
A Dataset

In this work, we emphasize that data collected from prior experience in unrelated environments can
be a rich source of supervision, even if the interactions in the dataset are suboptimal. To demonstrate
this, we curate a dataset of over 5000 self-supervised trajectories collected over 9 distinct real-
world environments. These trajectories capture the interaction of the robot in diverse environments,
including phenomena like collisions with obstacles and walls, getting stuck in the mud or pits, or
flipping due to bumpy terrain. The dataset contains measurements from a wide range of sensors
including a pair of stereo RGB cameras, thermal camera, 2D LiDAR, GPS and IMU to support
offline evaluation using an alternative suite of sensors. While a lot of these sensor measurements
can be noisy and unreliable, we believe that learning-based techniques coupled with multimodal
sensor fusion can provide a lot of benefits in the real-world. This dataset was collected over a span
of 18 months, including parts collected by Kahn et al. [56] and Shah et al. [11] for earlier research
projects, and exhibits significant variation in appearance due to seasonal and lighting changes.

This dataset is available for download at sites.google.com/view/recon-robot/dataset,
along with helper scripts to load and visualize the trajectories.

(a) Junkyard (b) Fire Station (c) Warehouse

(d) Cafeteria (e) Parking Lot 1 (f) Forest Cabin

(g) Farmlands (h) Parking Lot 2 (i) Residential

Figure 7: We collect data in 9 diverse environments. Example trajectories are shown in cyan.

A.1 Self-Supervised Data Collection and Labeling

We design the data collection methodology to enable gathering large amounts of diverse data with
minimal human intervention. Due to the high cost of gathering data with real-world robotic systems,
we choose to use an off-policy learning algorithm in order to be able to gather data using any control
policy and train on all of the gathered data. To ensure that the control policy achieves sufficient
coverage of the environment while also ensuring that the action sequences executed by the robot

12



Figure 8: Exploring and learning to reach goals: (left) Amount of time needed for each method to search for
the goals in a new environment (↓ is better; hashed out bars represent failure). (right) Amount of time needed
to reach the goal a second time, after reaching the goal once and constructing the map, in seconds (↓ is better).

are realistic, we use a time-correlated random walk to gather data. A naı̈ve uniform random control
policy is inadequate because the robot will primarily drive straight due to the linear and angular
velocity action interface of the robot, which will result in both insufficient exploration and unrealistic
test time action sequences.

During data collection using the random control policy, the robot requires a mechanism to detect if
it is in collision or stuck, and an automated controller to reset itself in order to continue gathering
data. We detect collisions in one of two ways, either using the LIDAR to detect when an obstacle is
near or the IMU to detect when the robot is stuck due to an obstacle or uneven terrain. We program
an automated backup maneuver that drives the robot out of collision (whenever possible) so it can
initiate a new trajectory.

We also use these collision detectors as a weak source of supervision by generating event la-
bels for the collected trajectories, giving us a self-supervised relabeling pipeline as proposed in
BADGR [56]. We consider three different events: collision, bumpiness, and position. A collision
event is detected the LIDAR measures an obstacle to be close or, in off-road environments, when the
IMU detects a sudden drop in linear acceleration (jerk) and angular velocity magnitudes. A bumpi-
ness event is calculated as occurring when the angular velocity magnitudes measured by the IMU
are above a certain threshold. The position is determined by an onboard state estimator that fuses
wheel odometry and the IMU to form a local position estimate. Note that all experiments reported
in this paper only use the collision labels; these labels are used to dissect the random walks into
smooth trajectories that end in collision.

13



A.2 Environments

To learn general navigational affordances across a wide range of environments, we curate over 40
hours of trajectories in 9 diverse open-world environments of varying complexity (see Figure 7).

Figure 8 shows the exploration and navigation performance of RECON and the baselines (see Sec. 5
for details) on the individual environments. As the environment complexity increases, most methods
are not able to explore the environment efficiently to discover the goal. For videos of our system
exploring these environments, please check out the supplemental video submission.

B Reproducibility

B.1 Algorithmic Components

The SubgoalNavigate function rolls out the learned policy for a fixed time horizon H to navi-
gate to the desired subgoal latent zwt , by querying the decoder qθ(at, dt|zwt , oτ ) in an open loop
manner. The endpoint of such a rollout is used to update the visitation counts v in the graph G
using the AssociateToVertex subroutine. To nudge the robot to the frontier, we use a heuristic
LeastExploredNeighbor routine that uses the visitation counts of the neighbors to identify unex-
plored areas in the local neighborhood. At the end of each trajectory, the ExpandGraph subroutine
is used to update the edge and node sets {E ,V} of the graph G to update the non-parametric repre-
sentation of the environment. Pseudocode for these subroutines are given in Alg. 3.

Algorithm 3 Pseudocode for subroutines referenced in the exploration algorithm shown in Alg. 1

1: function SubgoalNavigate(zwt ;H)
2: trajectory ← ()
3: for t ∈ [1, . . . , H] do
4: trajectory.append((ot, at, t))
5: at, d

g
t ∼ qθ(at, dt | zwt , oτ ) � Sample action

6: ot ← Env.step(at) � Execute action

7: vH ← AssociateToVertex(G, oH)
8: vH .count ← vH .count + 1
9: Dw ← ((ot, oH , at, H − t) for (ot, at, t) ∈ trajectory)

10: return Dw, oH

1: function AssociateToVertex(G = (V, E), ot)
2: d ← sort((d̄vt , v) for v ∈ V) � Predict distances
3: v, d ← d[0] � Associate ot with nearest vertex
4: return v

1: function LeastExploredNeighbor(G = (V , E), ot, δ2)
2: v ← AssociateToVertex(G, ot)
3: Vn ← {v� : E(v, v�) < δ2, v

� ∈ V} � Retrieve neighbors
4: c ← sort((v�.count, v�.o) for v� ∈ Vn)
5: vc, oc ← c[0] � Retrieve neighbor with smallest count
6: return oc

1: procedure ExpandGraph(G = (V , E), ot)
2: vt ← Node(count = 1, o = ot) � Create node for ot
3: E ← E ∪ {(vt, vg) : d̄gt , g ∈ V} � Add edges
4: V ← V ∪ {vt} � Add vertex

B.2 Implementation Details

Hyperparam. Value Meaning

δ1 4 Threshold of identification
δ2 15 Threshold of neighbors
� 10−2 Exploration threshold on prior
β 1.0 Model complexity
γ 10 Epochs to finetune model
H 5 seconds Horizon to navigate to subgoal

Table 3: Hyperparameters used in our experiments.

Inputs to the encoder pφ are pairs
of observations of the environment
– current and goal – represented by
a stack of two RGB images ob-
tained from the onboard camera at
a resolution of 160 × 120 pixels.

14



pφ is implemented by a MobileNet
encoder [61] followed by a fully-
connected layer projecting the 1024-
dimensional latents to a stochas-
tic, context-conditioned representa-
tion zgt of the goal that uses 64-dimensions each to represent the mean and diagonal covariance
of a Gaussian distribution. Inputs to the decoder qθ are the context (current observation) – processed
with another MobileNet – and zgt . We use the reparametrization trick [62] to sample from the latent
and use the concatenated encodings to learn the optimal actions agt and distances dgt . Details of our
network architecture are provided in Table 4. During pretraining, we maximize Eq. 2 with a batch
size of 128 and perform gradient updates using the Adam optimizer with learning rate λ = 10−4

until convergence. We provide the hyperparameters associated with our algorithms in Table 3.

Layer Input [Dimensions] Output [Dimensions] Layer Details

Encoder pφ(z | ot, og) = N (·;µp,Σp)

1 ot, og [3, 160, 120] Igt [6, 160, 120] Concatenate along channel dimensio.
2 Igt [6, 160, 120] Eg

t [1024] MobileNet Encoder [61]
3 Eg

t [1024] µp [64], σp [64] Fully-Connected Layer, exp activation of σp

4 σp [64] Σp [64, 64] torch.diag(σp)

Decoder qθ(a, d | ot, zgt ) = N (·;µq,Σq)

1 ot [3, 160, 120] Et [1024] MobileNet Encoder [61]
2 Et [1024], zgt [64] F = Et ⊕ zgt [1088] Concatenate image and goal representation
3 F [1088] µq [3], σq [3] Fully-Connected Layer, exp activation of σq

4 σq [3] Σq [3, 3] torch.diag(σq)
5 µq [3] āg

t [2], d̄
g
t [1] Split into actions and distances.

Table 4: Architectural Details of RECON: The inputs to the model are RGB images ot ∈ [0, 1]3×160×120

and og ∈ [0, 1]3×160×120, representing the current and goal image.

C Supplemental Video

For more results and videos of our system deployed in unstructured, outdoor environments in the
real-world, please check out the supplemental video submission.

15


