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This supplementary file provides additional ablation analysis of our design components (Sec. 5)
and weight of various loss terms (Appendix C), content and feature visualization(Appendix B), im-
plementation details (Appendix D), Evaluation Metric (Appendix E), cross-style and homo-style
interpolation results (Appendix G), user study introduction (Appendix F) and failure cases (Ap-
pendix H).

Video. We also provide several supplementary videos, which contains dynamic animations of our
stylization results, visual comparisons, interpolation, stylized text2motion and failure cases. We
strongly encourage our audience to watch these videos. It will be much helpful to understand
our work. The videos are submitted along with supplementary files, or accessible online (1080P):
https://drive.google.com/drive/folders/1UeGuE1qCceLFQJa3vpYoOHC2MoLdBifK?usp=sharing

Code and Model. The code of our approach and implemented baselines are also submitted for
reference. Code and trained model will be publicly available upon acceptance.

A ABLATION ANALYSIS

S / U Method (Aberman et al., 2020) (Xia et al., 2015)
Style Acc" Style FID # Geo Dis# Style Acc" Content Acc" Content FID# Geo Dis #

S Ours (A) 0.945±007 0.020±002
0.344

±002
0.926

±008
0.674

±011
0.189

±005
0.680

±002

w/o latent 0.932±008 0.022±002 0.463±003 0.851±012 0.654±012 0.258±007 0.707±003

w/o prob-style 0.913±007 0.022±002 0.509±004 0.870±010 0.524±015 0.249±008 0.767±004

w/o homo-style 0.883±012 0.032±004 0.507±003 0.851±012 0.537±016 0.232±006 0.760±004

w/o autoencoding 0.900±010 0.026±002 0.427±003 0.879±010 0.634±011 0.198±005 0.720±004

w/o cycle-recon 0.917±009 0.021±002 0.385±003 0.872±006 0.627±011 0.208±004 0.699±002

U Ours (A) 0.804±011 0.040±003
0.441

±003 0.814±011 0.588±010 0.217±006 0.735±003

w/o latent 0.780±014 0.048±003 0.466±004 0.734±014 0.584±011 0.272±008 0.721±003

w/o prob-style 0.734±018 0.058±004 0.461±003 0.666±016 0.597±015 0.270±010 0.718±003

w/o homo-style 0.753±016 0.050±002 0.513±003 0.730±009 0.526±013 0.250±005 0.803±002

w/o autoencoding 0.777±012 0.049±004 0.493±004 0.811±011 0.491±015 0.230±007 0.759±005

w/o cycle-recon 0.765±011 0.043±004 0.560±005 0.756±017 0.479±013 0.233±007 0.869±002

Table 6: Ablation study on different components of our model design. ± indicates 95% confidence interval.
Bold face indicates the best result, while underscore refers to the second best. (S) and (U) denote supervised and
unsupervised setting. Motion-based stylization is presented for both settings. Prob-style refers to probabilistic
style space.

Table 6 presents the results of ablation experiments investigating various components of our latent
stylization models. These components include stylization on the latent space (latent), the use of a
probabilistic style space (prob-style), homo-style alignment (homo-style), autoencoding, and cycle
reconstruction. The experiments are conducted within the framework of Ours (A) and are focused
on the task of motion-based stylization. Results are reported on two datasets (Aberman et al., 2020)
and (Xia et al., 2015). It’s important to note that the dataset of (Xia et al., 2015) is exclusively used
for testing the generalization ability of our models and has not been used during training.

Overall, we observe a notable performance improvement by incorporating different modules into
our framework. For instance, our key designs—latent stylization and the use of a probabilistic style
space—significantly enhance performance on the unseen (Xia et al., 2015) dataset, resulting in a
7% increase in stylization accuracy in the supervised setting. Additionally, homo-style alignment,
despite its simplicity, provides a substantial performance boost across all metrics. Notably, content
accuracy sees a remarkable improvement of 13% and 6% in supervised and unsupervised settings,
respectively, underscoring the effectiveness of homo-style alignment in preserving semantic infor-
mation.

In the subsequent sections, we delve into a detailed discussion of three other critical choices in
our model architecture and learning scheme: probabilistic (or deterministic) space for content and
style features, separate (or end-to-end) training of latent extractor and stylization model, and the
incorporation of a global motion predictor.
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Content Space Style Space (Aberman et al., 2020) (Xia et al., 2015)
Style Acc" Style FID # Geo Dis# Style Acc" Content Acc" Content FID# Geo Dis #

D D 0.913±007 0.022±002 0.509±004 0.870±010 0.524±015 0.249±008 0.767±004

D P 0.945±007 0.020±002
0.344

±002
0.926

±008
0.674

±011
0.189

±005
0.680

±002

P P 0.947±001 0.017±001 0.489±003 0.891±003 0.417±012 0.322±011 0.758±003

Table 7: Ablation study on the choice of probabilistic (P) or deterministic (D) space for content and style, in
supervised setting. ± indicates 95% confidence interval. Bold face indicates the best result, while underscore
refers to the second best. Motion-based stylization is presented.

Probabilistic Modeling of Style and Content Spaces. Table 7 presents a comparison between de-
terministic and probabilistic modeling approaches for both style and content spaces. In our study, the
introduction of a probabilistic style space not only provides remarkable flexibility during inference,
enabling diverse stylization and multiple applications, but it also consistently enhances performance
and generalization capabilities. An intriguing aspect to explore is the impact of modeling the content
space non-deterministically. As highlighted in Tab. 7, we observe that a probabilistic content space
achieves superior stylization accuracy on in-domain datasets (Aberman et al., 2020). However, it
exhibits sub-optimal generalization performance on out-domain cases (Xia et al., 2015).

Training Strategy (Aberman et al., 2020) (Xia et al., 2015)
Style Acc" Style FID # Geo Dis# Style Acc" Content Acc" Content FID# Geo Dis #

Separately 0.945±007 0.020±002
0.344

±002
0.926

±008
0.674

±011
0.189

±005
0.680

±002

End-to-end 0.125±010 1.521±024 0.577±001 0.174±014 0.293±002 1.417±009 0.700±001

Table 8: Ablation study on separately or end-to-end training the latent model and stylization model, in
supervised setting. ± indicates 95% confidence interval. Bold face indicates the best result, while underscore
refers to the second best. (S) and (U) denote supervised and unsupervised setting. Motion-based stylization is
presented.

Separate / End-to-end Training. Our two-stage framework can alternatively be trained in an end-
to-end fashion. We also conduct ablation analysis to evaluate the impact of such choice of training
strategy. The results are presented in Table 8. In practice, we observed that end-to-end training
posed significant challenges. The model struggled to simultaneously learn meaningful latent motion
representation and effectively transfer style traits between stages. Experimental results align with
this observation, revealing that stylization accuracy is merely around 15% on both datasets in the
end-to-end training scenario, in contrast to the accuracy of 92% achieved by stage-by-stage training.

Method (Aberman et al., 2020) CMU Mocap (CMU) (Xia et al., 2015)
Style Acc" Foot Skating# Style Acc" Foot Skating# Style Acc" Foot Skating#

Ours (S) 0.945±007 0.130±001 0.918±007 0.140±001 0.926±008 0.263±003

Ours w/o GMP (S) 0.942±003 0.141±001 0.920±006 0.160±001 0.882±008 0.331±002

Ours (U) 0.840±010 0.102±001 0.828±010 0.099±001 0.860±010 0.179±002

Ours w/o GMP (U) 0.817±013 0.116±001 0.820±009 0.122±001 0.777±018 0.307±002

Table 9: Ablation study on global motion prediction (GMP, see Sec. 3.2.3). The symbol ± indicates the
95% confidence interval. Bold indicates the best result. (S) and (U) denote supervised and unsupervised
settings, respectively. Results of motion-based stylization are presented. Foot skating is measured by the
average velocity of foot joints on the XZ-plane during foot contact.

Global Motion Prediction (GMP). The primary objective of our global motion prediction is to
facilitate adaptive pacing for diverse motion contents and styles. As illustrated in Tab. 10, we quan-
tify the mean square error of GMP in predicting root positions across three test sets, measured in
millimeters. Notably, even on the previously unseen dataset Xia et al. (2015), the lightweight GMP
performs admirably, with an error of 57.7 mm.

To assess the impact of GMP on stylization performance, we compare against a contrast setting
(Ours w/o GMP), where global motions are directly obtained from the source content input, akin to
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(Aberman et al., 2020) CMU Mocap (CMU) (Xia et al., 2015)

46.2 48.7 57.7

Table 10: Mean Square Error of Root Position Prediction. The metric is measured in millimeters. Note the
dataset of (Xia et al., 2015) is untouched during the training of the global motion predictor.

previous approaches. Additionally, we introduce a foot skating metric to gauge foot sliding artifacts,
calculated by the average velocity of foot joints on the XZ-plane during foot contact.Table 9 show-
cases motion-based results on (Aberman et al., 2020; CMU; Xia et al., 2015) test sets. Across all
comparisons, our proposed GMP effectively mitigates foot skating issues. Although 2-dimensional
global motion features constitute only a small fraction of the entire 260-dimensional pose vectors,
it makes considerable difference on the dataset of (Xia et al., 2015), improving the stylization ac-
curacy by around 9%. In our 3rd and 4th supplementary videos, we also illustrate how our GMP
enables adaptive pacing in different stylization outcomes (label-based and motion-based) for the
same content.

B FEATURE VISUALIZATION

(a) Content Codes Colored by Content Label (left), and Style Label (right). (b) Style Codes Colored by Style Label.

Figure 8: Latent Visualization. Panel (a) displays the projection of the identical set of content codes onto a
2D space using t-SNE, colored according to content labels (left) and style labels (right). This visualization sug-
gests that content codes faithfully capture content traits, while style information has been effectively removed.
In panel (b), style codes are projected onto a 2D space using t-SNE and colored by their corresponding style
labels. Notably, clear style clusters emerge unsupervisedly, aligning with style labels.

Given that our content encoder accommodates motions of arbitrary length, we extract content codes
from the Xia et al. (2015) dataset. This dataset, unseen by our models, provides annotations for both
style and content labels. Notably, the motions in this dataset are usually short, typically within 3s,
which is insufficient to our style encoder. Therefore, for style codes, we takes the motions from
dataset (Aberman et al., 2020) for visualization. The models are learned in unsupervised setting,
using VAE as latent model.

Content Code Visualization. Figure 8 (a) visually presents 2D projections of our content codes.
The content codes are colored by their content labels on the left and by their style labels on the
right. To generate these projections, the temporal content codes are aggregated along the tempo-
ral dimension and then mapped to 2D space using t-SNE. When the content codes are colored by
content label (e.g., walking, kicking), distinct clusters aligned with the corresponding labels become
apparent. However, when the same set of content codes is colored by their style label, these labels
are evenly distributed within these clusters. This observation suggests that the content code adeptly
captures the characteristics of various contents while effectively erasing style information.

Style Code Visualization. Figure 8 (b) visualizes the style codes in a 2D space, color-coded by
their style labels. Notably, these style labels were never used during model training. In contrast to
the content code visualization in Fig. 8 (a), the projected style codes exhibit a strong connection
with the external style label annotations. This observation underscores the effectiveness of our style
encoder in extracting style features from the motion corpus.
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C LOSS WEIGHT ANALYSIS

Tab. 11 presents more quantitative results of our models on (Aberman et al., 2020) and (Xia et al.,
2015) test sets. Specifically, we provide the ablation evaluations in both supervised (S) and unsuper-
vised setting (U). For supervised setting, we conduct experiments on label-based stylization which
also compares the diversity; and for unsupervised setting we adopt motion-based stylization. Note
the base models are not necessarily our final models, here they are set only for reference.

S / U �cyc �kl �hsa
(Aberman et al., 2020) (Xia et al., 2015)

Style Acc" Geo Dis# Div" Style Acc" Content Acc" Content FID#
S (base) 0.1 0.01 0.1 0.937±008 0.415±003 0.153±016 0.913±008 0.669±013 0.202±006

0.5 0.936±008 0.369±003 0.091±011 0.924±007 0.706±010 0.197±007

0.001 0.962±006 0.429±004 0.125±016 0.933±009 0.619±014 0.197±005

0.1 0.940±008 0.414±004 0.141±015 0.914±009 0.634±013 0.209±005

0.01 0.955±006 0.419±003 0.107±011 0.957±007 0.609±011 0.207±006

1 0.880±011 0.423±003 0.302±026 0.833±011 0.625±013 0.236±006

U (base) 1 0.01 0.1 0.804±011 0.441±003 - 0.814±014 0.588±010 0.217±006

0.01 0.790±015 0.489±004 - 0.761±012 0.567±016 0.224±007

0.1 0.659±018 0.430±004 - 0.701±014 0.619±013 0.190±005

0.01 0.669±013 0.388±003 - 0.671±015 0.641±012 0.206±006

0.1 0.739±015 0.420±004 - 0.762±016 0.619±014 0.214±007

Table 11: Effect of hyper-parameters of ours (A) on the (Aberman et al., 2020) and (Xia et al., 2015) test
sets. ± indicates 95% confidence interval. Bold face indicates the best result, while underscore refers to the
second best. (S) and (U) denote supervised and unsupervised setting. For (S), we present results of label-based
stylization; and for (U), we present motion-based stylization.

Effect of �hsa. Homo-style alignment ensures the style space of the sub-clips from one motion se-
quence to be close to each other; it is an important self-supervised signal in our approach. Increasing
the weight of homo-style commonly helps style modeling (style accuracy) and content preservation
(content accuracy, FID), which however also comes with lower diversity. A common observation is
that the performance on style and content always contradicts with the diversity. It could be possibly
attributed to the inherently limited diversity in our training dataset (Aberman et al., 2020), which is
collected by one person performing several styles.

Effect of �kl. �kl weighs how much the overall style space aligns with the prior distribution
N (0, I). Smaller �kl usually increases the capacity of the model exploiting styles, which on the
other hand deteriorate the performance on content maintenance and diversity.

Effect of �cyc. Cycle reconstruction constraint plays an important role in unsupervised setting.
In supervised setting, strong cycle reconstruction constraint is detrimental to style modeling. In
contrast, while learning unsupervisedly, strengthening the cycle constraint enhances the performance
on style transferring, and at the same time compromises the preservation of content.

�l1 �sms
(Aberman et al., 2020) (Xia et al., 2015)

MPJPE (Recon)# Style Acc" Style FID# MPJPE (Recon)# Style Acc" Content Acc" Content FID#
0.001 0.001 39.4 0.945±007 0.020±002

62.5 0.926±008 0.674±011 0.189±005

0.1 0.1 360.1 0.862±010 0.041±004 431.8 0.804±011 0.589±012 0.276±007

0.01 0.01 180.4 0.873±010 0.041±004 250.5 0.830±009 0.656±012 0.244±007

0.0001 0.0001 77.6 0.857±010 0.042±003 130.9 0.901±011 0.661±013 0.239±007

Table 12: Effect of hyper-parameters of autoencoder on the (Aberman et al., 2020) and (Xia et al., 2015) test
sets. ± indicates 95% confidence interval. Bold face indicates the best result, while underscore refers to the
second best. Results of motion-based stylization in supervised setting are presented. MPJPE is measured in
millimeter.

Effect of Autoencoder Hyper-Parameters. In Tab. 12, we investigate the impact of autoen-
coder hyper-parameters (�l1 and �sms) on both motion reconstruction and stylization performance.
Specifically, �l1 encourages sparsity in latent features, while �sms enforces the smoothness of
temporal features. Through experimentation, we identify an optimal set of hyper-parameters with
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�l1 = 0.001 and �sms = 0.001, which yields optimal performance in both reconstruction and styl-
ization tasks. Notably, imposing excessive penalties on smoothness and sparsity proves detrimental
to the model’s capabilities, resulting in lower reconstruction quality. Additionally, we observe a
substantial correlation between reconstruction and stylization performance, indicating that better
reconstruction often translates to improved stylization.

D IMPLEMENTATION DETAILS

Our models are implemented by Pytorch. Motion encoder E and decoder D consists of 2 1-D convo-
lution layers; global motion regressor is a 3-layer 1D convolution network. The content encoder Ec

and style encoder Es are also downsampling convolutional networks, where style encoder contains
a average pooling layer before the output dense layer. The spatial dimensions of content and style
code are both 512. Detailed model architecture is provided in Figs. 9 and 10. The values of �l

kld, �l1

and �sms are all set to 0.001, and dimension Dz of z is 512. During training our latent stylization
network, the value of �hsa, �cyc and �kl are (1, 0.1, 0.1) and (0.1, 1, 0.01) in supervised setting and
unsupervised setting, respectively.

D.1 MODEL STRUCTURE

The detailed architectures of our motion latent auto-encoder and motion latent stylization model
are illustrated in Figure 9 and Figure 10 respectively, where ”w/o N”, ”IN” and ”AdaIN” re-
fer to without-Normalization, Instance Normalization and Adaptive Instance Normalization oper-
ations (Huang & Belongie, 2017). Dropout and Activation layer are omitted for simplicity.

D.2 DATA PROCESSING

We mostly adopt the pose processing procedure in (Guo et al., 2022a). In short, a single pose is
represented by a tuple of root angular velocity, root linear velocity, root height, local joint positions,
velocities, 6D rotations (Zhou et al., 2019) and foot contact labels, resulting in 260-D pose represen-
tation. Meanwhile, all data is downsampled to 30 FPS, augmented by mirroring, and applied with
Z-nomalization.
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Figure 9: Detailed architecture of our VAE based motion latent model. The AE based latent model
keeps only one convolution branch before the latent space. All convolutions, except the last layer of
encoder, decoder and generator, use kernel size of 3.

D.3 BASELINE IMPLEMENTATION

For a fair comparison, we adapt the baseline models with minimal changes from their official imple-
mentations, training them on the same data splits. More specifically, without violating their design
of input representation and networks, all the re-implemented baseline methods strictly load the same
preprocessed data for training.

(Aberman et al., 2020). Due to the intentional dual representations for style and content inputs in
(Aberman et al., 2020), we make some modifications in the dataloader. We first recover the raw 21-
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Figure 10: Detailed architecture of our motion latent stylization model in supervised setting. In
unsupervised setting, the style label input is dropped. All convolutions, except the last layer of
encoders and generator, use kernel size of 3.

joints structural motion data from the preprocessed data, and convert them into 84-D rotation-based
content feature along with 4-D global motion, and 63-D position-based style feature, using their
motion parsing function. In addition, we modified the channels of network input/output layers to fit
the adapted data. Since our experiments solely consider style from 3-D motions, we disable the 2-D
branch as well as the related loss functions. However, we suffer from extremely unstable training
process and poor results using the same hyper-parameters. It may result from the length extension
of motion sequence (now 160 vs original 32) and inherent flaws of GANs (Zhu et al., 2017; Karras
et al., 2019). Thus, empirically, we lower the coefficient for adversarial loss ↵adv from 1 to 0.5, and
update the frequency of discriminator training from 1 per-iteration to 0.2 per-iteration.

Figure 11: User study interface on Amazon Mechanical Turk.

(Park et al., 2021). We extract 63-D joint position feature and 126-D joint rotation feature from
our preprocessed data, catering for the designated dataloader in (Park et al., 2021). Meanwhile,
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we replace the original 4-D quaternion with the equally functional 6-D rotation (Zhou et al., 2019)
without any loss of capability. Their model design is limited to fixed motion length, due to the un-
scalable linear layer. Therefore, during evaluation on (Xia et al., 2015) test set, we duplicate the
sequence to meet the 160-length setting and then extract the corresponding result from the output.

(Jang et al., 2022) takes the motion representation building from per-joint’s 6-D position-based fea-
ture (i.e. position, velocity) and 6-D rotation-based feature (i.e. upward direction, forward direction)
which is almost coherent with our preprocessed data. Thus, we directly re-organize our data to serve
the baseline (Jang et al., 2022), keeping everything else unchanged.

E EVALUATION METRIC

Why certain metrics are not used across all datasets? Given our latent stylization models are
trained on (Aberman et al., 2020), CMU Mocap (CMU) and (Xia et al., 2015) aims to emphasize
zero-shot performance on Style Precision and Content Preservation respectively. Style classifier is
trained on (Aberman et al., 2020), where all style motions come from. Compared to (Aberman
et al., 2020) and CMU Mocap, (Xia et al., 2015) is quite small (570 clips), comprising variable-
length short motions (< 3s). Style FID isn’t computed for (Xia et al., 2015) due to substantial length
differences between the style motion (from (Aberman et al., 2020), 5.3s) and output motion (< 3s).
Content classifier is trained only on (Xia et al., 2015) to evaluate the Content Preservation as content
labels are only available on this dataset. Since there is no evidence that this content classifier can
generalize to other datasets, we only use it for (Xia et al., 2015).

F USER STUDY

The interface of the user study on Amazon Mechanical Turk for our experiments is shown in Fig-
ure 11. Since motion style is not as obvious as other qualitative attributes for common users, to
simplify the study, we only compare one baseline result with ours each time. Moreover, for intro-
duction, we briefly explain the concept of motion stylization, presenting the content motion as well
as style motion for reference. Users are instructed to choose their preferred results over two gener-
ated stylization results based on judgement on naturalism, content preservation and style visibility.
This study only involves users that are recognized as master by AMT.

G INTERPOLATION

We present the results of interpolation in the respective style spaces learned unsupervisedly
Fig. 12(a) and supervisedly Fig. 12(b). We are able to interpolate between styles from different
labels in unsupervised setting. Specifically, two style codes are extracted from sneaky motion and
heavy motion respectively. Then we mix these two style codes through linear interpolation, and
apply them to stylize the given content motion. In supervised setting, the generator is conditioned
on a specific style label. Here, we interpolate styles between two random style codes sampled from
the prior distribution N (0, I). Stylization results are produced conditioned a common style label,
heavy. From Figure 12, we can observe the smooth transitions along the interpolation trajectory of
two different style codes. Please refer to our supplementary video for better visualization.

H LIMITATIONS AND FAILURE CASES

Firstly, our model may encounter difficulties when the input motion substantially deviates from
our training data. Figure 13 presents two failed stylization results on rare content actions, i.e.,
breaking dance and push-up. Given that our model has only seen standing motions during training,
it commonly fails to reserve the lower-body movements in these two cases. Interestingly, our model
can still retain the general motions of upper-body.

Secondly, the underlying reason for different performance of ours(V) and ours(A) on for example,
diversity, style and content accuracy, remains unclear.

Lastly, certain styles are inherently linked to specific content characteristics, particularly within the
datasets of (Aberman et al., 2020; Xia et al., 2015). For instance, styles like old, depressed and lazy
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(a) Cross-style Interpolation

(b) Homo-style Interpolation

Figure 12: Style Interpolation. (a)

Cross-style interpolation in unsupervis-
edly learned style space. Styles are
interpolated between style codes of
sneaky (left) and heavy (right) motions.
(b) Homo-style interpolation in super-
visedly learned style space. With style
label heavy as condition input, styles are
interpolated between two style codes
that randomly sampled from N (0, I).
One key pose for each motion is dis-
played.

Figure 13: Failure cases.
Top row shows content
motion; bottom row shows
our corresponding results.
Stylization results of
breaking dance motion
(left) and push-up motion
(right) using happy style
label are displayed.

typically relate to slow motions, while happy, hurried, angry motions tend to be fast. As our styl-
ization process aims to preserve content information, including speed, there could be contradictions
with these style attributes. For instance, stylizing an slow motion with a hurried style might not yield
an outcome resembling a hurried motion. We acknowledge this aspect for potential exploration in
future studies.
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