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REPRODUCIBILITY

To ensure reproducibility, we will make the source code publicly available after acceptance.

APPENDIX

7 DISTANCE MEASUREMENT

In this section, we demonstrate why we use ℓ1-norm as our distance measurement. As shown in
Table 11, we can see that ℓ1-norm outperforms the MSE. The main reason is that ℓ1-norm is more
sensitive to the small difference, which is related to the adversarial condition described in Eq. (6),
while MSE tends to punish the bigger errors. Thus, it is concluded that it is more feasible to adopt
ℓ1-norm to eliminate the small perturbations caused by adversarial attacks.

Distance Function Clean Acc. (%) Robust Acc. (%) Attacks

ℓ1-norm 92.30 88.73 AutoAttack (Standard)
Mean Square Error (MSE) 93.59 69.72 AutoAttack (Standard)

Table 11: Robustness evaluation and comparison between different distance functions. Classifier:
WRN-28-10. Testing dataset: CIFAR-10.

8 MORE OBJECTIVE FUNCTION DESIGNS

1) Reconstruction Loss. Intuitively, to enhance both the clean accuracy and robust accuracy of an
NN model, the purified/reconstructed image should closely resemble its clean version by minimizing
the loss as:

L = D(P(xa), x) +D(P(x), x), (13)

where the first term denotes the distance between the purified adversarial image and its corresponding
clean image, and the second term measures the distance between the purified clean image and true
clean one.

2) TRADES (Zhang et al., 2019). TRADES proposed to train a robust classifier with the loss
function defined as:

L = CrossEntropy(c(x), y) +KL(c(x), c(xa))/λ, (14)

where the first term maintains the clean accuracy while the second term focuses on improving the
robust accuracy by making logits of adversarial sample similar to those of clean acccuracy, and c is a
classifier.

2.1) TRADES in pixel domain. To replicate the success of TRADES in adversarial training, we adapt
its concept from training a robust classifier to training an adversarial purifier. The main difference
is that the purifier needs to process the image instead of class prediction. Therefore, we replace the
cross-entropy loss and KL divergence loss in Eq. (14) with a reconstruction loss in the image pixel
domain to meet the purifier’s requirement as:

L = D(P(x), x) +D(P(x),P(xa))/λ, (15)

where the first term maintains the purified clean image quality and the second term tries to purify the
adversarial image by mimicking the clean image in a sense similar to KL divergence loss in Eq. (14).

2.2) TRADES in latent domain. Unlike the methods proposed to concentrate on the image pixel
domain, several works, such as Latent Diffusion (Rombach et al., 2022) and CLIP (Radford et al.,
2021), have achieved notable success by processing image latent representations. In our approach,
as indicated in Eq. (16) below, we maintain clean image purification (1st term) while enforcing
constraints on adversarial perturbations within the latent space (2nd term) as:

L = D(P(x), x) +D(f(x), f(xa))/λ. (16)
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In Table 12, we provide a comparison of the performance of all loss designs discussed here to
verify the design of MAEP. We have the following observations: (1) Although reconstruction loss
concurrently learns the reconstruction of both clean and adversarial images, its performance falls
short of DISCO, which concentrates solely on reconstructing adversarial images. (2) MLM and
DISCO are closely associated with MAEP. Directly applying MLM appears ineffective, while MAEP
demonstrates performance enhancement over DISCO. (3) Exploiting the concept of TRADES does
not aid in learning an adversarial purifier. Thus, our validation shows that MAEP significantly
outperforms other approaches. Note that, as discussed in Table 1, DISCO needs additoinal data but
MAEP does not.

Defenses Clean Acc. (%) Robust Acc. (%) Avg. Acc.

WRN28-10 94.78 0 47.39
+ DISCO (Ho & Vasconcelos, 2022) 89.26 85.33 87.29
+ Reconstruction (Eq. (13)) 94.74 82.73 88.73
+ TRADES (pixel, Eq. (15)) 94.75 0.85 47.81
+ TRADES (latent, Eq. (16)) 94.64 38.16 66.40
+ MLM (He et al., 2022) 92.85 61.46 77.15
+ MAEP 92.30 88.73 90.52

Table 12: Performance comparison of different objective functions on CIFAR10 dataset under
AutoAttack with attack budget ϵ∞ = 8/255.

9 MORE RESULTS ON FINETUNING

In this section, we provide more results on finetuning in Table 13 and Table 14.

Defense Methods Clean Acc. (%) Robust Acc. (%) Attacks

No defense 94.78 0 AutoAttack (Standard)
MAEP 92.30 88.73 AutoAttack (Standard)

MAEP (w/ LoRA) 92.13 89.40 AutoAttack (Standard)
MAEP (w/ finetune) 92.51 84.70 AutoAttack (Standard)

Table 13: Robustness evaluation and comparison between LoRA and the traditional finetuning
approach. Classifier: WRN-28-10. Testing dataset: CIFAR-10. Asterisk (*) indicates that the results
were excerpted from the papers.

Model Pre-train Finetune Clean Acc. (%) Robust Acc. (%)
CIFAR10 CIFAR100 CIFAR10 CIFAR100

WRN28-10 v - - - 94.78 0
MAEP v - - - 92.30 88.73

MAEP (w/ LoRA) v - v - 92.51 88.94
MAEP (w/ finetune) v - v - 92.51 84.70
MAEP (w/ LoRA) - v v - 91.57 84.55

MAEP (w/ finetune) - v v - 91.16 83.30

WRN28-10 - v - - 81.66 0
MAEP - v - v 73.67 76.22

MAEP (w/ LoRA) - v - v 73.56 76.25
MAEP (w/ finetune) - v - v 72.66 75.13
MAEP (w/ LoRA) v - - v 75.38 69.83

MAEP (w/ finetune) v - - v 73.05 74.50

Table 14: Performance of finetuning and transferability of MAEP on CIFAR10 and CIFAR100
datasets under AutoAttack with ϵ∞ = 8/255.
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10 MODEL STRUCTURE AND PARAMETERS

As shown in Fig. 1, the encoder f and decoder g follow the structure of MAE (He et al., 2022), and
g ◦ f is defined as the purifier in MAEP. Nevertheless, our MAEP makes certain modifications to
meet its distinct purpose in that instead of solely focusing on learning a representation, the purifier is
specifically designed to effectively remove perturbations from adversarial images.

Patch Size ps. In our experiment, as shown in Table 15, the patch size ps (or patch area ps× ps) of
MAEP is a very important parameter in that it causes a large gap between different settings. Different
from ps = 14 or ps = 16 in ViT (Dosovitskiy et al., 2020) and MAE (He et al., 2022), the patch size
ps = 2 for MAEP should be small enough to get a considerable performance. The main reason is
that MAE needs a sufficient hard task to learn patch representations and the performance of class
prediction can be increased by finetuning the model for downstream tasks, but, different from MAE,
our MAEP needs to reconstruct an image with only the masked region.

Masking Ratio r. Unlike the approaches of requiring masking 75% of image patches in MAE
(He et al., 2022) and 15% of words in BERT (Kenton & Toutanova, 2019), it suffices for MAEP
to empirically employ a 50% patch masking strategy to enhance performance. We opt to reduce
the mask ratio r because reconstructing a 75% masked image is too challenging. On the contrary,
increasing the mask ratio beyond 15% can potentially augment model performance in auxiliary ways.

Further elaboration on these settings is shown in Table 15. We can see that MAEP degenerates into
DISCO with the purifier loss in Eq. (2) when masking ratio r = 0. The main difference between
DISCO and MAEP is the model structure and the performance difference can be seen from the column
with masking ratio r = 0. To be specific, when ps = 2 and r = 0, the average accuracy of MAEP
surpasses DISCO due to the MAE structure. Under ps = 2, as the masking ratio r increases, the
average accuracy of MAEP increases until r = 0.5 due to the masking mechanism. When r = 0.75,
the average accuracy of MAEP falls because of the hardness of image reconstruction.

Method Patch size r=0 r=0.25 r=0.50 r=0.75
(ps) Clean Robust Clean Robust Clean Robust Clean Robust

WRN28-10 - 94.78 0 - - - - - -
+ DISCO (Ho & Vasconcelos, 2022) - 89.26 85.33 - - - - - -
+ MAEP 2 90.49 86.80 93.10 84.40 92.30 88.73 92.70 78.70

4 90.95 84.90 90.83 85.10 92.10 80.20 92.80 62.55
8 90.86 63.99 91.77 60.31 92.68 55.75 91.61 67.00

Table 15: Performance of MAEP with different patch sizes (ps) and masking ratios (r) on CIFAR10
dataset under AutoAttack with ϵ∞ = 8/255.

11 SIMILARITY BETWEEN THE PURIFIED IMAGE AND ORIGINAL IMAGE

Both the PSNR and SSIM (Wang et al., 2004) metrics were used to measure the similarity between the
adversarial and purified adversarial images, denoted as “Adv_PSNR” and “Adv_SSIM,” respectively.
For benign (clean) images and their purified counterparts, they are denoted as “Clean_PSNR” and
“Clean_SSIM,” respectively. As shown in Tables 16 and 17, our method MAEP almost obtains
better purified (clean/adversarial) image quality in terms of PSNR and SSIM under the condition of
maintaining a higher clean and robust accuracy than the methods used for comparison. Fig. 3 shows
the visual results.

12 MORE RESULTS WITH ATTACK BUDGET ϵ2 = 0.5

In this section, we provide more results with ℓ2 attack of ϵ2 = 0.5, in comparison with ϵ∞ = 8/255,
in Table 18. The results of ScoreOpt-O attract our attention as ScoreOpt-N, an advanced version of
ScoreOpt-O, was demonstrated to exhibit better performance in the original paper (Zhang et al., 2023).
As can be seen from Table 16 to Table 18, ScoreOpt-N indeed achieves higher SSIM and PSNR
scores but ultimately leads to overall lower accuracy. Based on these observations, we conjecture the
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Defense Methods Clean_PSNR (↑) Robust_PSNR (↑) Avg. PSNR (↑) Attacks

DISCO (Ho & Vasconcelos, 2022) 33.5802 36.2641 34.922 AutoAttack (ϵ∞ = 8/255)
ScoreOpt-N (Zhang et al., 2023) 28.6164 29.0951 28.8557 AutoAttack (ϵ∞ = 8/255)
ScoreOpt-O (Zhang et al., 2023) 22.7722 23.1615 22.9668 AutoAttack (ϵ∞ = 8/255)

MAEP 34.2392 36.3695 35.3044 AutoAttack (ϵ∞ = 8/255)
DISCO (Ho & Vasconcelos, 2022) 33.5802 34.475 34.0278 AutoAttack (ϵ2 = 0.5)
ScoreOpt-N (Zhang et al., 2023) 28.6164 28.6639 28.6401 AutoAttack (ϵ2 = 0.5)
ScoreOpt-O (Zhang et al., 2023) 22.7722 22.9505 22.8614 AutoAttack (ϵ2 = 0.5)

MAEP 34.8307 34.2392 34.5349 AutoAttack (ϵ2 = 0.5)

Table 16: PSNR evaluation and comparison between our method and state-of-the-art methods.
Classifier: WRN-28-10. Testing dataset: CIFAR-10.

Defense Methods Clean_SSIM (↑) Robust_SSIM (↑) Avg. SSIM (↑) Attacks

DISCO (Ho & Vasconcelos, 2022) 0.9682 0.9834 0.9758 AutoAttack (ϵ∞ = 8/255)
ScoreOpt-N (Zhang et al., 2023) 0.8998 0.9062 0.9030 AutoAttack (ϵ∞ = 8/255)
ScoreOpt-O (Zhang et al., 2023) 0.7442 0.7581 0.7512 AutoAttack (ϵ∞ = 8/255)

MAEP 0.9723 0.9841 0.9782 AutoAttack (ϵ∞ = 8/255)
DISCO (Ho & Vasconcelos, 2022) 0.9682 0.9743 0.9712 AutoAttack (ϵ2 = 0.5)
ScoreOpt-N (Zhang et al., 2023) 0.8998 0.8999 0.8999 AutoAttack (ϵ2 = 0.5)
ScoreOpt-O (Zhang et al., 2023) 0.7442 0.7534 0.7488 AutoAttack (ϵ2 = 0.5)

MAEP 0.9764 0.9723 0.9744 AutoAttack (ϵ2 = 0.5)

Table 17: SSIM evaluation and comparison between our method and state-of-the-art methods.
Classifier: WRN-28-10. Testing dataset: CIFAR-10.

accuracy of ScoreOpt-O would be reduced if its resultant PSNR and SSIM are maintained to be as
high as those obtained in ScoreOpt-N and MAEP.

Model Clean Acc. (%) Robust Acc. (%) Avg. Acc. (%) Attacks

WRN-28-10 94.78 0 47.39 AutoAttack (ϵ∞ / ϵ2)
+ DISCO (Ho & Vasconcelos, 2022) 89.26 85.33 87.29 AutoAttack (ϵ∞ = 8/255)
+ DiffPure (Nie et al., 2022) 88.15±2.70 87.29±2.45 87.72±2.57 AutoAttack(ϵ∞ = 8/255)
+ ScoreOpt-N (Zhang et al., 2023) 91.31 81.79 86.55 AutoAttack(ϵ∞ = 8/255)
+ ScoreOpt-O (Zhang et al., 2023) 89.18 89.01 89.09 AutoAttack(ϵ∞ = 8/255)
+ MAEP 92.30 88.73 90.52 AutoAttack(ϵ∞ = 8/255)
+ DISCO (Ho & Vasconcelos, 2022) 89.26 88.53 88.89 AutoAttack (ϵ2 = 0.5)
+ DiffPure* (Nie et al., 2022) - 90.37±0.24 -
+ ScoreOpt-N (Zhang et al., 2023) 89.98 89.11 89.54 AutoAttack (ϵ2 = 0.5)
+ ScoreOpt-O (Zhang et al., 2023) 92.61 92.19 92.40 AutoAttack (ϵ2 = 0.5)
+ MAEP 92.13 91.04 91.58 AutoAttack (ϵ2 = 0.5)

Table 18: Robustness evaluation and comparison between our method and state-of-the-art methods.
sterisk (*) indicates that the results were excerpted from the papers. Classifier: WRN-28-10. Testing
dataset: CIFAR-10.
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Figure 3: Comparison of clean images (left), adversarial images (middle), and purified images (right)
by MAEP under AutoAttack. The MAEP is trained on CIFAR10 and directly tested on ImageNet
without any finetuning. 18


