
Under review as a conference paper at ICLR 2022

A APPENDIX

A.1 FULL DERIVATIVES OF THE BP ALGORITHM

We start from backpropagating the error signal from the PSC - a to the spike train - s. A causal
impulse response only has value when t > 0 as the ε in (6). So the partial derivative of a neuron’s
output spike train on time t is the integration on the derivative of all future error with t′ > t, which
can be expressed by:
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where T is the length of a simulation time window, and ε̃(t) = ε(−t) is the time-reverse impulse
response kernel of the synapse.

In Figure 4, we draw the full dependency in both (a) - forward and (b) - backward propagation under
infinitesimal discrete time steps dt. Under which, the gradient on u can be described by:
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which does not have a closed form solution for two reasons:

• The derivative ∂s(l)i (t)/∂u
(l)
i (t) is zero when u(l)i (t) 6= ϑ, and is∞ when u(l)i (t) = ϑ, which is ill

defined.

• The complex temporal dependency of u(l)i (t) and u(l)i (t+ dt) brings difficulty for calculation.

Following previous works (# cite): by introducing surrogate gradient as a substitution for
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i (t), we approx the first term in (24) as:
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The other term in (24) describes the temporal dependency of the u. Define a membrane potential’s
impulse response kernel function ζ(t) as: ζ(t) = 1

τm
e(−t/τm)H(t)

By ignoring part of the dependency, as shown by the gray colored dash lines in Figure 4 (b), and
applying the same trick as in (23), we have:
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where ζ̃(t) = ζ(−t) is the time-reverse impulse response kernel of the membrane potential.
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Figure 4: (a) Full forward dependency between u, s, and a in the discrete simulation. (b) Full
backward dependency in the discrete simulation. The dashed lines are usually been omitted when
doing backpropagation. (c) BP’s kernel functions with different time constants
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Then the final step is to propagate the gradient from u
(l)
i to w(l)

ij according to (1):
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where e(l)i (t) = (g
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i ))(t), and κBP(t) = (ε ∗ ε ∗ ζ)(t). We show the shape of κBPin Figure

4 (c), and calculate its close form expression as:
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We then provide the rules to further propagate the gradient to previous layers (take layer (l − 1) as
an example). Following (1), we have:
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BP in hidden layers also following the similar steps: from g
(l−1)
j to ∂L/∂u(l−1)j following (26), and

further propagating to weights following (27).

A.2 DETAILED EXPERIMENTAL SETUPS

A.2.1 UNIVERSAL SPIKE TRAIN APPROXIMATOR

This section concludes all settings used in the 2-layers SNN experiment. All parameters used are
summarized in Table 2.

Table 2: Parameters of the 2-layers network.
NT τm τs #inputs #hidden pin A+

500ms 50ms 20ms 50 100 0.05 0.00004
τ+ A− vrest ϑ #iters scale bias

30ms 0 0 1 5000 0.3 0.01

The total simulation time Nt is 500ms. τm and τs are the time constants in (1) and (4). The total
number of randomly generated inputs is 50. The number of hidden pyramidal cells is 100.

We sample the total 500ms by 1ms when doing this experiment, which means there are 500 time
steps totally. As shown in Figure 5, the randomly generated input currents are produced by a two-
steps process.
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Figure 5: Visualization of all 50 input currents, the network architecture, and the process to generate
the target output current
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The first step is to generate spike trains s(t) following Bernoulli distribution on each time step with
probability pin = 0.05. Then the input currents are defined using F-type synapses a(t) = s(t) ∗ ε as
in (6).

A+, τ+, and A− are parameters of our STDP function. vrest and ϑ are fixed to 0 and 1 in
all experiment of our work. All weights are initialized by a scaled Gaussian distribution w ∼
(scale×N(0, 1) + bias).

The output target signal is defined by a sinusoidal probability function ptarget(t) = 0.3 +
−0.3cos(0.03t), and ptarget(t) is converted to spike trains starget(t) following the Bernoulli dis-
tribution on each time step, further, starget(t) is converted to continuous currents following a(t) =
s(t) ∗ ε. The reason we do such conversion is to guarantee that the single output neuron is possible
to fit the target output signal perfectly.

A.2.2 MNIST

The experiment runs on a single RTX-3090 GPU. The MNIST dataset (LeCun, 1998) has 60,000
training images and 10,000 testing images. The training parameters are: batch size = 64, number of
training epochs = 200, and learning rate = 0.0005 for the adopted AdamW optimizer (Loshchilov &
Hutter, 2017). The images were converted to continuous-valued multi-channel currents. Moreover,
data augmentations including RandomCrop and RandomRotation were applied to improve perfor-
mance (Shorten & Khoshgoftaar, 2019).

A.2.3 CIFAR10

The experiment runs on a single RTX-3090 GPU. The CIFAR10 dataset (Krizhevsky et al., 2009)
has 50,000 training images and 10,000 test images. We trained our SNN using NA for 1200 epochs
with a batch size of 50 and a learning rate 0.0005 for the AdamW optimizer (Loshchilov & Hutter,
2017). The same input image coding strategy as the MNIST dataset was adopted. Moreover, data
augmentations including RandomCrop, ColorJitter, and RandomHorizontalFlip (Shorten & Khosh-
goftaar, 2019) were applied. The convolutional layers were initialized using the kaiming uniform
initializer (He et al., 2015), and the linear layers were initialized using the kaiming normal initializer
(He et al., 2015).

A.3 ARCHITECTURE ILLUSTRATION

We provide more figures to illustrate our proposed microcircuit architectures. Figure 6 (a) is an-
other example of our spiking neural networks’ architecture: Two types of cells, Pyramidal cells and
Somatostatin (SOM) cells, are needed to realize the forward propagation and the local synaptic plas-
ticity. This example three layers fully-connected (FC) neural network has 2-3-2 pyramidal cells in
each layer. The input current signals are from four photoreceptor cells in this example simulating a
vision related learning task.

(b) to (d) are the disassembled explanation of all synaptic connections. Each neuron has been in-
dexed by its layer and the footnoted position in its layer. The pyramidal cells and SOM cells are
one-on-one in each layer except for the 1st layer, where no SOM cells are needed.

• (b) The connections in this sub-Figure (green colored solid arrows) are all feed-forward connec-
tions as the same as the weight connections in the more conventional non-spiking artificial neural
networks (ANNs).

• (c) The output currents of the pyramidal cells in a layer are connected to the SOM cells in the
next layer (orange colored solid arrows). The SOM cells use these signals to predict the firing
activity of pyramidal cells in the next layer, so we name these connections as predict connections,
and use the footnote p to represent all of the predict-related parameters. The adjustment of these
predict connections requires all SOM cells to receive the one-to-one teaching current signal from
each SOM cell’s corresponding pyramidal cell (purple colored dashed arrows).

• (d) The top-down feed backward signals (red colored solid arrows), carrying the superposition of
output current from the next layer and error information, are connected to the apical dendrites of
previous layer’s pyramidal cells. The next layer’s output current signals should be canceled out by
the local predicting signals that the next layer’s SOM cells provided (blue colored dashed arrows),

15



Under review as a conference paper at ICLR 2022

-

-
-

-

-

𝑤!!"
(!)

21p

22p

23p

12

11

21

22

23

31p

31

32

32p

E
E

-
-

-
-

-
-

-
-

-
-

- -

𝑤"!"
(!)

𝑤"!!"
(!)

21p

22p

23p

12

11

21

22

23

31p

31

32

32p

Teaching 
Current

One-to-one
Teaching Current

𝑤!"
(!)

21p

22p

23p

12

11

21

22

23
32p

31p

31

32

Somatostatin (SST) interneurons

E
E

Pyramidal cells

Outputs

Photoreceptor cells
(a) An example three layers fully-connected SNN (b) The forward connections

(c) The predict connections, and its teaching signals (d) The local error connections

-

Figure 6: Our proposed Microcircuit architecture.

which will leave only error signals on the pyramidal cells’ apical dendrites. Since these two types
of connections together generate pyramidal cells’ error information, we use the footnote e to mark
all the error related variables. Importantly, the output layer’s pyramidal cells needs additional error
signals ei = atargeti −ai connected to its apical dendrites. Such error signals may come from higher
to lower brain areas (Leinweber et al., 2017).
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Figure 7: Our proposed Microcircuit architecture.

Figure 7 zoomed into one pair of Pyramidal-SOM cells, which has three input pyramidal cells from
its previous layer, and forward connected to two pairs of Pyramidal-SOM cells in its next layer.
Cells in a same layer are indexed, which is used to indicate synapses connections.
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