranking local losses of clients and normalization of updates
in FedNova (Wang et al., 2021) have been developed to
specifically address class imbalance in federated networks,
leading to more equitable global model performance.

Clustered FL. Clustering has proven to be an effective
strategy in FL for handling client heterogeneity and im-
proving personalization (Huang et al., 2022; Duan et al.,
2021; Briggs et al., 2020; Caldarola et al., 2021; Ye et al.,
2023). Clustered FL (Sattler et al., 2020) is one of the
first methods proposed to group clients with similar data
distributions to train specialized models rather than rely-
ing on a single global one. Nevertheless, from a practical
perspective, this method exhibits pronounced sensitivity to
hyper-parameter tuning, especially concerning the gradient
norms threshold, which is intricately linked to the dataset.
This sensitivity can result in significant issues of either ex-
cessive under-splitting or over-splitting. Additionally, as
client sampling is independent of the clustering, there may
be privacy concerns due to the potential for updating cluster
models with the gradient of a single client. An extension of
this is the efficient framework for clustered FL proposed by
(Ghosh et al., 2020), which strikes a balance between model
accuracy and communication efficiency. Multi-Center FL
(Long et al., 2023) builds on this concept by dynamically
adjusting client clusters to achieve better personalization,
however a-priori knowledge on the number of clusters is
needed. Similarly, IFCA (Ghosh et al., 2020) addresses
client heterogeneity by predefining a fixed number of clus-
ters and alternately estimating the cluster identities of the
users by optimizing model parameters for the user clusters
via gradient descent. Howeyver, it imposes a significant com-
putational burden, as the server communicates all cluster
models to each client, which must evaluate every model
locally to select the best fit based on loss minimization.
This approach not only increases communication overhead
but also introduces inefficiencies, as each client must test
all models, making it less scalable in larger networks. Re-
cent studies on clustered FL investigate sophisticated client
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grouping strategies. For instance, (Carrillo et al., 2024)
employs consensus-based optimization dynamics, where
iterative interactions and calculations across all client rep-
resentations, viewed as particles, are typically required to
guide them towards a group consensus on cluster mem-
bership; this process can be computationally demanding,
especially as the number of clients and the complexity of
their models increase. Another approach (Bao et al., 2023)
involves training pairwise discriminators between all, or a
significant number of, potential client pairs to estimate their
data distribution similarities. This approach may result in a
quadratic increase in the number of auxiliary models for the
exclusive aim of clustering, thus imposing a substantial com-
putational burden, particularly within federated networks
with a vast number of clients.

Compared to previous approaches, the key advantage of the
proposed algorithm, FedGWC, lies in its ability to effectively
identify clusters of clients with similar levels of heterogene-
ity and class distribution through simple transformations
of the individual empirical loss process. This is achieved
without imposing significant communication overhead or
requiring additional computational resources. Further de-
tails on the computational and communication overhead
are provided in Appendix D. Additionally, FedGWC can
be seamlessly integrated with any aggregation method, en-
hancing its robustness and performance when dealing with
heterogeneous scenarios.

3. Problem Formulation

Consider a standard FL scenario (McMahan et al., 2017)
with K clients and a central server. FL typically ad-
dresses the following optimization problem mingeg £(6) =
mingeo Zszl "k L (0), where L (-) represents the loss
function of client k, ny is the number of training samples
on client k, n = 25:1 nyg is the total number of samples,
and © denotes the model’s parameters space. At each com-
munication round ¢ € [T], a subset P; of clients is selected
to participate in training. Each participating client performs
S iterations, updating its local parameters using a stochas-
tic optimizer, e.g. Stochastic Gradient Descent (SGD). In
clustered FL, the objective is to partition clients into non-
overlapping groups CV), ..., C("%) based on similarities in
their data distributions, with each group having its own
model, 9(1), ey 9(%1)'

4. FedGWC Algorithm

In this section, we present the core components of FedGWC
in a progressive manner. First, Subsection 4.1 introduces
the Gaussian Weighting mechanism, a statistical method
that estimates how well each client’s data distribution aligns
with the overall federation. Subsection 4.2 then explains
how we model and detect clusters by analyzing interactions

—— In distribution
—— Out of distribution
1504 —-— Average loss process

Loss

Iterations

Figure 1. Illustration of the Gaussian reward mechanism for two
clients from Cifar100 (Dirichlet « = 0.05, 10 sampled clients
per round and S = 8 local iterations). The dashed line represents
the average loss process m"*, with the blue region indicating the
confidence interval m®* £ 0% at fixed ¢, s = 1, ..., 8. The green
curve corresponds to an in-distribution client, whose loss remains
within the confidence region, resulting in a high Gaussian reward.
The red line represents an out-of-distribution client, whose loss
lies outside the confidence region, resulting in a lower reward.
between client distributions. For clarity, we first present
these concepts considering the federation as a single cluster,
focusing on the fundamental mechanisms that enable client
grouping. Finally, Subsection 4.3 introduces the complete
algorithmic framework, including cluster indices and the
iterative structure that allows FedGWC to partition clients
into increasingly homogeneous groups.

4.1. Gaussian Weighting Mechanism

To assess how closely the local data of each client aligns
with the global distribution, we introduce the Gaussian
Weights vy, statistical estimators that capture the closeness
of each clients’ distribution to the main distribution of the
cluster. A weight near zero suggests that the client’s dis-
tribution is far from the main distribution. We graphically
represent the idea of the Gaussian rewards in Figure 1.

The fundamental principle of FedGWC is to group clients
based on the similarity of their empirical losses, which are
used to assign a reward between 0 and 1 to each client at
each local iteration. A high reward indicates that a client’s
loss is close to the cluster’s mean loss, while a lower reward
reflects greater divergence. Gaussian weights estimate the
expected value of these rewards, quantifying the closeness
between each client’s distribution and the global one.

Every communication round ¢, each sampled client k£ € P
communicates the server the empirical loss process ZZ’S =
E(Qt’s), for s = 1,...,S, alongside the updated model

9? {C The server computes the rewards as
t,s (ZZ,S - mt75)2
T = exp O €(0,1) , (D

where m"* = 1/|P| 3, cp, 1;° is the average loss pro-
cess w.r.t. the local iterations s = 1,...,5, and (0%%)? =
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/([P =
The rewards .° — 1 as the distance between [},* and the av-
erage process m%® decreases, while TZ’S — 0 as the distance
increases. In Eq. 1, during any local iteration s, a Gaussian
kernel centered on the mean loss and with spread the sample
variance assesses the clients’ proximity to the confidence
interval’s center, indicating their probability of sharing the
same learning process distribution. Since the values of the
rewards can suffer from stochastic oscillations, we reduce
the noise in the estimate by averaging the rewards over the
S local iterations, thus obtaining wj, = 1/53° (g 7
for each sampled client k. Instead of using a single sample,
such as the last value of the loss as done in (Cho et al., 2022),
we opted for averaging across iterations to provide a more
stable estimate. However, the averaged rewards w!, depend
on the sampled set of clients P, and on the current round.
Hence, we introduce the Gaussian weights 7}, to keep track
over time of these rewards. The Gaussian weights are com-
puted via a running average of the instant rewards w},. In
particular, for each client k the weight ! is initialized to 0
to avoid biases in the expectation estimate, and when it is
randomly selected is update according to

D> ep, (I;° — m"*)? is the sample variance.

W = (1= an + awd ®
for a sequence of coefficients a; € (0, 1) for any ¢t € [T].
The weight definition in Eq.2 is closely related to the
Robbins-Monro stochastic approximation method (Robbins
& Monro, 1951). If a client is not participating in the train-
ing, its weight is not updated. FedGWC mitigates biases in
the estimation of rewards by employing two mechanisms:
(1) uniform random sampling method for clients, with a
dynamic adjustment process to prioritize clients that are
infrequently sampled, thus ensuring equitable participation
across time periods; and (2) when a client is not sampled in
a round, its weight and contribution to the reward estimate
remain unchanged.

4.2. Modeling Interactions with Gaussian Weights
Interaction Matrix. Gaussian weights are scalar quanti-
ties that offer an absolute measure of the alignment between
a client’s data distribution and the global distribution. Al-
though these weights indicate the conformity of each client’s
distribution individually, they do not consider the interrela-
tions among the distributions of different clients. Therefore,
we propose to encode these interactions in an interaction
matrix P* € R¥*® whose element P{; estimates the simi-
larity between the k-th and the j-th client data distribution.
The interaction matrix is initialized to the null matrix, i.e.
Py; = 0 for every couple k, j € [K].

Specifically, we define the update rule for the matrix P! as
follows:

prit_ {(1 — )Pl + s, (k,j) € Py x P
kj

3
P, (k,j) & Pt x Py ©)

where {a;}; is the same sequence used to update the
weights, and P; is the subset of clients sampled in round ¢.

Intuitively, in the long run, since w}, measures the proximity
of the loss process of client k to the average loss process
of clients in P, at round ¢, we are estimating the expected
perception of client k by client j with P,gj, i.e. a larger
value indicates a higher degree of similarity between the
loss profiles, whereas smaller values indicate a lower degree
of similarity. For example, if P} ; is close to 1, it suggests
that on average, whenever k and j have been simultaneously
sampled prior to round ¢, w!, was high, meaning that the two
clients are well-represented within the same distribution.

To effectively extract the information embedded in P, we
introduce the concept of unbiased perception vectors (UPV).
For any pair of clients k,j € [K], the UPV v] € RE~2
represents the k-th row of P, excluding the k-th and j-
th entries. Recalling the construction of P!, where each
row indicates how a client is perceived to share the same
distribution as other clients in the federation, the UPV vi
captures the collective perception of client k by all other
clients, excluding both itself and client j. This exclusion is
why we refer to vj, as unbiased.

The UPVs encode information about the relationships be-
tween clients, which can be exploited for clustering. How-
ever, the UPVs cannot be directly used as their entries are
only aligned when considered in pairs. Instead, we con-
struct the affinity matrix W by transforming the information
encoded by the UPVs through an RBF kernel, as this choice
allows to effectively model the affinity between clients: two
clients are considered affine if similarly perceived by oth-
ers. This relation is encoded by the entries of W € REXK
which we define as:

Wij = K(vi,vf) = exp (—ﬂ Hvi - foQ) @

The spread of the RBF kernel is controlled by a single hyper-
parameter 3 > 0: changes in this value provide different
clustering outcomes, as shown in the sensitivity analysis in
Appendix G.

Clustering. The affinity matrix W, designed to be sym-
metric, highlights features that capture similarities between
clients’ distributions. Clustering is performed by the server
using the rows of W as feature vectors, as they contain the
relevant information. We apply the spectral clustering algo-
rithm (Ng et al., 2001) to W due to its effectiveness in de-
tecting non-convex relationships embedded within the client
affinities. Symmetrizing the interaction matrix P into the
affinity matrix I is fundamental for spectral clustering as
it refines inter-client relationship representation. It models
interactions, reducing biases, and emphasizing reliable simi-
larities. This improves robustness to noise, allowing spectral
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clustering to effectively detect the distributional structure un-
derlying the clients’ network (Von Luxburg, 2007). During
the iterative training process, the server determines whether
to perform clustering by checking the convergence of the
matrix P?. Convergence is numerically verified when the
mean squared error (MSE) between consecutive updates is
less than a small threshold € > 0. Algorithm 2 summarizes
the clustering procedure. If the MSE is below e, the server
computes the matrix W* and performs spectral clustering
over W with a number of clusters n € {2, ..., Mnqz }- For
each clustering outcome, the Davies-Bouldin (DB) score
(Davies & Bouldin, 1979) is computed: DB larger than one
means that clusters are not well separated, while if it is
smaller than one, the clusters are well separated, a detailed
description of the clustering metrics is provided in Appendix
B. We denote by n; the optimal number of clusters detected
by FedGWC. If min,—s2 .. p,... DB, > 1, we do not split
the current cluster. Hence, the optimal number of clusters
is n; is one. In the other case, the optimal number of clus-
ters is Ny € argming—s .. p,... DBy,. This requirement
ensures proper control over the over-splitting phenomenon,
a common issue in hierarchical clustering algorithms in FL.
which can undermine key principles of FL by creating degen-
erate clusters with very few clients. Finally, on each cluster
¢, ..., C") an FL aggregation algorithm is trained sep-
arately, resulting in models 61y, ..., 0(,_,) personalized for
each cluster.

4.3. FedGWC Implementation

In the previous sections, we have detailed the splitting al-
gorithm within the individual clusters. In this section, we
present the full FedGWC procedure (Algorithm 1), intro-
ducing the complete notation with indices for the distinct
clusters. We denote the clustering index as n, and the total
number of clusters N;.

The interaction matrix P(Ol) is initialized to the null matrix

Ok x kx> and the rotal number of clusters N(?l, as no clus-
ters have been formed yet, and MSE(()l) are initialized to
1, in order to ensure stability in early updates, allowing a
gradual decrease. At each communication round ¢, and for
cluster C™), where n = 1,..., N!,, the cluster server in-
dependently samples the participating clients Pt(") ccm,
Each client k € Pt(”) receives the current cluster model
H’En). After performing local updates, each client sends its
updated model 92“ and empirical loss [}, back to the cluster
server. The server aggregates these updates to form the new
cluster model 81!, computes the Gaussian rewards w}, for

(n)
the sampled clients, and updates the interaction matrix P(f‘j)l

and MSE'E:)1 according to Eq. 3. If MSE'E:)1 is lower than a
threshold ¢, the server of the cluster performs clustering to
determine whether to split cluster C(™) into n,; sub-groups,

as outlined in Algorithm 2. The matrix P(t:)l is then parti-

Algorithm 1 FedGWC
1: Input: K, T, S, ay, ¢, |Pi], K

2: Output: V), ... CNe) and 6y, ..., 0(n,,)
3: Initialize N9 « 1
4: Initialize P(Ol) — OrxK
5: Initialize MSE() ) < 1
6: fort=0,...,7—1do
7:  AN? « 0 for each iterations it counts the number of
new clusters that are detected
8 forn=1,...,N} do
9 Server samples Pt(") € €™ and sends the current
cluster model an)
10: Each client k € Pt(n) locally updates 0% and If,
then sends them to the server
11: w! + Gaussian Rewards(lt,P{™), Eq. 1
12: 92:)1 — FLJ—\ggregator(G};,Ptn))
13: P(t:')l — UpdateMatrix(P(tn), wh, g, Pt(n)),
according to Eq. 3
14: Update MSE(/'}
15: if MSE(;} < ¢ then
16: Perform FedGW,Cluster(P(t;[)l7 Nimaz, KC)
on C™, providing n; sub-clusters
17: Update the number of new clusters ANt <
AN? + Ne — 1
18: Cluster server splits P(t;r)l filtering rows and
columns according to the new clusters
19: Re-initialize MSE for new clusters to 1
20: end if
21:  end for
22:  Update the total number of clustersN’;* + NY, +
ANt
23: end for

tioned into sub-matrices by filtering its columns and rows
according to the newly formed clusters, with the MSE for
these sub-matrices reinitialized to 1. This process results in
a distinct model 6, for each cluster C (") When the final
iteration 7" is reached we are left with NCTl clusters with
personalized models 0,y forn =1,..., Ng;.

Thanks to the Gaussian Weights, and the iterative spectral
clustering on the affinity matrices, our algorithm, FedGWC,
is able to autonomously detect groups of clients that display
similar levels of heterogeneity. The clusters formed are more
uniform, i.e. the class distributions within each group are
more similar. These results are supported by experimental
evaluations, discussed in Section 7.3.
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5. Theoretical Results and Derivation of
FedGWC

In this section, we provide a formal derivation of the algo-
rithm, discussing the mathematical properties of Gaussian
Weights and outlining the structured formalism and rationale
underlying FedGWC.

The stochastic process induced by the optimization algo-
rithm in the local update step, allows the evolution of the
empirical loss to be modeled using random variables within
a probabilistic framework. We denote random variables with
capital letters (e.g., X), and their realizations with lowercase
letters (e.g., x).

The observed loss process lgs is the outcome of a stochastic
process L’,;’s, and the rewards ri’s, computed according to
Eq. 1, are samples from a random reward RZ’S supported
in (0,1), whose expectation E[R}*] is lower for out-of-
distribution clients and higher for in-distribution ones. To
estimate the expected reward ]E[RZ"S] we introduce the r.v.
QL =1/ s R}, which is an estimator less affected
by noisy fluctuations in the empirical loss. Due to the linear-
ity of the expectation operator, the expected reward E[RZ’S]
for the k-th client at round ¢, local iteration s equals the
expected Gaussian reward E[Q}] that, to simplify the no-
tation, we denote by p. py is the theoretical value that
we aim to estimate by designing our Gaussian weights I'%
appropriately, as it encodes the ideal reward to quantify the
closeness of the distribution of each client k£ to the main
distribution. Note that the process is stationary by construc-
tion. Therefore, it does not depend on ¢ but differs between
clients, as it reaches a higher value for in-distribution clients
and a lower for out-of-distribution clients.

To rigorously motivate the construction of our algorithm
and the reliability of the weights, we introduce the follow-
ing theoretical results. Theorems 5.1 and 5.2 demonstrate
that the weights converge to a finite value and, more impor-
tantly, that this limit serves as an unbiased estimator of the
theoretical reward p. The first theorem provides a strong
convergence result, showing that, with suitable choices of
the sequence { }+, the expectation of the Gaussian weights
I't converges to pu, in L? and almost surely. In addition,
Theorem 5.2 extends this to the case of constant ¢, proving
that the weights still converge and remain unbiased estima-
tors of the rewards as ¢t — oo.

Theorem 5.1. Let {a;}5°, be a sequence of positive real
values, and {T'% }$2, the sequence of Gaussian weights. If
{ar}52, € I2(N)/I*(N), then T', converges in L*. Further-
more, fort — oo,

It — ur a.s. )

Theorem 5.2. Let o« € (0,1) be a fixed constant, then in
the limit t — oo, the expectation of the weights converges

to the individual theoretical reward py, for each client k =

1,...,K, ie.,

E[T}] — px t — o0. (6)

Proposition 5.3 shows that Gaussian weights reduce the vari-
ance of the estimate, thus decreasing the error and enabling
the construction of a confidence interval for p.

Proposition 5.3. The variance of the weights T}, is smaller
than the variance o} of the theoretical rewards R;’c’s.

Complete proofs of Theorems 5.1, 5.2, and Proposition
5.3 are provided in Appendix A. Additionally, Appendix A
includes further analysis of FedGWC. Specifically, Propo-
sition A.4 demonstrates that the entries of the interaction
matrix P are bounded, while Theorem A.5 establishes a
sufficient condition for conserving the sampling rate during
the recursive procedure.

6. Wasserstein Adjusted Score

In the previous Section we observed that when clustering
clients according to different heterogeneity levels, the out-
come must be evaluated using a metric that assesses the
cohesion of individual distributions. In this Section, we
introduce a novel metric to evaluate the performance of
clustering algorithms in FL. This metric, derived from the
Wasserstein distance (Kantorovich, 1942), quantifies the
cohesion of client groups based on their class distribution
similarities.

We propose a general method for adapting clustering metrics
to account for class imbalances. This adjustment is particu-
larly relevant when the underlying class distributions across
clients are skewed. The formal derivation and mathematical
details of the proposed metric are provided in Appendix B.
We now provide a high-level overview of our new metric.

Consider a generic clustering metric s, e.g. Davies-Bouldin
score (Davies & Bouldin, 1979) or the Silhouette score
(Rousseeuw, 1987). Let C denote the total number of
classes, and =¥ the empirical frequency of the i-th class in
the k-th client’s local training set. Following theoretical rea-
sonings, as shown in Appendix B, the empirical frequency

vector for client k, denoted by x’(“i) , is ordered according to

. . . . k k
the rank statistic of the class frequencies, i.e. Ty > Tt

forany i = 1,...,C — 1. The class-adjusted clustering
metric § is defined as the standard clustering metric s com-
puted on the ranked frequency vectors x’(‘fi). Specifically, the
distance between two clients j and k results in

1/2
2
) . (7

1 C
k J
c (Z o ==ty
i=1
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Figure 2. Balanced accuracy on Cifar100 for FedGWC (blue curve)
with FedAvg aggregation compared to the clustered FL baselines.
FedGWC detects two splits demonstrating significant improve-
ments in accuracy when clustering is performed, leading also to a
faster and more stable convergence than baseline algorithms.

This modification ensures that the clustering evaluation is
sensitive to the distributional characteristics of the class
imbalance. As we show in Appendix B, this adjustment
is mathematically equivalent to assessing the dispersion
between the empirical class probability distributions of dif-
ferent clients using the Wasserstein distance, also known
as the Kantorovich-Rubenstein metric (Kantorovich, 1942).
This equivalence highlights the theoretical soundness of us-
ing ranked class frequencies to better capture variations in
class distributions when evaluating clustering outcomes in
FL.

7. Experiments

In this section, we present the experimental results on widely
used FL benchmark datasets (Caldas et al., 2018) includ-
ing real-world datasets (Hsu et al., 2020), comparing the
performance of FedGWC with other baselines from the liter-
ature, including standard FL algorithms and clustering meth-
ods. A detailed description of the implementation settings,
datasets and models used for the evaluation are reported
in Appendix F. In Section 7.1, we evaluate our method,
FedGWC, against various clustering algorithms, including
CFL (Sattler et al., 2020), FeSEM (Long et al., 2023), and
IFCA (Ghosh et al., 2020), and standard FL aggregations
FedAvg (McMahan et al., 2017), FedAvgM (Asad et al.,
2020), FairAvg (Michieli & Ozay, 2021) and FedProx
(Li et al., 2020), showing also that how our approach is
orthogonal to conventional FL aggregation methods.

In Section 7.2, we underscore that FedGWC has the capa-
bility to surpass FL methods in real-world and large-scale
scenarios (Hsu et al., 2020).

Finally, in Section 7.3, we propose analyses on class and
domain imbalance, showing that our algorithm successfully
detects clients belonging to separate distributions. Further
experiments are presented in Appendix J. Each client has its
own local train and test sets.

Table 1. FL baselines in heterogeneous scenarios. Clustering base-
lines use FedAvg as aggregation mechanism. We emphasize the
fact that FedGWC and CFL automatically detect the number of
clusters, unlike IFCA and FeSEM which require tuning the num-
ber of clusters. A higher WAS , denoted by 1, and a lower WADB,
denoted by | indicate better clustering outcomes

Automatic
FL method C Cluster Ace WAS 1 WADB |
Selection
3 IFCA 5 X 475 +£35  -0.8 £02 52451
8 4 FeSem 5 X 534+18 -03+01 384+130
s 3z = CFL 1 v 41.6 £13 / /
= O FedGWC 4 v 534+04 0d1+00 24+04
g ] FedAvg 1 / 41.6+13 / /
25  FedavgM 1 / 41.5+05 / /
o) FedProx 1 / 41.8+ 1.0 / /
3 IFCA 5 X 76.7+06 0.3 +o1 0.5+01
8 4 FeSem 2 X 756 +02 00+00 256+78
2 B = CFL 1 v 76.0 £0.1 / /
é @) FedGWC 4 v 76.1 +01 -02+01 18.0+62
] FedAvg 1 / 76.6+ 0.1 / /
25 FedavgM |1 / 83.3:£03 / /
o) FedProx 1 / 75.9402 / /

Algorithm performance is evaluated by averaging the accu-
racy achieved on the local test sets across the federation,
enabling a comparison between FL aggregation and clus-
tered FL approaches (refer to Appendix F for additional
insights). When assessing clustering baselines, we also use
the Wasserstein’s Adjusted Silhouette Score (WAS) and
Wasserstein’s Adjusted Davies-Bouldin Score (WADB) to
quantify the distributional cohesion among clients, an evalu-
ation performed a posteriori. For detection tasks in visual
domains (Section 7.3), we compute the Rand Index (Rand,
1971), a clustering metric that compares the obtained clus-
tering with a ground truth labeling. Further details on the
chosen metrics are provided in Appendices E and B.

7.1. FedGWC in heterogeneous settings

In this section, we analyze the effectiveness of FedGWC in
mitigating the impact of data heterogeneity compared to
standard aggregation methods and other clustered FL algo-
rithms. We conduct experiments on Cifar100 (Krizhevsky
et al., 2009) with 100 clients and Femnist (LeCun, 1998)
with 400 clients, controlling heterogeneity through a Dirich-
let parameter «, set to 0.5 for Cifar100 and 0.01 for Femnist,
reflecting a realistic class imbalance across clients. Imple-
mentation details are provided in Appendix F.

We compare FedGWC against clustered FL baselines (IFCA,
FeSEM, CFL) using FedAvg aggregation, as well as stan-
dard FL algorithms (FedAvg, FedAvgM, FedProx). For
algorithms requiring a predefined number of clusters (IFCA,
FeSEM), we report the best result among 2, 3, 4, and 5 clus-
ters, with full tuning details in Appendix I. While IFCA
achieves competitive results, its high communication over-
head—requiring each client to evaluate models from every
cluster in each round—makes it impractical for cross-device
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FL, serving as an upper bound in our study. Fe SEM is more
efficient than IFCA but lacks adaptability due to its fixed
cluster count. Meanwhile, CFL requires extensive hyper-
parameter tuning and often produces overly fine-grained
clusters or fails to form clusters altogether. In contrast,
FedGWC requires only one hyperparameter and provides a
more practical clustering strategy for cross-device FL.

Table 1 presents a comparative analysis of these algorithms
in terms of balanced accuracy, WAS, and WADB, using
FedAvg as the aggregation method. Higher WAS values
indicate better clustering, while lower WADB values sug-
gest better cohesion. On Femnist, clustering-based methods
perform worse than standard FL aggregation, but as we
move to the more complex and realistic Cifar100 scenario,
it becomes evident that clustered FL is necessary to ad-
dress heterogeneity. In this case, FedGWC achieves the best
performance in both classification accuracy and clustering
quality, with the latter directly influencing the former. The
need for clustering grows with increasing heterogeneity, as
seen in Table 1: standard FL approaches struggle when
trained on a single heterogeneous cluster, whereas clustered
FL effectively mitigates the heterogeneity effect. This is
particularly relevant for Cifar100, which has a larger num-
ber of classes and three-channel images, whereas Femnist
consists of grayscale images from only 47 classes.

In Table 1, we present a comparative analysis of these algo-
rithms with respect to balanced accuracy, WAS, and WADB,
employing FedAvqg as the aggregation strategy. Recall that
higher the value of WAS the better the clustering outcome,
as, for WADB, a lower value suggests a better cohesion
between clusters. Further details on the metrics used are
provided in Appendix E.

Notably, both FedGWC and CFL automatically determine
the optimal number of clusters based on data heterogeneity,
offering a more scalable solution for large-scale cross-device
FL. In contrast to CFL, FedGWC consistently produced a
reasonable number of clusters, even when using the opti-
mal hyperparameters for CFL, which resulted in no splits,
thereby achieving performance equivalent to FedAvg.

We observe in Figure 2 that FedGWC exhibits a signifi-
cant improvement in accuracy on Cifar100 precisely at the
rounds where clustering occurs.

As detailed in Table 9 in Appendix J, FedGWC is orthogonal
to any FL aggregation algorithm, i.e. any FL. method can
be easily embedded in FedGWC. Our method consistently
boosted the performance of FL algorithms for the more
heterogeneous settings of Cifar100 and Femnist.

7.2. FedGWC in Large Scale and Real World Scenarios
We evaluate FedGWC on two large-scale, real-world
datasets: Google Landmarks (Weyand et al., 2020) and iNat-

uralist (Van Horn et al., 2018), respectively considering the
partitions Landmarks-Users-160K, and iNaturalist-Users-
120K, proposed in (Hsu et al., 2020). Both datasets exhibit
high data heterogeneity and involve a large number of clients
- approximately 800 for Landmarks and 2,700 for iNatural-
ist. To simulate a realistic cross-device scenario, we set 10
participating clients per round. For this experiment, we com-
pare FedGWC against clustered FL baselines (IFCA, CFL)
and standard FL aggregation methods (FedAvg, FedAvgM,
FedProx, FairAvg). The number of clusters for IFCA
is tuned between 2 and 5. Due to its high computational cost
in large-scale settings, Fe SEM was not included in this anal-
ysis. Table 2 reports the results: FedGWC with FedAvg
aggregation achieves 57.4% accuracy on Landmarks, sig-
nificantly outperforming all standard FLL methods. In this
scenario, FedGWC detects 5 clusters with the best hyperpa-
rameter setting (8 = 0.5), while IFCA identifies 3 clusters.
Similarly, on iNaturalist, FedGWC consistently surpasses
FL baselines, reaching an average accuracy of 47.8% with
£ = 0.5 (automatically detecting a partition with 4 clusters).
Results in Table 2 remark that, when dealing with realis-
tic complex decentralized scenarios, standard aggregation
methods are not able to mitigate the effects of heterogeneity
across the federation, while, on the other hand, clustered FL
provides a more efficient solution.

7.3. Clustering analysis of FedGWC

In this section, we investigate the underlying mechanisms
behind FedGWC ’s clustering in heterogeneous scenarios on
Cifar100. Further experiments on Cifarl0 are presented in
Appendix H.

FedGWC detects different client class distributions We
explore how the algorithm identifies and groups clients
based on the non-IID nature of their data distributions, rep-
resented by the Dirichlet concentration parameter «. For
the Cifar100 dataset, we apply a similar splitting approach,
obtaining the following partitions: (1) 90 clients with o = 0
and 10 clients with o« = 1000; (2) 90 clients with o« = 0.5
and 10 clients with o = 1000; and (3) 40 clients with
« = 1000, 30 clients with & = 0.05, and 30 clients with
a = 0. We evaluate the outcome of this clustering exper-
iment by means of WAS and WADB. Results in Table 3
show that FedGWC detects clusters groups clients according
to the level of heterogeneity of the group.

FedGWC detects different visual client domains. Here,
we focus on scenarios with nearly uniform class imbalance
(high o values) but with different visual domains to investi-
gate how FedGWC forms clusters in such settings. We incor-
porated various artificial domains (non-perturbed, noisy, and
blurred images) Cifar100 dataset under homogeneous condi-
tions (o = 100.00). Our results demonstrate that FedGWC
effectively clustered clients according to these distinct do-
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Dataset ‘ FedGWC CFL IFCA FedAvg FedAvgM FedProx FairAvg
Google Landmarks ‘ 574 £03 405 02 494103 405402 364 13 40.2 +0.6 39.0 0.3
iNaturalist ‘ 47.8 +02 453 +01 458 +06 453 +01  37.7 +14 44.9 +0.2 45.1 +02

Table 2. Comparison of test accuracy on large scale FL datasets Google Landmarks and iNaturalist, between FedGWC and FL baselines —
all clustered FL algorithms use FedAvg aggregation. FedGWC outperforms both clustered and standard FL. methods detecting 5 and 4

clusters on Landmarks and iNaturalist, respectively.

Table 3. Clustering with three different splits on Cifar100 datasets.
FedGWC has superior clustering quality across different splits
(homogeneous o = 1000, heterogeneous o = 0.05, extremely
heterogeneous o = 0. )

Clustering
Dataset  (Hom, Het, X Het) method C WAST WADB |
IFCA 5 09400 1.8+00
(10, 0, 90) FeSem 5 -08+02 26+06
FedGWC 5 01401 0.2 +02
e IFCA 5 -00£00 56+15
Cifarl00 (10, 90, 0) FeSem 5 02401 12.0+20
FedGWC 5 04+o01 6.4 £20
IFCA 5 -02+00 1.0+00
(40, 30, 30) FeSem 5 -02+00 332400
FedGWC 3 04+02 0.9 +0.1

Table 4. Clustering performance of FedGWC is assessed on feder-
ations with clients from varied domains using clean, noisy, and
blurred (Clean, Noise, Blur) images from Cifar100 datasets. It
utilizes the Rand Index score (Rand, 1971), where a value close to
1 represents a perfect match between clustering and labels. Consis-
tently FedGWC accurately distinguishes all visual domains. The
ground truth number of clusters is respectively 2, 2, and 3.

. Automatic
Dataset (Clean, Noise, Blur) Clustering C Cluster Rand
method . (max = 1.0)
Selection
IFCA 1 X 0.5 00
(50, 50, 0) FeSem 2 X 0.49 +o02
FedGWC 2 v 1.0 £ 00
ifar100 IFCA 1 X 0.5 +00
Cifar (50,0, 50) FeSem 2 x 0.51 +01
FedGWC 2 v 1.0 £ 00
IFCA 1 X 0.33 0.0
(40, 30, 30) FeSem 3 X 0.55 + 0.0
FedGWC 4 v 0.6 + 0.0

mains. Table 4 presents the Rand-Index scores, which assess
clustering quality based on known domain labels. The high
Rand-Index scores, often approaching the upper bound of
1, indicate that FedGWC successfully separated clients into
distinct clusters corresponding to their respective domains.
This anaylsis suggests that FedGWC may be applicable for
detecting malicious clients in FL, pinpointing a potential
direction for future research.

8. Conclusions

We propose FedGWC, an efficient clustering algorithm for
heterogeneous FL settings addressing the challenge of non-
IID data and class imbalance. Unlike existing clustered

FL methods, FedGWC groups clients by data distributions
with flexibility and robustness, simply using the informa-
tion encoded by the individual empirical loss. FedGWC
successfully detects homogeneous clusters, as proved by
our proposed novel Wasserstein Adjusted Score. FedGWC
detects splits by removing out-of-distribution clients, thus
simplifying the learning task within clusters without in-
creasing communication overhead or computational cost.
Empirical evaluations show that separately training classi-
cal FL algorithms on the homogeneous clusters detected
by FedGWC consistently improves the performance. Addi-
tionally, FedGWC excels over other clustering techniques in
grouping clients uniformly with respect to class imbalance
and heterogeneity levels, which is crucial to mitigate the ef-
fect of non-IIDness FL. Finally, clustering on different class
unbalanced and domain unbalanced scenarios, which are
correctly detected by FedGWC (see Section 7.3), suggests
that FedGWC can also be applied to anomaly client detec-
tion and to enhance robustness against malicious attacks in
future research.

Impact Statement

FedGWC is an efficient clustering-based approach that im-
proves personalization while reducing communication and
computation costs, enhancing the advance in the field of
Federated Learning. Providing efficiency and explainability
in clustering decisions, FedGWC enables more interpretable
and scalable federated learning. Its efficiency makes it well-
suited for IoT, decentralized Al, and sustainable Al applica-
tions, particularly in privacy-sensitive domains.

Acknowledgements

We acknowledge the CINECA award under the ISCRA
initiative for the availability of high-performance comput-
ing resources and support. A.L. worked under the aus-
pices of Italian National Group of Mathematical Physics
(GNFM) of INdAM, and was supported by the Project Piano
Nazionale di Ripresa e Resilienza - Next Generation EU
(PNRR-NGEU) from Italian Ministry of University and Re-
search (MUR) under Grant DM 117/2023. This work was
partially supported by the Innovation Grant gAIA within
the activities of the National Research Center in High Per-
formance Computing, Big Data and Quantum Computing
(ICSC) CN00000013 - Spoke 1. Funded by the European



Interaction-Aware Gaussian Weighting for Clustered Federated Learning

Union under Horizon Europe Programme - Grant Agree-
ment 101123000 — Act.Al. Views and opinions expressed
are however those of the author(s) only and do not nec-
essarily reflect those of the European Union or European
Research Council Executive Agency (ERCEA). Neither the
European Union nor the granting authority can be held re-
sponsible for them.

References

Asad, M., Moustafa, A., and Ito, T. Fedopt: Towards com-
munication efficiency and privacy preservation in feder-
ated learning. Applied Sciences, 10(8):2864, 2020.

Bao, W., Wang, H., Wu, J., and He, J. Optimizing the
collaboration structure in cross-silo federated learning.
In International Conference on Machine Learning, pp.

1718-1736. PMLR, 2023.

Bonawitz, K., Ivanov, V., Kreuter, B., Marcedone, A.,
McMahan, H. B., Patel, S., Ramage, D., Segal, A., and
Seth, K. Practical secure aggregation for federated learn-
ing on user-held data. arXiv preprint arXiv:1611.04482,
2016.

Bonawitz, K., Salehi, F., Kone¢ny, J., McMahan, B.,
and Gruteser, M. Federated learning with autotuned
communication-efficient secure aggregation. In 2019
53rd Asilomar Conference on Signals, Systems, and Com-
puters, pp. 1222-1226. IEEE, 2019.

Briggs, C., Fan, Z., and Andras, P. Federated learning with
hierarchical clustering of local updates to improve train-
ing on non-iid data. In 2020 international joint conference
on neural networks (IJCNN), pp. 1-9. IEEE, 2020.

Caldarola, D., Mancini, M., Galasso, F., Ciccone, M.,
Rodola, E., and Caputo, B. Cluster-driven graph fed-
erated learning over multiple domains. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR) Workshops, pp. 2749-2758,
June 2021.

Caldarola, D., Caputo, B., and Ciccone, M. Improving
generalization in federated learning by seeking flat min-
ima. In European Conference on Computer Vision, pp.
654—672. Springer, 2022.

Caldas, S., Duddu, S. M. K., Wu, P, Li, T., Kone¢ny, J.,
McMahan, H. B., Smith, V., and Talwalkar, A. Leaf:
A benchmark for federated settings. arXiv preprint
arXiv:1812.01097, 2018.

Cao, X., Fang, M., Liu, J., and Gong, N. Z. Fltrust:
Byzantine-robust federated learning via trust bootstrap-
ping. arXiv preprint arXiv:2012.13995, 2020.

Carrillo, J. A., Trillos, N. G., Li, S., and Zhu, Y. Fedcbo:

10

Reaching group consensus in clustered federated learn-
ing through consensus-based optimization. Journal of
machine learning research, 25(214):1-51, 2024.

Cho, Y. J., Wang, J., and Joshi, G. Towards understanding
biased client selection in federated learning. In Interna-
tional Conference on Artificial Intelligence and Statistics,

pp. 10351-10375. PMLR, 2022.

Davies, D. L. and Bouldin, D. W. A cluster separation
measure. [EEE transactions on pattern analysis and
machine intelligence, (2):224-227, 1979.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei,
L. Imagenet: A large-scale hierarchical image database.
In 2009 IEEE conference on computer vision and pattern
recognition, pp. 248-255. Teee, 2009.

Duan, M., Liu, D., Ji, X., Liu, R., Liang, L., Chen, X., and
Tan, Y. Fedgroup: Efficient federated learning via decom-
posed similarity-based clustering. In 2021 IEEE Intl Conf
on Parallel & Distributed Processing with Applications,
Big Data & Cloud Computing, Sustainable Computing
& Communications, Social Computing & Networking
(ISPA/BDCloud/Social Com/SustainCom), pp. 228-237.
IEEE, 2021.

Fallah, A., Mokhtari, A., and Ozdaglar, A. Personalized
federated learning with theoretical guarantees: A model-
agnostic meta-learning approach. Advances in neural
information processing systems, 33:3557-3568, 2020.

Fan, Z., Hu, S., Yao, J., Niu, G., Zhang, Y., Sugiyama, M.,
and Wang, Y. Locally estimated global perturbations are
better than local perturbations for federated sharpness-
aware minimization. arXiv preprint arXiv:2405.18890,
2024.

Ghosh, A., Chung, J., Yin, D., and Ramchandran, K. An
efficient framework for clustered federated learning. Ad-
vances in Neural Information Processing Systems, 33:
19586-19597, 2020.

Hamer, J., Mohri, M., and Suresh, A. T. Fedboost: A
communication-efficient algorithm for federated learning.
In International Conference on Machine Learning, pp.
3973-3983. PMLR, 2020.

Harold, J., Kushner, G., and Yin, G. Stochastic approxima-
tion and recursive algorithm and applications. Application
of Mathematics, 35(10), 1997.

Hsieh, K., Phanishayee, A., Mutlu, O., and Gibbons, P. The
non-iid data quagmire of decentralized machine learning.
In International Conference on Machine Learning, pp.
4387-4398. PMLR, 2020.

Hsu, T.-M. H., Qi, H., and Brown, M. Federated visual
classification with real-world data distribution. In Com-



Interaction-Aware Gaussian Weighting for Clustered Federated Learning

puter Vision—ECCV 2020: 16th European Conference,
Glasgow, UK, August 23-28, 2020, Proceedings, Part X
16, pp. 76-92. Springer, 2020.

Huang, G., Chen, X., Ouyang, T., Ma, Q., Chen, L., and
Zhang, J. Collaboration in participant-centric federated
learning: A game-theoretical perspective. IEEE Transac-
tions on Mobile Computing, 22(11):6311-6326, 2022.

Kairouz, P., McMahan, H. B., Avent, B., Bellet, A., Bennis,
M., Bhagoji, A. N., Bonawitz, K., Charles, Z., Cormode,
G., Cummings, R., et al. Advances and open problems in

federated learning. Foundations and trends® in machine
learning, 14(1-2):1-210, 2021.

Kantorovich, L. V. On the translocation of masses. In Dokl.
Akad. Nauk. USSR (NS), volume 37, pp. 199-201, 1942.

Karimireddy, S. P.,, Jaggi, M., Kale, S., Mohri, M., Reddi,
S.J., Stich, S. U., and Suresh, A. T. Mime: Mimicking
centralized stochastic algorithms in federated learning.
arXiv preprint arXiv:2008.03606, 2020a.

Karimireddy, S. P., Kale, S., Mohri, M., Reddi, S., Stich, S.,
and Suresh, A. T. Scaffold: Stochastic controlled averag-
ing for federated learning. In International conference on
machine learning, pp. 5132-5143. PMLR, 2020b.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers
of features from tiny images. 2009.

LeCun, Y. The mnist database of handwritten digits.
http://yann. lecun. com/exdb/mnist/, 1998.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-
based learning applied to document recognition. Proceed-
ings of the IEEE, 86(11):2278-2324, 1998.

Lee, T. and Yoon, S. W. Rethinking the flat minima search-
ing in federated learning. In Forty-first International
Conference on Machine Learning, 2024.

Li, D. and Wang, J. Fedmd: Heterogenous feder-
ated learning via model distillation. arXiv preprint
arXiv:1910.03581, 2019.

Li, T., Sahu, A. K., Zaheer, M., Sanjabi, M., Talwalkar, A.,
and Smith, V. Federated optimization in heterogeneous
networks. Proceedings of Machine learning and systems,
2:429-450, 2020.

Long, G., Xie, M., Shen, T., Zhou, T., Wang, X., and Jiang,
J. Multi-center federated learning: clients clustering for
better personalization. World Wide Web, 26(1):481-500,
2023.

McMahan, B., Moore, E., Ramage, D., Hampson, S., and
y Arcas, B. A. Communication-efficient learning of deep
networks from decentralized data. In Artificial intelli-
gence and statistics, pp. 1273-1282. PMLR, 2017.

11

McMahan, H. B., Yu, F., Richtarik, P., Suresh, A., Bacon,
D, et al. Federated learning: Strategies for improving
communication efficiency. In Proceedings of the 29th
Conference on Neural Information Processing Systems
(NIPS), Barcelona, Spain, pp. 5-10, 2016.

Mendieta, M., Yang, T., Wang, P., Lee, M., Ding, Z., and
Chen, C. Local learning matters: Rethinking data het-
erogeneity in federated learning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 8397-8406, 2022.

Michieli, U. and Ozay, M. Are all users treated fairly
in federated learning systems? In Proceedings of the

IEEE/CVF conference on computer vision and pattern
recognition, pp. 2318-2322, 2021.

Ng, A., Jordan, M., and Weiss, Y. On spectral clustering:
Analysis and an algorithm. Advances in neural informa-
tion processing systems, 14, 2001.

Rand, W. M. Objective criteria for the evaluation of cluster-
ing methods. Journal of the American Statistical associa-

tion, 66(336):846-850, 1971.

Robbins, H. and Monro, S. A stochastic approximation
method. The annals of mathematical statistics, pp. 400—
407, 1951.

Rousseeuw, P. J. Silhouettes: a graphical aid to the inter-
pretation and validation of cluster analysis. Journal of
computational and applied mathematics, 20:53-65, 1987.

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., and
Chen, L.-C. Mobilenetv2: Inverted residuals and linear
bottlenecks. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pp. 4510-4520,
2018.

Sattler, F., Miiller, K.-R., and Samek, W. Clustered federated
learning: Model-agnostic distributed multitask optimiza-
tion under privacy constraints. IEEE transactions on
neural networks and learning systems, 32(8):3710-3722,
2020.

Shi, Y., Liang, J., Zhang, W., Xue, C., Tan, V. Y., and Bai,
S. Understanding and mitigating dimensional collapse in
federated learning. IEEE Transactions on Pattern Analy-
sis and Machine Intelligence, 46(5):2936-2949, 2023.

T Dinh, C., Tran, N., and Nguyen, J. Personalized federated
learning with moreau envelopes. Advances in neural
information processing systems, 33:21394-21405, 2020.

Van Horn, G., Mac Aodha, O., Song, Y., Cui, Y., Sun, C.,
Shepard, A., Adam, H., Perona, P., and Belongie, S. The
inaturalist species classification and detection dataset. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 8769-8778, 2018.



Interaction-Aware Gaussian Weighting for Clustered Federated Learning

Von Luxburg, U. A tutorial on spectral clustering. Statistics
and computing, 17:395-416, 2007.

Wang, J., Liu, Q., Liang, H., Joshi, G., and Poor, H. V. A
novel framework for the analysis and design of heteroge-
neous federated learning. IEEE Transactions on Signal
Processing, 69:5234-5249, 2021.

Weyand, T., Araujo, A., Cao, B., and Sim, J. Google land-
marks dataset v2-a large-scale benchmark for instance-
level recognition and retrieval. In Proceedings of the

IEEE/CVF conference on computer vision and pattern
recognition, pp. 2575-2584, 2020.

Yang, Z., Zhang, Y., Zheng, Y., Tian, X., Peng, H., Liu,
T., and Han, B. Fedfed: Feature distillation against data
heterogeneity in federated learning. Advances in Neural
Information Processing Systems, 36:60397-60428, 2023.

Ye, R., Ni, Z., Wu, F,, Chen, S., and Wang, Y. Personal-
ized federated learning with inferred collaboration graphs.

In International Conference on Machine Learning, pp.
39801-39817. PMLR, 2023.

Zhang, Z., Cao, X., Jia, J., and Gong, N. Z. Fldetector:
Defending federated learning against model poisoning
attacks via detecting malicious clients. In Proceedings
of the 28th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pp. 2545-2555, 2022.

Zhao, Y., Li, M., Lai, L., Suda, N., Civin, D., and Chandra,
V. Federated learning with non-iid data. arXiv preprint
arXiv:1806.00582, 2018.

12



Interaction-Aware Gaussian Weighting for Clustered Federated Learning

A. Theoretical Results for FedGWC

This section provides algorithms, in pseudo-code, to describe FedGWC (see Algorithms 2 and 1). Additionally, here we
provide the proofs for the convergence results introduced in Section 5, specifically addressing the convergence (Theorems
5.1 and 5.2) and the formal derivation on the variance bound of the Gaussian weights (Proposition 5.3). In addition, we also
present a sufficient condition, under which is guaranteed that the overall sampling rate of the training algorithm does not
increase and remain unchanged during the training process (Theorem A.5).

Theorem A.1. Let {a;};2, be a sequence of positive real values, and {T'} }7°, the sequence of Gaussian weights. If
{ar}52, € I2(N)/I*(N), then T, converges in L. Furthermore, for t — oo,

It — g a.s. (3)

. . t t. . . .
Proof. At each communication round, we compute the samples 7;”* from R,’® via a Gaussian transformation of the observed

loss in Eq. 1. Notice that, due to the linearity of the expectation operator, E[Q2}] = ju, that is the true, unknown, expected

reward. The observed value for the random variable is given by w}, = 1/5 Zf 1 rtk #, which is sampled from a distribution

centered on . Each client’s weight is updated according to

Y= (11— o) + uw}, . )

Since such an estimator follows a Robbins-Monro algorithm, it is proved to converge in L?. In addition, '}, converges to the
expectation E[Q1] = 1, with probability 1, provided that ov; satisfies Y, || = 0o, and >_,~ ; | |> < oo (Harold et al.,

1997). O
Theorem A.2. Let « € (0, 1) be a fixed constant, then in the limit t — oo, the expectation of the weights converges to the
individual theoretical reward puy, for each clientk =1,... K, i.e.,

E[l] — pux t — 0. (10)

Proof. Recall that fyt+1 (1 — a)7} + awl, where w}, are samples from .. If we substitute backward the value of v} we

can write

t+1 __ (1 2 t 1

5 +awh + ol —a)wi™t. (11)

By iterating up to the initialization term ~{ we get the followmg formulation:

a)™y,

t

W ==+ a(l—a)w . (12)
7=0

Since w}, are independent and identically distributed samples from 2%, with expected value /14, then the expectation of the
weight at the ¢-th communication round would be

ElL) =E |(1—a) +Z (1—a) Q"1 | (13)
that, due to the linearity of expectation, becomes
E[lt] = (1 — )t +Z (1—a) s - (14)

If we compute the limit
t : _ _
Jim E[T}] = lim (1 - a) +Z (1—a) u , (15)
and since o € (0, 1), the first term tends to zero, and also the geometric series converges. Therefore, the expectation of the

weights converges to (i, namely
tlim E[lL] = - (16)
— 00

O
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Proposition A.3. The variance of the weights %, is smaller than the variance o} of the theoretical rewards RZ’S.

Proof. From Eq.12, we can show that Var (T} ) converges to a value that depends on « and the number of local training
iterations S. Indeed

Var(Th) = Var < (1— )ty + Z )T 1)

) (17)
T 1 T
= Z « )2 Var(Q4) = g ;)QQ(l —a)¥o?
. S ,8
since Qf = 1/S3°7 | RY®.
If we compute the limit, that exists finite due to the hypothesis a € (0, 1), we get
lim Var(T'}) ’%i1 aa’%<’<<2 (18)
im ar( —a) - < =<0
~ —a8§ ~§
O

We further demonstrate that the interaction matrix P? identified by FedGWC is entry-wise bounded from above, as established
in the following proposition.

Proposition A.4. The entries of the interaction matrix P* are bounded from above, namely for any t > 0 there exists a
positive finite constant Cy > 0 such that

P,ﬁj <C. (19)
And furthermore
lim C; =1. (20)
t—o0

Proof. Without loss of generality we assume that every client of the federation is sampled, and we assume that a; = a €
(0,1) for any ¢t > 0. We recall, from Eq.3, that for any couple of clients k, j € P, the entries of the interaction matrix are
updated according to

Pt = (1- )Pl + awj,. 1)

If we iterate backward until P]Sj, we obtain the following update

i
P =(1—a)"' Py 4+ a(l—a)w . (22)

7=0
We know that, by constructions, the Gaussian rewards w}i < 1 at any time ¢, therefore the following inequality holds
t t
Pl =(1- a)tP,?j + Z a(l—a)Twl ™ < (1 - a)tP,?j + Za(l —a)". (23)
7=0 7=0
At any round ¢ we can define the constant C, as
t
Cri=(1—-a)Ph+ad (1-a) =(1-a)P+1-(1-a)"! <. (24)
7=0
Moreover, since « € (0, 1), by taking the limit we prove that

tliglo G = tlllélo(l o O‘)tplgj +1-(01- a)Hl =1. (25)
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Algorithm 2 FedGW_Cluster

1: Input: P, nyaz, K(-, )
Output: cluster labels ¥y, and number of clusters n;
Extract UPVs v;,, v§ from P for any k, j

Wi + K(vi,v;‘.’) for any k, j
forn =2,... Npmas do
Yn < Spectral Clustering(W,n)
DB,, + Davies_Bouldin(W,y,)
if min,, DB,, > 1 then
ne — 1
else
Nl < argmin, DB,
end if
: end for

R AN A i o

—_
w2

Theorem A.5. (Sufficient Condition for Sample Rate Conservation) Consider K, ;. as the minimum number of clients
permitted per cluster, i.e. the cardinality |Cp,| > Kpin for any given clustern = 1,... ,ny, and p € (0,1] to represent the
initial sample rate. There exists a critical threshold n* > 0 such that, if K,,;, > n* is met, the total sample size does not
increase.

Proof. Let us denote by p,, the participation rate relative to the n-th cluster, i.e.

3
9 = ma {p, w} (26)

because, in order to maintain privacy of the clients’ information we need to sample at least three clients, therefore p” is at
least 3 over the number of clients belonging to the cluster. The total participation rate at the end of the clustering process is
given by

Nel

K
global __ i 27
p ; X (27)

where K, denotes the number of clients sampled within the n-th cluster. If we focus on the term K,,, recalling Equation 26,
we have that

3
K, = p,|Cy| = max {p, |C|} X |Cp| = max{p|Cy|,3} . (28)
If we write Equation 28, by the means of the positive part function, denoted by (z)* = max{0, 2}, we obtain that
Ky, = 3+ max{0, p|Cpn| — 3} = 3+ (p[Cp| = 3)" . (29)

Observe that we are looking for a threshold value for which pg'°®3 = p_i.e. the participation rate remains the same during
the whole training process.

Let us observe that K, = p|Cy,| <= p|Cpn| >3 <= |Cy| > n* = 3/p. In fact, if we assume that K,,;,, > n*, then the
following chain of equalities holds

Nel nel Nel
K 1 p pK
globa1:§ ":75 C :72 C.|="—=
g n=1 K K n=1 p| n| K n=1 ‘ n‘ K g

thus proving that K,,;, > n* is a sufficient condition for not increasing the sampling rate during the training process. [
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B. Theoretical Derivation of the Wasserstein Adjusted Score

To address the lack of clustering evaluation metrics suited for FL with distributional heterogeneity and class imbal-
ance, we introduced a theoretically grounded adjustment to standard metrics, derived from the Wasserstein distance,
Kantorovich—Rubinstein metric (Kantorovich, 1942). This metric, integrated with popular scores like Silhouette and
Davies-Bouldin, enables a modular framework for a posteriori evaluation, effectively comparing clustering outcomes across
federated algorithms. In this paragraph, we show how the proposed clustering metric that accounts for class imbalance can
be derived from a probabilistic interpretation of clustering.

Definition B.1. Let (M, d) be a metric space, and p € [1, oo]. The Wasserstein distance between two probability measures
P and Q over M is defined as
Wo(P,Q) = inf Ep.yn[d(x,y)?]/? 30
p(B,Q) = inf Eay)nald(@y)7] (30)
where T'(P, Q) is the set of all the possible couplings of P and Q (see Def. B.2).
Furthermore, we need to introduce the notion of coupling of two probability measures.

Definition B.2. Let (M, d) be a metric space, and P, Q two probability measures over M. A coupling v of Pand Q is a
joint probability measure on M x M such that, for any measurable subset A C M,

/A (/M 7(dz, dy)Q(dy)) P(dx) = P(A),

/A (/M y(dz, dy)]P’(dx)> Q(dy) = Q(A).

Let us recall that the empirical measure over M of a sample of observations {x1,--- ,2y} is defined such that for any
measurable set A C M

€1y}

1 c
P(A) = 5 D0, (4) (32)
=1

where ¢, is the Dirac’s measure concentrated on the data point ;.

In particular, we aim to measure the goodness of a cluster by taking into account the distance between the empirical
frequencies between two clients’ class distributions and use that to properly adjust the clustering metric. For the sake of
simplicity, we assume that the distance d over M is the L2-norm. We obtain the following theoretical result to justify the
rationale behind our proposed metric.

Theorem B.3. Let s be an arbitrary clustering score. Then, the class-imbalance adjusted score s is exactly the metric s
computed with the Wasserstein distance between the empirical measures over each client’s class distribution.

Proof. Let us consider two clients; each one has its own sample of observations {x1,...,z¢} and {y1, ..., yc} where the
i-th position corresponds to the frequency of training points of class ¢ for each client. We aim to compute the p-Wasserstein
distance between the empirical measures P and Q of the two clients, in particular for any dx, dy > 0

1 N
P(dx) = N E 0z, (dz),
=l (33)

1 N
Qdy) = + D 4. (dy) -
=1

In order to compute W) (P, Q) we need to carefully investigate the set of all possible coupling measures I'(P, Q). However,
since either P and @ are concentrated over countable sets, it is possible to see that the only possible couplings satisfying
Eq. 31 are the Dirac’s measures over all the possible permutations of z; and y;. In particular, by fixing the ordering of z;,
according to the rank statistic x(;), the coupling set can be written as

1
I'(P,Q) = {Cé(ﬂc(iww(i)) TmE S} (34

16



Interaction-Aware Gaussian Weighting for Clustered Federated Learning

where S is the set of all possible permutations of C' elements. Therefore we could write Eq. 30 as follows

C
1
Wy =mi P> e o) (A, d 35

P Iwnel‘lsl‘/MxM lz -y N; (r(z)-,ywu))( T, dy) (35)

since S is finite, the infimum is a minimum. By exploiting the definition of Dirac’s distribution and the linearity of the
Lebesgue integral, for any m € S, we get

c c
1 1
x_yp E 5$7’77\-i dz,dy) = E / x_yp(sasqmwi dz,dy
/M><M| | Ci:l ((’)y“)( ) C¢:1 M><M| | ((')'y(’))( ) 36)

1 C
= >z = ye |-
=1

Therefore, finding the Wasserstein distance between P and Q boils down to a combinatorial optimization problem, that is,
finding the permutation 7 € S that solves

C
1
WE(P,Q) = min = ; () — Y|P - 37)

The minimum is achieved when m = 7* that is the permutation providing the ranking statistic, i.e. 7*(y;) = ¥(;), since the
smallest value of the sum is given for the smallest fluctuations. Thus we conclude that the p-Wasserstein distance between P
and Q is given by

1 C 1/p
W, (P,Q) = (C ; (i) — y(i)l”) (38)
that is the pairwise distance computed between the class frequency vectors, sorted in order of magnitude, for each client,
introduced in Section 6, where we chose p = 2. O

C. Privacy of FedGWC

In the framework of FedGWC, clients are required to send only the empirical loss vectors lf,;;s to the server (Cho et al.,
2022). While concerns might arise regarding the potential leakage of sensitive information from sharing this data, it is
important to clarify that the server only needs to access aggregated statistics, working on aggregated data. This ensures that
client-specific information remains private. Privacy can be effectively preserved by implementing the Secure Aggregation
protocol (Bonawitz et al., 2016), which guarantees that only the aggregated results are shared, preventing the exposure of
any raw client data.

D. Communication and Computational Overhead of FedGWC

FedGWC minimizes communication and computational overhead, aligning with the requirements of scalable FL systems
(McMahan et al., 2016). On the client side, the computational cost remains unchanged compared to the chosen FL
aggregation, e.g. FedA, as clients are only required to communicate their local models and a vector of empirical losses after
each round. The size of this loss vector, denoted by .S, corresponds to the number of local iterations (i.e. the product of local
epochs and the number of batches) and is negligible w.r.t. the size of the model parameter space, |©|. In our experimental
setup, S = 8, ensuring that the additional communication overhead from transmitting loss values is negligible in comparison
to the transmission of model weights.

All clustering computations, including those based on interaction matrices and Gaussian weighting, are performed exclusively
on the server. This design ensures that client devices are not burdened with additional computational complexity or memory
demands. The interaction matrix P used in FedGWC is updated incrementally and involves sparse matrix operations, which
significantly reduce both memory usage and computational costs.

These characteristics make FedGWC particularly well-suited for cross-device scenarios involving large federations and
numerous communication rounds. Moreover, by operating on scalar loss values rather than high-dimensional model
parameters, the clustering process in FedGWC achieves computational efficiency while maintaining effective grouping
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of clients. The server-side processing ensures that the method remains scalable, even as the number of clients and
communication rounds increases. Consequently, FedGWC meets the fundamental objectives of FL. by minimizing costs
while preserving privacy and maintaining high performance.

Computational Costs Analysis In this section, we present the analysis of computational costs for FedGWC. We would
like to emphasize that all additional computational costs are incurred on the server-side, which in typical FL frameworks
possesses abundant resources. Importantly, our approach does not increase the computational burden on the client side
beyond the standard cost of the chosen FL aggregation method (e.g., backpropagation for FedAvg).

The most computationally intensive operation in our clustering procedure is spectral clustering. For an interaction matrix
involving K clients, where m is the number of eigenvectors considered (i.e., the number of clusters sought) and H is the
number of k-means iterations required within spectral clustering, a single execution of spectral clustering has a complexity
of O(Km? + KmH) (Von Luxburg, 2007). To determine the best partition of the client federation, we evaluate clustering
outcomes for a varying number of clusters m, from m = 2,..., nyax, Where nyax 1s the maximum number of clusters
admitted. This means spectral clustering is performed n.,,x — 1 times. The total complexity for this phase is the sum of
costs for each m:

Mmax
> (O(Km? + KmH)) = O(Kn,,, + KHn2,.).
m=2

This entire clustering phase is performed only a limited number of times during training (typically three to four times on
average in our experiments); this small constant factor is absorbed by the O notation. In our experimental settings, H was
300, and nyax (the maximum number of clusters explored) ranged between 5 and 10. The parameters n,,.x and H are fixed
for each invocation of the clustering phase.

Beyond clustering, other computational steps on the server at each communication round ¢ include:

+ Computing client weights w! has a cost of O(|P,|S), where | P;| is the number of participating clients at round ¢, and
S is the number of local iterations performed by clients. This cost reflects server-side work proportional to the number
of participants and their local effort.

¢ Other server-side computations, for instance, operations like computing global sample means and variances from
aggregated client information might contribute an additional O(S) per round.

Thus, the total cost for these operations over 7' communication rounds is O(T'|P¢|S +T'S). In our setting,
10and S = 8.

Py| was typically

Considering that the clustering (costing O(Kn3 . + K Hn?

max max

tional overhead introduced by our method can be expressed as:

)) occurs only a few times, the overall additional computa-

O(Kn3,, . +KHn?_ )+ O(T|P)|S +T5S). (39)

By applying properties of Landau notation and considering parameters n.yax, H, S, and the client sampling rate p = |P;|/ K
as constants or small fixed values (which do not scale with K or 7', a common consideration in large-scale FL systems
(Bonawitz et al., 2019)), the overall computational cost can be simplified. Substituting |P;| = pK into the expression:

O(Knd . + KHn?

max max

+TpKS+T5S).
This simplifies with respect to the total number of clients K and the total number of communication rounds 7'
OK)+O(K)+O(TK)+0O(T)=0TK+T+K).

This analysis demonstrates that FedGWC not only places all computationally intensive operations on the server but also
introduces a very limited overall computational cost, primarily scaling with T'K.

E. Metrics Used for Evaluation

E.1. Silhouette Score
Silhouette Score is a clustering metric that measures the consistency of points within clusters by comparing intra-cluster and
nearest-cluster distances (Rousseeuw, 1987). Let us consider a metric space (M, d). For a set of points {z1,..., 2y} C M
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and clustering labels Cy, . . ., C,,,. The Silhouette score of a data point z; belonging to a cluster C; is defined as

bi —ai
= 4
% max{a;, b; } “0)

where the values b; and a; represent the average intra-cluster distance and the minimal average outer-cluster distance, i.e.

1
ai:|C‘| : Z d(z;, x;)
A z;€Ci\{z;}
1
b; = min — d(xi, x;
R =7 |Cj|wjz€;j (s, 23)

(41)

The value of the Silhouette score ranges between —1 and +1, i.e. s; € [—1, 1]. In particular, a Silhouette score close to 1
indicates well-clustered data points, 0 denotes points near cluster boundaries, and -1 suggests misclassified points. In order
to evaluate the overall performance of the clustering, a common choice, that is the one adopted in this paper, is to average
the score value for each data point.

E.2. Davies-Bouldin Score

The Davies-Bouldin Score is a clustering metric that evaluates the quality of clustering by measuring the ratio of intra-cluster
dispersion to inter-cluster separation (Davies & Bouldin, 1979). Let us consider a metric space (M, d), a set of points
{z1,...,2ny} C M, and clustering labels Cy,...,C, . The Davies-Bouldin score is defined as the average similarity
measure ;; between each cluster C; and its most similar cluster C;:

Nel

1
DB = — max R;; 42
Nl ; it )

where R;; is given by the ratio of intra-cluster distance .S; to inter-cluster distance D, i.e.

S + 5,
R, === (43)
J Dl]
with intra-cluster distance .S; defined as )
S; = Z d(l‘k,ci) 44)
|Cl| z,€C;

where ¢; denotes the centroid of cluster C;, and D;; = d(c¢;, ¢;) is the distance between centroids of clusters C; and C;. A
lower Davies-Bouldin Index indicates better clustering, as it reflects well-separated and compact clusters. Conversely, a
higher DBI suggests that clusters are less distinct and more dispersed.

E.2.1. RAND INDEX

Rand Index is a clustering score that measures the outcome of a clustering algorithm with respect to a ground truth clustering
label (Rand, 1971). Let us denote by a the number of pairs that have been grouped in the same clusters, while by b the
number of pairs that have been grouped in different clusters, then the Rand-Index is defined as

a+b
N
(2)

where N denotes the number of data points. In our experiments we opted for the Rand Index score to evaluate how the

algorithm was able to separate clients in groups of the same level of heterogeneity (which was known a priori and used as

ground truth). A Rand Index ranges in [0, 1], and a value of 1 signifies a perfect agreement between the identified clusters
and the ground truth.

RI = (45)

F. Datasets and implementation details
To simulate a realistic FL environment with heterogeneous data distribution, we conduct experiments on Cifar100
(Krizhevsky et al., 2009). As a comparison, we also run experiments on the simpler Cifar10 dataset (Krizhevsky et al., 2009).

19



Interaction-Aware Gaussian Weighting for Clustered Federated Learning

Cifarl0 and Cifar100 are distributed among K clients using a Dirichlet distribution (by default, we use o = 0.05 for Cifar10
and a = 0.5 for Cifar100) to create highly imbalanced and heterogeneous settings. By default, we use K = 100 clients with
500 training and 100 test images. The classification model is a CNN with two convolutional blocks and three dense layers.
Additionally, we perform experiments on the Femnist dataset (LeCun, 1998), partitioned among 400 clients using a Dirichlet
distribution with o« = 0.01. The choice of different values for « is made to ensure comparable levels of heterogeneity
through the adjustment of the Dirichlet parameter in relation to the number of classes. In particular, by employing o = 0.5
for Cifar100 and « = 0.01 for FeMNIST, we preserve a consistent ratio of «/C across the datasets. This approach aids in
regulating the level of class imbalance, thereby ensuring comparability in heterogeneity across different datasets. In these
experiments, we employ LeNet5 as the classification model (LeCun et al., 1998). Local training on each client uses SGD
with a learning rate of 0.01, weight decay of 4 - 10~#, and batch size 64. The number of local epochs is 1, resulting in
7 batch iterations for Cifar10 and Cifar100 and 8 batch iterations for Femnist. The number of communication rounds is
set to 3,000 for Femnist, 10,000 for Cifar10 and 20,000 for Cifar100, with a 10% client participation rate per cluster. For
FedGWC we tuned the hyper-parameter 5 € {0.1,0.5, 1,2, 4}, i.e. the spread of the RBF kernel, and we set the tolerance
€ to 107, constant value a; = « equal to the participation rate, i.e. 10%. FeSEM’s and IFCA’s number of clusters was
tuned between 2,3,4, and 5. Each client has its own local training and test sets. We evaluate classification performance using
balanced accuracy, computed per client as the average class-wise recall. The overall federated balanced accuracy is then
obtained by averaging client-wise balanced accuracy, optionally weighted by test set sizes, to account for heterogeneous
data distributions.

Large Scale experiments are conducted on Google Landmarks (Weyand et al., 2020) with K = 823 clients and (Van Horn
etal., 2018) with K = 2714 clients, as partitioned in (Hsu et al., 2020). For Landmarks and iNaturalist, we always refer to
the Landmark-Users-160K and iNaturalist-Users-120K partition, respectively. The classification model is MobileNetV2
architecture (Sandler et al., 2018) with pre-trained weights on ImageNet-1K dataset (Deng et al., 2009) optimized with SGD
having learning rate of 0.1. To mimic real world low client availability we employed 10 sampled clients per communication
round, with a total training of 1000 and 2000 communication rounds, with 7 and 5 batch iterations respectively. For FedGWC
we tuned the hyper-parameter 3 € {0.1,0.5,1,2,4}, i.e. the spread of the RBF kernel, and we set the tolerance ¢ to 102
for iNaturalist and to 10~* for Landmark, constant value a; = o = .1. IFCA’s number of clusters was tuned between 2,34,
and 5. Each client has its own local training and test sets. Performance in large scale scenarios are evaluated by averaging
the accuracy achieved on the local test sets across the federation.

G. Sensitive Analysis beta value RBF kernel
This section provides a sensitivity analysis for the 8 hyper-parameter of the RBF kernel adopted for FedGWC. The results of
this tuning are shown in Table 5.

Table 5. A sensitivity analysis on the RBF kernel hyper-parameter /3 is conducted. We present the balanced accuracy for FedGWC on
the Cifar10, Cifar100, and Femnist datasets for 8 € {0.1,0.5,1.0,2.0,4.0}. It is noteworthy that FedGWC demonstrates robustness to
variations in this hyperparameter.

5 Cifar100 Femnist Google Landmarks iNaturalist

0.1 49.9 76.0 55.0 47.5
0.5 534 76.0 57.4 47.8
1.0 49.5 76.0 56.0 47.5
2.0 50.9 75.6 57.0 47.2
4.0 52.6 76.1 55.8 47.1

H. Additional Experiments: Visual Domain Detection in Cifar10

In this section we present the result for the domain ablation discussed in Section 7.3 conducted on Cifar10 (Krizhevsky et al.,
2009). We explore how the algorithm identifies and groups clients based on the non-IID nature of their data distributions,
represented by the Dirichlet concentration parameter . We apply a similar splitting approach, obtaining the following
partitions: (1) 90 clients with a = 0 and 10 clients with o = 100; (2) 90 clients with & = 0.5 and 10 clients with « = 100;
and (3) 40 clients with o = 100, 30 clients with o = 0.5, and 30 clients with « = 0. We evaluate the outcome of this
clustering experiment by means of WAS and WADB. Results in Table 3 show that FedGWC detects clusters groups clients
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Table 6. Clustering with three different splits on Cifar10. FedGWC has superior clustering quality across different splits (homogeneous
Hom, heterogeneous Het, extremly heterogeneous X Het)

Dataset (Hom, Het, X Het) CluStering WAS WADB
method
IFCA 1 / /
(10, 0, 90) FeSem 3 -00+01 120+20
FedGWC 3 01+00 0.2 +0.0
. IFCA 1 / /
Cifarl0 (10,90, 0) FeSem 3 00400 12.0+20
FedGWC 3 02+00 0.6 0.0
IFCA 2 -02+00 1.0+00
(40, 30, 30) FeSem 3 0.1 +01 20.6 7.1
FedGWC 3 0.6 01 1.0 + 0.4

Table 7. Clustering performance of FedGWC is assessed on federations with clients from varied domains using clean, noisy, and blurred
(Clean, Noise, Blur) images from Cifar10 dataset. It utilizes the Rand Index score (Rand, 1971), where a value close to 1 represents a
perfect match between clustering and labels. Consistently FedGWC accurately distinguishes all visual domains.

. Clustering

Dataset (Clean, Noise, Blur) method C Rand
IFCA 1 0.5 +00
(50, 50, 0) FeSem 2 0.49 +02
FedGWC 2 1.0 + 0.0
Cifar10 IFCA 1 0.5 +00
Har (50, 0, 50) FeSem 2 0.5+ 0.1
FedGWC 2 1.0 + 0.0
IFCA 1 0.33 £ 00
(40, 30, 30) FeSem 3 0.34 +0.1
FedGWC 4 0.9 + 0.0

according to the level of heterogeneity of the group.

I. Evaluation of IFCA and FeSEM algorithms with different number of clusters

This section shows the tuning of the number of clusters for the IFCA and Fe SEM algorithms, which cannot automatically
detect this value. The results of this tuning are shown in Table 8.

J. Further Experiments

In Table 9 we show that FedGWC is orthogonal to FL aggregation, which means that any algorithm - including personalized
FL algorithms - can be easily embedded in our clustering setting, improving the final performance. We show this in Table 9,
where we also include personalization algorithms — pFedMe (T Dinh et al., 2020) and Per-FedAvg (Fallah et al., 2020).

Note that FedGWC does not directly compare to personalization methods, as it would result in unfair comparison, since
personalization methods require more local resources and overhead than clustering methods. Personalization methods aim to
create models uniquely tailored to each client, a distinct objective from clustering, which instead aims to identify and exploit
shared structures within client clusters. Given these fundamental distinctions in their objectives — highly individualized
models versus robust cluster level representations — and their differing resource demands, a direct benchmark of their
standalone effectiveness would be misleading. Therefore, exploring their potential integration is a more insightful line
of investigation. We rather show that applying FedGWC on top of personalization algorithms allows to increase model
performance. Figure 5 illustrates the clustering results corresponding to varying degrees of heterogeneity, as described in
Section 7.3. As per FedGWC, the detection of clusters based on different levels of heterogeneity in the Cifarl0 dataset is
achieved. Specifically, an examination of the interaction matrix reveals a clear distinction between the two groups. In Figure
6, we show that in class-balanced scenarios with small heterogeneity, like Cifar10 with @ = 100, FedGWC successfully
detects one single cluster. Indeed, in homogeneous scenarios such as this one, the model benefits from accessing more data
from all the clients.

Figure 4 shows how the MSE converges to a small value as the rounds increase for a Cifar10 experiment.
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Figure 3. Cluster evolution with respect to the recursive splits in FedGWC on Cifar100, projected on the spectral embedded bi-dimensional
space. From left to right, top to bottom, we can see that FedGWC splits the client into cluster, until a certain level of intra-cluster
homogeneity is reached
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Figure 4. Interaction matrix convergence: on the y-axis MSE in logarithmic scale w.r.t. communication rounds in the x-axis on Cifar10,
with Dirichlet parameter o« = 0.05.
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Table 8. Performance of for baseline algorithms for clustering in FL FeSEM, and IFCA, w.r.t. the number of clusters

Clustering

method c Acc

46.7 £ 0.0
440 + 1.6
45.1 +26
47.5 +£35

433 +13
48.0 £ 1.9
50.9 + 1.8
534 +18

76.1 £ 0.1
759 +19
76.6 £ 0.1
76.7 + 0.6

75.6+02
75.5+05
75.0+ 0.1
74.9+ 0.1

IFCA

Cifar100

FeSem

IFCA

Femnist

FeSem

NP WD N WND| U WD | R W

Table 9. FedGWC is orthogonal to FL aggregation algorithms, improving their performance in heterogeneous scenarios (Cifar100 with
o = 0.5 and Femnist with a = 0.01). This shows that FedGWC and clustering are beneficial in this scenarios, also with personalization
methods pFedMe (T Dinh et al., 2020) and Per—-FedAvg (Fallah et al., 2020)

FL method Cifar100 Femnist
No Clusters FedGWC | No Clusters FedGWC

FedAvg 41.6 13 534404 | 76.0+01 76.1 +0.1
FedAvgM 415405 505+03| 833+03 833404
FedProx 418 +10 4901 +10| 759+02 763402
pFedME 934 +01 93.5+01| 63.6+03 639 +02

per-FedAvg | 89.0+01 935+01| 71.2+02 72.0402

As Figure 7 illustrates, FedGWC partitions the Cifar100 dataset into clients based on class distributions. Each cluster’s
distribution is distinct and non-overlapping, demonstrating the algorithm’s efficacy in partitioning data with varying degrees
of heterogeneity. In Figure 8, we report the domain detection on Cifar100, where 40 clients have clean images, 30 have
noisy images, and 30 have blurred images. Table 4 shows that FedGWC performs a good clustering, effectively separating
the different domains.
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Spectral Clustering Results
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Figure 5. Homogeneous (Cifar10 o = 100) vs heterogeneous clustering (Cifar10 o = 0.05). The interaction matrix at convergence and
the corresponding scaled affinity matrix are on the left. The scatter plot in the 2D plane with spectral embedding is on the right. It is
possible to see that the algorithm perfectly separates homogeneous clients (orange) from heterogeneous clients (black)
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Figure 6. Homogeneous case (Cifar10 o = 100). The interaction matrix at convergence and the corresponding scaled affinity matrix are
on the left. The scatter plot in the 2D plane with spectral embedding is on the right. In the homogeneous case where no clustering is
needed, FedGW does not split the clients.
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Figure 7. Class distributions among distinct clusters as detected by FedGWC on Cifar100. Specifically, we examine the class distributions
for each pair of clusters, demonstrating that (1) the clusters were identified by grouping differing levels of heterogeneity and (2) there is,
in most cases, an absence of overlapping classes.
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Interaction Matrix Scaled Affinity Matrix Spectral Clustering Results
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Figure 8. FedGWC in the presence of domain imbalance. Three domains on Cifar100: clean clients (unlabeled), noisy clients (+), and
blurred clients (x). Left: is the interaction matrix P at convergence from which it is possible to see client relations. Center: The affinity
matrix W computed with respect to the UPVs extracted from P, and on which FedGW_Clustering is performed. We can see that
FedGWC clusters the clients according to the domain, as proved by results in Table 4.
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