Overfitting in Feature Learning

A Quick recap of spherical harmonics

Spherical harmonics This appendix collects some introductory background on spherical harmonics
and dot-product kernels on the sphere [55]. See [56, 57] for an expanded treatment. Spherical
harmonics are homogeneous polynomials on the sphere S* 1 ={x € R?||z| =1}, with ||.|
denoting the L2 norm. Given the polynomial degree k € N, there are N}, ; linearly independent
spherical harmonics of degree k on S°~!, with

2k+d—2<d+k—3) {szﬂ vd,

N —
b k k-1 Nia = Agk®™2 fork > 1,

(A.1)

where < means logarithmic equivalence for k¥ — oo and Ay = /2/7(d — Q)E_d d=2 Thuys, we
can introduce a set of NV %,d spherical harmonics Y}, ¢ for each k, with £ ranging in 1, ..., Ny, 4, which
are orthonormal with respect to the uniform measure on the sphere dr(x),

Wthizoe=1, g Yot Yie)ga i = /d Ye(@Vep(x)dr(z) =dep.  (A2)
> Ni, .

Because of the orthogonality of homogeneous polynomials with different degree, the set is a com-
plete orthonormal basis for the space of square-integrable functions on S¢~!. For any function
f:S4 1 5 R, then

Ni,d

S feVie(®@), o= /S f@Yi(@)r(@) (A3)

k>0 £=1

Furthermore, spherical harmonics are eigenfunctions of the Laplace-Beltrami operator A, which is
nothing but the restriction of the standard Laplace operator to S 1,

AV = —k(k+d—2)Ye,. (A4)

Legendre polynomials By fixing a direction g in S~ one can select, for each k, the only spherical
harmonic of degree k& which is invariant for rotations that leave y unchanged. This particular spherical
harmonic is, in fact, a function of @ - y and is called the Legendre polynomial of degree k, Py, 4( - y)
(also referred to as Gegenbauer polynomial). Legendre polynomials can be written as a combination
of the orthonormal spherical harmonics Y}, , via the addition theorem [56, Thm. 2.9],

de
Pra(e - y) ZYM )Y e(y)- (A5)

Alternatively, Py q is given explicitly as a functlon of t=x -y € [—1,1] via the Rodrigues’ for-
mula [56, Thm. 2.23],

k d—1 : : p
1 I (42) s—a gk jtd=3
Peat)=(-2) ——22-(1-¢t%) > 1—1t : . A.6
alt) = (-3 F(,@,yl;l)( )T -1 (A6)
Here T" denotes the Gamma function, I'(z f 0 e~ dx. Legendre polynomials are orthogonal

on [—1, 1] with respect to the measure w1th density (1 — t2)(@=3)/2 'which is the probability density
function of the scalar product between to points on S
+1 d—3 |Sd_1‘ 6k,k/

P, g P a(t) (1—1%) % dt =
. k,l()k,d()( ) |Sd72‘/\/k75

Here [S41|=2r%/ I'(4) denotes the surface area of the d-dimensional unit sphere (|S°| =2 by
definition).

(A7)

To sum up, given ,y € S, functions of & or ¢ can be expressed as a sum of projections on the
orthonormal spherical harmonics, whereas functions of « - ¥ can be expressed as a sum of projections
on the Legendre polynomials. The relationship between the two expansions is elucidated in the
Funk-Hecke formula [56, Thm. 2.22],

542
- f(@-y)Yi(y)dr(y) = Yk,e(m)m

+1 _
) Peat) (1—17) Tt = fiYes(@).
- (A.8)
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Overfitting in Feature Learning

A.1 Expansion of ReLU and combinations thereof

We can apply Eq. A.8 to have an expansion of neurons ¢ (8 - ) in terms of spherical harmonics [2,
Appendix D]. After defining

Sd_2 _
Pp = §d—1: o(t)Pra(t) (1— t2) = dt (A9)
-1
one has
Nk d
= NiarPra(0-x) Z@kZYw )Yi,o(). (A.10)
k>0 E>0
For ReLU activations, in particular, o (¢) = max(0, ¢), thus
Sd 2 _
RV — :Sdl tPa(t) (1 —t2) = at, (A.11)
0

Notice that when & is odd P, 4 is an odd function of ¢, thus the integrand ¢ Py, 4(¢)(1 — ¢?) ““* isan
even function of ¢. As a result the integral on the right-hand side of Eq. A.11 coincides with half the
integral over the full domain [—1, 1],
+1 a-3 1 +1
/ tPealt) (1—%) % dt= 3 / tPea(t) (1 - t2) Ta=0fork>1,  (Al2)
0 —1

because, due to Eq. A.7, Py, q is orthogonal to all polynomials with degree strictly lower than k. For
even k we can use Eq. A.6 and get [2] (see Eq. 3.3, main text)

/0+1th,d(t) (1-2)" at = ( Dk (F<d21) )/1 ;;c (-2 ar

2
B ( 1>k (%) dh=2 (1 t2)k+% oA
a 2) T(k+95) dit=? t=0

= RV ~ k=“F" =% for k> 1 and even.

Because all RV with k£ > 1 and odd vanish, even summing an infinite amount of neurons (6 - x)

with varying € does not allow to approximate any function on S¢~!, but only those which have
vanishing projections on all the spherical harmonics Y7, ; with k£ > 1 and odd. This is why we set the
odd coefficients of the target function spectrum to zero in Eq. 2.1.

A.2 Dot-product kernels on the sphere

Also general dot-product kernels on the sphere admit an expansion such as Eq. A.10,

Ni.a
C ZN]‘ dePkd :13 y ch ZY]‘Z Ykg ) (A.l4)
k>0 k>0 =1
with
42 ! a2
e = Tgar | COPkal®) (1—17) 7 dt (A.13)
-1

The asymptotic decay of ¢, for large k is controlled by the behaviour of C(¢) near t = £ 1, [58]. More
precisely [58, Thm. 1], if C is infinitely differentiable in (—1, 1) and has the following expansion
around +1,

C(t) =pr(1 =)+ ex(1 =) +o((1—1)") neart = +1; (A16)
C(t) =p-a(=1+1) +ca(=1+1)"+o((-1+1)") neart = —1, '
where p4q are polynomials and v is not an integer, then
keven: ¢ ~ (c1 + c_q)k~2v— (=1,
Ll ! (A.17)

kodd: ¢ ~ (¢c1 — c,l)k*Q”*(d*I),
The result above implies that that if c; =c_1 (c; = — ¢_1), then the eigenvalues with k odd (even)

decay faster than k~2~(4=2) Moreover, if C is infinitely differentiable in [—1, 1] then ¢, decays
faster than any polynomial.
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Overfitting in Feature Learning

NTK and RFK of one-hidden-layer ReLU networks Let Eg denote expectation over a multivari-
ate normal distribution with zero mean and unitary covariance matrix. For any x, y € S?~!, the RFK
of a one-hidden-layer ReLU network Eq. 2.3 with all parameters initialised as independent Gaussian
random numbers with zero mean and unit variance reads

KX™(. ) = g [(8 - 2)0(6 - )
(m —arccos (¢))t ++1—t2 . (A.18)

= 5 , with t = - y.
™

The NTK of the same network reads, with ¢’ denoting the derivative of ReLU or Heaviside function,

KN (2 y) =Eq [0(0-2)0(0 - y)] + (z - y)Eg [0"(0 - )0 (6 - y)]
2(m — arccos (1))t + V1 —12 | (A.19)

o , W1 r-y

As functions of a dot-product on the sphere, both NTK and RFK admit a decomposition in terms of
spherical harmonics as Eq. A.15. For dot-product kernels, this expansion coincides with the Mercer’s
decomposition of the kernel [55], that is the coefficients of the expansion are the eigenvalues of the
kernel. The asymptotic decay of the eigenvalues of such kernels o™ and ©RF¥ can be obtained
by applying Eq. A.16 [58, Thm. 1]. Equivalently, one can notice that KRFX is proportional to the

convolution on the sphere of ReLU with itself, therefore @RFK = (©RY)2, Similarly, the asymptotic
decay of Y™™ can be related to that of the coefficients of ¢/, derivative of ReLU: ¢y (0”) ~ ke(o),

thus NTE ~ k2(pReLU)2 Both methods lead to Eq. 3.3 of the main text.

Gaussian random fields and Eq. 2.2 Consider a Gaussian random field f* on the sphere with
covariance kernel C(z - y),

E[f*(@) =0, E[f*(z)f"(y)]=Clx y), YeyeS (A.20)
J* can be equivalently specified via the statistics of the coefficients fy ,,

E[fi =0, E[fiofire] = crdrpdee, (A21)

with ¢, denoting the eigenvalues of C in Eq. A.15. Notice that the eigenvalues are degenerate with
respect to ¢ because the covariance kernel is a function « - y: as a result, the random function f* is
isotropic in law.

If ¢y, decays as a power of k, then such power controls the weak differentiability (in the mean-squared
sense) of the random field f*. In fact, from Eq. A.4,

H Z Z k(k+d— 2))7" (fk e) . (A.22)
k>0 ¢
Upon averaging over f* one gets

EH * }:Z( k(k + d — 2)) ZE[fM }:Z(—k(md—z))m/\fwck.
(A23)

k>0 k>0
From Eq. A.16 [58, Thm. 11,if C(t) ~ (1—¢)** fort — 1 and/or C(t) ~ (—141)* fort — —1, then
cp ~ k=2"=(4=1) for k >> 1. In addition, for finite but arbitrary d, (—k(k + d — 2))"™ ~ k*™ and
Nj.s ~ k972 (see Eq. A.1). Hence the summand in the right-hand side of Eq. A.23 is ~ k2(m—ve) =1,

thus
2]

Alternatively, one can think of v, as controlling the scaling of the difference § f* over inputs separated
by a distance §. From Eq. A.20,

E[lf*(=) = f ()] =20(1) - 2C(z - y) =2¢(1) + O((1 — = - y)"")
=20(1) + O(lz — y[**)

* } <00 Vm <y, (A24)

(A.25)
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B Uniqueness and Sparsity of the L.1 minimizer

Recall that we want to find the v* that solves

v = argmin/ |dv(@)| subject to / o(0-x;)dy(0)=f"(x;) Vi=1,...,n. (B.1)
¥ Sd-1 S

In this appendix, we argue that the uniqueness of v* which implies that it is atomic with at most
n atoms is a natural assumption. We start by discretizing the measure ~ into H atoms, with H
arbitrarily large. Then the problem Eq. B.1 can be rewritten as

w* = argmin |wl|;, subjectto Pw =y, (B.2)

with ® € REX" &, = 0(0), - ;) and y; = f*(x;).

Given w € R, let u = max(w,0) > 0 and v = — max(—w,0) > 0 so that w = u — v. It is
well-known (see e.g. [50]) that the minimization problem in (B.2) can be recast in terms of w and v
into a linear programming problem. That is, w* = u* — v* with

(u*,v*) = argmine’ (u +v), subjecttoPu—Pv=y, u>0 v>0 (B.3)

u,v

where e = [1,1,...,1]7. Assuming that this problem is feasible (i.c. there is at least one solution to
Pu — v = y such that w > 0, v > 0), it is known that it admits extremal solution, i.e. solutions
such that at most n entries of (u*, v*) (and hence w*) are non-zero. The issue is whether such
an extremal solution is unique. Assume that there are two, say (u}, vy) and (u3, v3). Then, by
convexity,

is also a minimizer of (B.3) for all ¢ € [0, 1], with the same minimum value u} + v} = u} + v} =
uj + v3. Generalizing this argument to the case of more than two extremal solutions, we conclude
that all minimizers are global, with the same minimum value, and they live on the simplex where
e’ (u+v) = e? (u1 +v1). Therefore, nonuniqueness requires that that this simplex has a nontrivial
intersection with the feasible set where ®u — ®v = y with u > 0, v > 0. We argue that, generically,
this will not be the case, i.e. the intersection will be trivial, and the extremal solution unique. In
particular, since in our case we are in fact interested in the problem (B.1), we can always perturb
slightly the discretization into H atoms of -+ to guarantee that the extremal solution is unique. Since
this is true no matter how large H is, and any Radon measure can be approached to arbitrary precision
using such discretization, we conclude that the minimizer of (B.1) should be unique as well, with at
most n atoms.

C Proof of Proposition 1

In this section, we provide the formal statement and proof of Proposition 1. Let us recall the general
form of the predictor for both lazy and feature regimes in d = 2. From Eq. 3.6,

@) =Y gsete ) = [ Lo Wee ) .

where n is the number of training points for the lazy regime and the number of atoms for the feature
regime and, for z € (—m, 7],

max {0, cos (x)} (feature regime),
2(m — |z|) cos(x) + sin(|z|)

o) = - (lazy regime, NTK), (C.2)
(r — |z|) 6052(30) + sin(|z|) (lazy regime, RFK).
™

All these functions ¢ have jump discontinuities on some derivative: the first for feature and NTK, the
third for RFK. If the [-th derivative has jump discontinuities, the [ 4 1-th only exists in a distributional
sense and it can be generically written as a sum of a regular function and a sequence of Dirac masses
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located at the discontinuities. With m denoting the number of such discontinuities and {z;}; their
locations, f ® denoting the [-th derivative of f, for some c; € R,

f(z+1)( ) = z+1) )+ ZC S(x — x5), (C.3)

where f,. denotes the regular part of f.
Proposition 2. Consider a random target function f* satisfying Eq. 2.1 and the predictor f™ obtained
by training a one-hidden-layer ReLU network on n samples (x;, f*(x;)) in the feature or in the lazy
regime (Eq. C.1). Then, with f(k) denoting the Fourier transform of f(x), one has
(FV7 (K
lim lim M =c, (C4)
\k|—>oo n—o0 f*(k)

where c is a constant (different for every regime). This result implies that as n — oo, ()" (x)
converges to a function having finite second moment, i.e.

B [ = tim By | [ e (07 @)

(C.5)
= B E

ZW2(M] = const. < 00,

k
2
using the fact that E ¢ [(f™)!(z)]? does not depend on x and E 4[>, (f*) (k)] = const.

Proof: Because our target functions are random fields that are in Ly with probability one, and the
RKHS of our kernels are dense in that space, we know that the test error vanishes as n — oo [59].
As aresult

(@)= lim f"(z) = hm / 4 9" (y)p(x —y). (C.6)
n—oo

Consider first the feature regime and the NTK lazy regime. In both cases ¢ has two jump discontinu-

ities in the first derivative, located at = 0, w for the NTK and at x = + 7 /2, therefore we can write

the second derivative as the sum of a regular function and two Dirac masses,
(PFEATUREY — —_max {0, cos (z)} + 6(x — 7/2) + 8(x + 7/2),
(NTEY = —2(m — |z[) cos(z) + 3sin((z|) 1 1 (C.7

o 27r6(x)+ %(5($—T().

As aresult, the second derivative of the predictor can be written as the sum of a regular part (™)
and a sequence of 2n Dirac masses. After subtracting the Dirac masses, both sides of Eq. C.1 can be
differentiated twice and yield

d .
(@) = [ S2a" el - ). 8
Hence in the Fourier representation we have
(f)il(k) = g7 (k) (~K*,.(K)) (C.9)
where we defined
3= [ Eetpw),  Fi / e (a). (C.10)
= € x), r = r .
¥ _Von ¥ 4 Vo ¥
and used :5? (k) = —k:QE(k:). By universal approximation we have
LI v k
“'3 ") e

e )= lim g'(R)P(k) = lim gi(k) = 30

As a result by combining Eq. C.9 and Eq. C.11 we deduce

tim (F7(k) = — 2 F ), C12)
n—oo (P(:ZC)

Fk) =
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To complete the proof using this result it remains to estimate the scaling of @T(k) and @(k) in the
large | k| limit.

~

For the feature regime, a direct calculation shows that ¢/ = — ¢, implying that @T( k) = —¢(k).
This proves that Eq. C.4 is satisfied with c= — 1.

For the NTK lazy regime !’ and —¢ are different but they have similar singular expansions near z = 0
and 7. Therefore their Fourier coefficients display the same asymptotic decay. More specifically,
with ¢ = cos(z) (or & = arccos(t)), so that ¢(x) = ¢(t), one has

ONR(E) =t — #(1 -2+ 0 ((1 - t)3/2) near t = +1;
P () = —ﬁ(—l +HY2 40 ((=1+1)%2) neart = 1, “
and (NTRY (1) = ¢ 4 i(l —Y2 40 ((1 _ t)3/2) fiear £ = -1
T va ’ (C.14)

(¢NTK)¥(t) _ +%(_1+t)1/2+0 ((—1+t)3/2) neart = —1.

Therefore, due to Eq. A.17, Eq. C.4 is satisfied with c = — 5. The same procedure can be applied to
the RFK lazy regime, with the exception that it is the fourth derivative of GRFX which can be written
as a regular part plus Dirac masses, but one can still obtain the Fourier coefficients of the second

derivative’s regular part by dividing those of the fourth derivative’s regular part by k2.

D Asymptotics of generalization in d = 2

In this section we compute the decay of generalization error € with the number of samples 7 in the
following 2-dimensional setting:

@)=Y g;p(x —xj), (D.1)
j=1

where the x;’s are the training points (like in the NTK case) and ¢ has a single discontinuity on the
first derivative in 0.

Let us order the training points clockwise on the ring, such that ;1 =0 and z;{1 > x; for all
i=1,...,n, with 41 := 27. On each of the z; the predictor coincides with the target,

(@) = f(zi) Yi=1,...,n. (D.2)

For large enough n, the difference x; 1 — z; is small enough such that, within (x;, 2;11), f™(z) can

be replaced with its Taylor series expansion up to the second order. In practice, the predictors appear

like the cable of a suspension bridge with the pillars located on the training points. In particular, we
can consider an expansion around z; :=xz; + € for any € >0 and then let € — 0 from above:

— )2

F1(@) = £ + ) )+ E

By differentiability of f™ in (x;, 2;41) the second derivative can be computed at any point inside

(2, x;41) without changing the order of approximation in Eq. D.3, in particular we can replace

(f™)"(x;}) with ¢;, the mean curvature of f in (x;,x;41). Moreover, as € — 0, f™(z;) — f*(z;)

'@ +0((x—-ah)?). (D3)

and f"(z;, ;) = f*(zi+1). By introducing the limiting slope m; := lim, o+ f™'(z; + ), we can
write
(x —@)° +13
(@) = f* () + (2 — xL)mj' + Tci +0 ((m —z;) ) (D.4)
+

Computing Eq. D.4 at v = x;1, yields a closed form for the limiting slope m;" as a function of the
mean curvature c;, the interval length §; := (z;11 — 2;) and Af; := f*(z;41) — f*(x;). Specifically,
+ _ Afi 51’

, — e D.
mz 51’ 202 ( 5)
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The generalization error can then be split into contributions from all the intervals. If v > 2, A Taylor
expansion leads to:

2 T
= [ S @ - @)

n Titl o , x—l‘iQ ) , 2
:;/7«1 7 [(m—xz) (mf_(f*) (xz))—&—%(cz—(f) (mz))—i—o((x—q;j))
— - 5i do -+ ek \/ . (52 ) NI ‘ 9 2
_Z/ 2 o mr = @) + 5 - ) @) +o %)

n 3
-3 o | o = (@) 4 55 (e = () @)

+2 (= (£ @) (e (£ () + 000
(D.6)
In addition, as Af; = (f*)(z:)0; + (f*)"(2:)02/2 + O(83),
mF — (f*) (x:) = % ((f*)" (i) — i) + 0(8;)?, (D.7)
hu
e _ 1 - 675 N7 2 55 D.8
) = 5 3 g3 (e~ U7 2+ o6 03
implying:
n 4t (n 130 (n6;)%) _
el = T [ (@) () )] ol )~ ni(D ,

where we used that (i) the integral converges to some finite value, due to proposition 2. From App. C,
this integral can be estimated as ) _, F - [(cf* (k) — k2 f* (k:))ﬂ , that indeed converges for v; > 2.

(i) (n™* 371 (nd;)°) has a deterministic limit for large n. It is clear for the lazy regime since the
distance between adjacent singularities §; follows an exponential distribution of mean ~ % We
expect this result to be also true for the feature regime in our set-up. Indeed, in the limit n — oo,
the predictor approaches a parabola between singular points, which generically cannot fit more than
three random points. There must thus be a singularity at least every two data-points with a probability
approaching unity as n — oo, which implies that (n=* > | (nd;)") converges to a constant for
large n.

Finally, for v; < 2, the same decomposition in intervals applies, but a Taylor expansion to second
order does not hold. The error is then dominated by the fluctuations of f* on the scale of the intervals,
as indicated in the main text.

E Asymptotic of generalization via the spectral bias ansatz

According to the spectral bias ansatz, the first n modes of the predictor f}', coincide with the modes
of the target function f; ,. Therefore, the asymptotic scaling of the error with n is entirely controlled
by the remaining modes,

led
~ SN (R - fre)? with Y Mg ~n. (E.1)
k>ke £=1 k<k.

1
Since Ny 4 ~ k%2 for k > 1, one has that, for large n, k. ~ n7-1. After averaging the error over
target functions we get
Nk d

)~ 3 S B [(2)7] + B [(20)7] - 2B [GRef2D]} . ®2)

k>k. £=1

21



Overfitting in Feature Learning

Let us recall that, with the predictor having the general form in Eq. 3.2, then

n
fle=gkepe with g, = g;Yee(y)), (E3)
J=1
where the y;’s denote the training points for the lazy regime and the neuron features for the feature
regime. For k < ke, where fi', = fi 4, 93 o= f7.4/¢k- For k> ke, due to the highly oscillating
nature of Yy, o, the factors Yy, /(yj) are essentially decorrelated random numbers with zero mean and
finite variance, since the values of (Y} ,(y;))? are limited by the addition theorem Eq. A.5. Let us
denote the variance with oy. By the central limit theorem, g, converges to a Gaussian random

variable with zero mean and finite variance o3 Z?ﬂ gjz. As aresult,

Ni,a n
e~y > S D9 e+ Ep {(f;:’f)?}
k>ke =1 j=1
(B4)
=D 07| D Neawi + > Niacs,
Jj=1 >k, B>k,

where we have used the definition of f* (Eq. 2.1) to set the expectation of ( Ir, 4)? 1o ck.

Large 1, case When f* is smooth enough the error is controlled by the predictor term proportional
to >, g7. More specifically, if

Ni.a .
Y3 < 4o, (E.5)
k>0 (=1 Pk

then the function ¢"(x) converges to the square-summable function ¢*(x) such that
(@)= [g*(y)e(x - y)dr(y). With ¢ ~ k=2~(d=Y and N} 4 ~ k%72, in the lazy regime
o ~ k~(@=1D)=2v Eq. E 5 is satisfied when 2v; > 2(d — 1) + 4v (v = 1/2 for the NTK and 3/2 for
the RFK). In the feature regime @y, ~ k~(4=1/273/2 Eq. E.5 is satisfied when 2v; > (d — 1) + 3. If
g™ (x) converges to a square-summable function, then

n
1 1 C
2 _ n 2 -1\ __ k 1
Zgj = /g (£)*dr(z) +o(n ") = - ZN]MZ% +o(n™"), (E.6)
7j=1 k>0
which is proportional to n~1. In addition, since Ny 4 ~ k%2 and k. ~ nT7, one has

2

n~lpd—1p—2(d=1)—4v ~ 2 (Lazy),

1
S ot
n k,dPk ~ ) E.7
k>ke nilkdflk*(d*l)*d‘ o ni-at (Feature),
- k=nd-1
and ,

Z Ni,ack ~ kdilk*QVr(dfl)’ o~ n_ a1, (E.8)

> ke k=nd—

Hence, if v, is large enough so that Eq. E.5 is satisfied, the asymptotic decay of the error is given
by Eq. E.7.

Small v, case If Eq. E.7 does not hold then g” () is not square-summable in the limit n — oco.
However, for large but finite n only the modes up to the k.-th are correctly reconstructed, therefore
1~ n_%nl‘”'% (Lazy),

n
1 C o d—1
§ 2 E k k=nd-1
9~ % Nea 7 ~ 17— 20 7.(d—1)+3 LR E5)
j=1 k<ko Pk I ey AC VR ‘ 1 ~n d-tpa-1 (Feature),
- k=nd—1

Both for feature and lazy, multiplying the term above by Z,ch Ni.apr from Eq. E.7 yields

n—lk—Ql/t k2(d—1)+4V

~ n~2v/(d=1) "This is also the scaling of the target function term Eq. E.8, implying that for small v,
one has )
vt

€(n) ~n a1 (E.10)
both in the feature and in the lazy regimes.
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F Spectral bias via the replica calculation

Due to the equivalence with kernel methods, the asymptotic decay of the test error in the lazy regime
can be computed with the formalism of [45], which also provides a non-rigorous justification for
the spectral bias ansatz. By ranking the eigenvalues from the biggest to the smallest, such that ¢,
denotes the p-th eigenvalue and denoting with ¢, the variance of the projections of the target onto the
p-th eigenfunction, one has

_ ) VRO RNV ()
G(Tl) - zﬂ:eﬂ(n)v eﬂ(n) - (QDP+I<&(71))2 P ( ) - n ~ @p"‘l‘i(n). (Fl)

It is convenient to introduce the eigenvalue density,

Nk,a 00
D(yp) = Z Z S(p —pr) = ZNk7,15(g0 — Q) ~ / k425(p — k=D =2) for k> 1.
£>0 I=1 k>0 0
(E2)
After changing variables in the delta function, one finds
_2(d—1)+2v
D(p) ~ ¢~ @ DF2 for ¢ < 1. (E3)
This can be used for inferring the asymptotics of k(n),
1 k(N 1 pr(n
(o) = 230 22 [ () £
neLgptrn)  n. ¢+ K(n)
1 A w(n) [P0
~ 2 [ appe)e+ M [ dppip) F4
n Jo n K(n)
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Once the scaling of k(n) has been determined, the modal contributions to the error can be split
according to whether ¢, < k(n) or ¢, > k(n). The scaling of ¢, with the rank p is determined
self-consistently,

P1 __d-1 y
p~ / doD(p) ~ 9o I =, e p T 5 0> (i(n) & p < ()0, (FS)
o]

P

Therefore

c
e(n) ~ k(n)? Z (p—’; + Z Cp- (F.6)
pLn TP p>n
Notice that #(n)? scales as ™" >~ -, Nj sy in Eq. E.7, whereas >~ ¢, /g2 corresponds to
ny, y gjz in Eq. E.9, so that the first term on the right-hand side of Eq. F.6 matches that of Eq. E.4.

The same matching is found for the second term on the right-hand side of Eq. F.6, so that the replica
calculation justifies the spectral bias ansatz.

G Training wide neural networks: does gradient descent (GD) find the
minimal-norm solution?

In the main text we provided predictions for the asymptotics of the test error of the minimal norm
solution that fits all the training data. Does the prediction hold when solution of Eq. 2.5 and Eq. 2.13
is approximately found by GD? More specifically, is the solution found by GD the minimal-norm
one?

Feature Learning We answer these questions by performing full-batch gradient descent in two
settings (further details about the trainings are provided in the code repository, experiments.md
file),

23



Overfitting in Feature Learning

1. Min-L1. Here we update weights and features of Eq. 2.3, with £ = 0, by following the
negative gradient of

n H
1 2 A
Lyintr = 5= Y (f* (@) — f(as = ; G.1
MinLl = 35— i:1(f (m;) — f(=i)) +th1‘wh| (G.1)
with A — 0T. The weights wy, are initialized to zero and the features are initialized
uniformly and constrained to be on the unit sphere.

2. a-trick. Following [8], here we minimize

Lovis = = 3 (f* (@) — af (@) G2)

2na
i=1

with o — 0. This trick allows to be far from the lazy regime by forcing the weights to
evolve to O(1/«), when fitting a target of order 1.

In both cases, the solution found by GD is sparse, in the sense that is supported on a finite number of
neurons — in other words, the measure (@) becomes atomic, satisfying Assumption 1. Furthermore,
we find that

1. For Min-L1, the generalization error prediction holds (Fig. 4 and Fig. G.1) as the the
minimal norm solution if effectively recovered, see Fig. G.2. Such clean results in terms of
features position are difficult to achieve for large n because the training dynamics becomes
very slow and reaching convergence becomes computationally infeasible. Still, we observe
the test error to plateau and reach its infinite-time limit much earlier than the parameters,
which allows for the scaling predictions to hold.

2. a-trick, however, does not recover the minimal-norm solution, Fig. G.2. Still, the solution
found is of the type (2.7) as it is sparse and supported on a number of atoms that scales lin-
early with n, Fig. G.3, left. For this reason, we find that our predictions for the generalization
error hold also in this case, see Fig. G.3, right.

Lazy Learning In this case, the correspondence between the solution found by gradient descent
and the minimal-norm one is well established [9]. Therefore, numerical experiments are performed
here via kernel regression and the analytical NTK Eq. A.19: given a dataset {x;, y; = f* (@)},
we define the gram matrix K € R™*” with elements K;; = K («;,, ;) and the vector of target labels
Yy = [y1,Y2,.-.,Yn]- The ¢;’s in Eq. 2.9 can be easily recovered by solving the linear system

Yy = %Kq. (G.3)

Experiments Numerical experiments are run with PyTorch on GPUs NVIDIA V100 (univer-
sity internal cluster). Details for reproducing experiments are provided in the code repository,
experiments.md file. Individual trainings are run in 1 minute to 1 hour of wall time. We estimate
a total of a thousand hours of computing time for running the preliminary and actual experiments
present in this work.
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Figure G.1: Gen. error decay vs. target smoothness and training regime. Here, data-points are
sampled uniformly from the spherical surface in d = 5 and the target function is an infinite-width
FCN with activation function o(-) = | - |**~"/2, corresponding to a Gaussian random process of
smoothness v;. 1%row: gen. error decay exponent as a function of the target smoothness v4. The
three curves correspond to the target contribution to the generalization error (black) and the predictor
contribution in either feature (blue) or lazy (orange) regime. Full lines highlight the dominating
contributions to the gen. error. 2"row: agreement between predictions and experiments in the feature
regime for a non-smooth (left) and smooth (right) target. In the first case, the error is dominated by
the target f*, in the second by the predictor f™ — predicted exponents /3 are indicated in the legends.
3"row: analogous of the previous row for the lazy regime.
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Figure G.2: Comparing solutions. Solutions to the spherically symmetric task in d = 2 forn = 4
(left) and n = 8 (right) training points. In red the minimal norm solution (Eq. 2.5) as found by
Basis Pursuit [50]. Solutions found by GD in the Min-L1 and «-trick setting are respectively shown
in blue and orange. Dots correspond to single neurons in the network. The x-axis reports their
angular position while the y-axis reports their norm: |wp|||0n]2. The total norm of the solutions,

- Zle |wp|||@r]|2, is indicated in the legend.
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Figure G.3: Solution found by the a-trick. We consider here the case of approximating the constant
target function on S~ ! with an FCN. Training is performed starting from small initialization through
the a-trick. Left: Number of atoms n 4 as a function of the number of training points n. Neurons that
are active on the same subset of the training set are grouped together and we consider each group a
distinct atom for the counting. Right: Generalization error in the same setting (full), together with
the theoretical predictions (dashed). Different colors correspond to different input dimensions. The
case of d = 2 and large n suffers from the same finite time effects discussed in Fig. 4. Results are
averaged over 10 different initializations of the networks and datasets.

H Sensitivity of the predictor to transformations other than diffeomorphisms

This section reports experiments to integrate the discussion of section 5. In particular, we: (i) show
that the lazy regime predictor is less sensitive to image translations than the feature regime one (as
is the case for deformations, from Fig. 6); (ii) provide evidence of the positive effects of learning
features in image classifications, namely becoming invariant to pixels at the border of images which
are unrelated to the task.

To prove the above points we consider, as in Fig. 6, the relative sensitivity of the predictors of lazy
and feature regime with respect to global translations for point (7) and corruption of the boundary
pixels for point (ii). The relative sensitivity to translations is obtained from Eq. 5.1 after replacing
the transformation 7 with a one-pixel translation of the image in a random direction. For the relative
sensitivity to boundary corruption, the transformation consists in adding zero-mean and unit-variance
Gaussian numbers to the boundary pixels. Both relative sensitivities are plotted in Fig. H.1, with
translations on the left and boundary pixels corruption on the right.

In section 5 we then argue that differences in performance between the two training regimes can
be explained by gaps in sensitivities with respect to input transformations that do not change the
label. For (i), the gap is similar to the one observed for diffeomorphisms (Fig. 6). Still, the space of
translations has negligible size with respect to input space, hence we expect the diffeomorphisms
to have a more prominent effect. In case (i), the feature regime is less sensitive with respect to
irrelevant pixels corruption and this would give it an advantage over the lazy regime. The fact that the
performance difference is in favor of the lazy regime instead, means that these transformations only
play a minor role.
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Figure H.1: Sensitivity to input transformations vs number of training points. Relative sensitivity
of the predictor to (left) random 1-pixel translations and (right) white noise added at the boundary of
the input images, in the two regimes, for varying number of training points n and when training on
FashionMNIST. Smaller values correspond to a smoother predictor, on average. Results are computed
using the same predictors as in Fig. 1. Left: For small translations, the behavior is the same compared
to applying diffeomorphisms. Right: The lazy regime does not distinguish between noise added at
the boundary or on the whole image (R = 1), while the feature regime gets more insensitive to the
former.

I Maximum-entropy model of diffeomorphisms

We briefly review here the maximum-entropy model of diffeomorphisms as introduced in [49].

An image can be thought of as a function z(s) describing intensity in position s = (u,v) € [0, 1],
where u and v are the horizontal and vertical (pixel) coordinates. Denote 7x the image deformed by
T,i.e. [Tz](s) = z(s — 7(s)). [49] propose an ensemble of diffeomorphisms 7(s) = (7, 7,,) with
i.i.d. 7, and 7, defined as

Tu= Y _ Cijsin(iru)sin(jmv) @1

1,jENT

where the C;;’s are Gaussian variables of zero mean and variance T'/(i? + j*) and T is a parameter
controlling the deformation magnitude. Once 7 is generated, pixels are displaced to random positions.
See Fig. 5b for an example of such transformation.
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