
Published as a conference paper at ICLR 2025

A APPENDIX

A.1 DATASET INTRODUCTION

A.1.1 CORRUPTION DATASET

Image corruptions refer to visible distortions in images that lead to data distribution shifts from that
of the original data. They are common in practical applications when models are deployed in the real
world. Typical corruptions include Gaussian noise, impulse noise, defocus blur, etc. In Figure 8, we
display the common image corruptions on the CIFAR-10 dataset.

Figure 8: Visualization of the common image corruptions on CIFAR10 dataset.

A.2 RELATED BENCHMARKS

• CIFAR-10/100-C Hendrycks & Dietterich (2019) is synthetically generated on top of the
test set of CIFAR-10/100 dataset. It includes 19 sub-datasets, each corrupted with a type
of image corruption (Gaussian noise, impulse noise, shot noise, speckle noise, defocus
blur, Gaussian blur, glass blur, motion blur, zoom blur, brightness, fog, frost, snow, spatter,
contrast, elastic transform, JPEG compression, pixelate, saturate). Each corruption dataset
contains five subsets, which have images corrupted with five severity levels. The higher the
severity, the more influence the corruption has on the test images.

• Tiny-ImageNet-C Hendrycks & Dietterich (2019) consists of 15 types of common im-
age corruptions, and is synthetically generated from Tiny-ImageNet dataset. The types of
corruption are Gaussian noise, impulse noise, shot noise, defocus blur, glass blur, motion

17



Published as a conference paper at ICLR 2025

blur, zoom blur, brightness, fog, frost, snow, contrast, pixelate, elastic transform, and JPEG
compression, with 5 severity levels.

• ImageNet-C Hendrycks & Dietterich (2019) consists of 15 types of common image cor-
ruptions, and is synthetically generated from ImageNet dataset. The types of corruption are
Gaussian noise, impulse noise, shot noise, defocus blur, glass blur, motion blur, zoom blur,
brightness, fog, frost, snow, contrast, pixelate, elastic transform, and JPEG compression,
with 5 severity levels.

• ImageNet-C̄ Mintun et al. (2021) are perceptually dissimilar to ImageNet-C in our trans-
form feature space, consists of 10 types of common image corruptions. The types of corrup-
tion are blue noise, brownish noise, caustic refraction, checkerboard cutout, cocentric sine
waves, inverse sparkles, perlin noise, plasma noise, single frequency greyscale, sparkles,
with 5 severity levels.

• ImageNet-3DCC Kar et al. (2022): addresses several aspects of the real world, such as
camera motion, weather, occlusions, depth of field, and lighting. It consists of 11 types of
common image corruptions: near focus, far focus, fog 3d, flash, color quant, low light, xy
motion blur, z motion blur, iso noise, bit error, h265 abr, with 5 severity levels.

• Corrupted UCF101 Soomro et al. (2012): a realistic action recognition dataset featuring
videos collected from YouTube, spanning 101 different action categories. It consists of 16
corruptions: motion blur, compression, defocus blur, gaussian noise, shot noise, impulse
noise, zoom blur, rotate, static rotate, speckle noise, sampling, reverse sampling, jumble,
box jumble, freeze, translate, with 4 severity levels.

A.3 EXPERIMENT SETUP

A.3.1 IMPLEMENTATION DETAILS

For CIFAR10, CIFAR100, and TinyImageNet, the codes were implemented in Python using PyTorch
and executed on a single NVIDIA A100 GPU. Each was run three times using three fixed random
seeds. The ImageNet experiments were run using distributed computing on four NVIDIA A100
GPUs. A batch size of 64 was utilized for each task, resulting in a combined total batch size of
256. For the UCF101 dataset, we followed the settings described in Schiappa et al. (2023), utilizing
the codebase 5. For the FashionMNIST dataset, we followed the training settings detailed in Zhang
et al. (2024b;a), using the codebase 6.

Table 3: The experimental hyperparameters settings. The hyperparameters include Learning Rate
(LR), Batch Size (BS), LR Schedule (LRS), Optimizer (Opt), Weight Decay (WD), Sparsity Dis-
tribution (Sparsity Dist), Topology Update Interval (∆T ), Pruning Rate Decay Schedule (Sched),
Initial Pruning Rate (P).

Model Data # Epoch LR BS LRS Opt WD Sparsity Dist 2 ∆T Sched 3 P

VGG16 CIFAR10 160 0.1 100 Cosine SGD 4 5e-4 Uniform 500 polynomial 0.1
ResNet34 CIFAR100 160 0.1 100 Cosine SGD 5e-4 Uniform 500 polynomial 0.1

EfficientNet-B0 TinyImageNet 100 0.1 128 Cosine SGD 5e-4 Uniform 100 polynomial 0.1
ResNet50 ImageNet 90 0.1 256 Step 1 SGD 1e-4 ERK 2000 polynomial 0.1
DeiT-base ImageNet 200 0.0005 512 Cosine AdamW 5e-2 Uniform 7000 polynomial 0.5

3D ResNet50/I3D UCF101 80 0.1 8 Cosine SGD 1e-3 ERK 300 polynomial 0.1
MLP Fashion-MNIST 100 0.025 8 Cosine SGD 5e-4 ERK 300 polynomial 0.1

FCN-VGG16 Pascal VOC 2012 80 0.0001 4 polynomial SGD 1e-4 ERK 500 cosine 0.5
1 Step denotes a schedule that the learning rate decayed by 10 at every 30 epochs until 90 epochs.
2 For the uniform distribution, the sparsity ratio of each layer is the same (i.e. Si = 1−∥θ′

i∥0/∥θi∥0), where θi is the parameters in i-th layer. ERK
distribution allocates higher sparsities to layers with more parameters, while assigning lower sparsities to smaller layers. In ERK, the number of
parameters of the sparse convolutional layers is scaled proportionally to 1− ni−1+ni+wi+hi

ni−1×ni×wi×hi
, where ni−1 and ni are the number of input channels

and output channels in i-th layer, wi and hi are the width and the height of the kernel.
3 The remove and regrow ratio is decayed according to a polynomial strategy: p×

(
1− stepcurrent

steptotal

)0.01

, where stepcurrent is the current step and steptotal

is the total number of training steps.
4 SGD optimizer with momentum 0.9.

5https://github.com/Maddy12/ActionRecognitionRobustnessEval
6https://github.com/biomedical-cybernetics/Cannistraci-Hebb-training

18



Published as a conference paper at ICLR 2025

A.3.2 THE COMPUTATIONAL AND MEMORY CONSUMPTION

In this section, we present the computational cost in terms of Floating-Point Operations (FLOPs)
for training and inference, as well as the memory cost in terms of the number of parameters, for
different models across different sparsity ratios.

CIFAR-10: For the CIFAR10 dataset, we train VGG16 for 160 epochs. The soft memory bound
for MEST is set to 10% of the target density. For example, if the sparse network’s density is 0.3,
then the soft memory bound is 0.03, resulting in an initial model density of 0.33. This soft memory
bound is decayed to 0 using a polynomial strategy. The initial density of GraNet is set at 0.8. Every
500 training steps, it prunes weights to achieve a density described by the formula: di − (di −
dt)

(
1− t−t0

n∆t

)3
, where di is the initial density, dt is the target density, and n∆t is set to half of the

total training time.

Table 4: Training FLOPs (TrFLOPs, ×1016), Inference FLOPs (InFLOPs, ×109), and the number
of model parameters (Param, ×106) for VGG16 on CIFAR10 at various sparsity ratios (S) using
different DST algorithms.

TrFLOPs (×1016) InFLOPs (×108) Param (×106)

S 0.7 0.6 0.5 0.4 0.3 0.0 0.7 0.6 0.5 0.4 0.3 0.0 0.7 0.6 0.5 0.4 0.3 0.0

Dense - - - - - 1.51 - - - - - 6.30 - - - - - 15.25
SET / RigL 0.46 0.61 0.76 0.91 1.06 - 1.92 2.55 3.17 3.80 4.42 - 4.95 6.43 7.89 9.37 10.81 -

MESTr / MESTg 0.51 0.67 0.84 1.00 1.17 - 1.92 2.55 3.17 3.80 4.42 - 4.95 6.43 7.89 9.37 10.81 -
GraNetr / GraNetg 0.68 0.73 0.85 0.97 1.09 - 1.92 2.55 3.17 3.80 4.42 - 4.95 6.43 7.89 9.37 10.81 -

CIFAR-100: For the CIFAR100 dataset, we train ResNet34 for 160 epochs. The soft memory
bound for MEST is set to 10% of the target density. For example, if the sparse network’s density
is 0.3, then the soft memory bound is 0.03, resulting in an initial model density of 0.33. This soft
memory bound is decayed to 0 using a polynomial strategy. The initial density of GraNet is set
at 0.8. Every 500 training steps, it prunes weights to achieve a density described by the formula:
di − (di − dt)

(
1− t−t0

n∆t

)3
, where di is the initial density, dt is the target density, and n∆t is set to

half of the total training time.

Table 5: Training FLOPs (TrFLOPs, ×1016), Inference FLOPs (InFLOPs, ×109), and the number
of model parameters (Param, ×106) for ResNet34 on CIFAR100 at various sparsity ratios (S) using
different DST algorithms.

TrFLOPs (×1016) InFLOPs (×109) Param (×106)

S 0.7 0.6 0.5 0.4 0.3 0.0 0.7 0.6 0.5 0.4 0.3 0.0 0.7 0.6 0.5 0.4 0.3 0.0

dense - - - - - 5.57 - - - - - 2.32 - - - - - 21.33
SET / RigL 1.68 2.24 2.79 3.35 3.90 - 0.67 0.93 1.18 1.40 1.62 - 6.45 8.57 10.70 12.82 14.95 -

MESTr / MESTg 1.85 2.46 3.07 3.68 4.29 - 0.67 0.93 1.18 1.40 1.62 - 6.45 8.57 10.70 12.82 14.95 -
GraNetr / GraNetg 2.51 2.68 3.13 3.63 4.02 - 0.67 0.93 1.18 1.40 1.62 - 6.45 8.57 10.70 12.82 14.95 -

TinyImageNet: For the TinyImageNet dataset, we train EfficientNet-B0 for 100 epochs. The soft
memory bound for MEST is set to 10% of the target density. For example, if the sparse network’s
density is 0.3, then the soft memory bound is 0.03, resulting in an initial model density of 0.33. This
soft memory bound is decayed to 0 using a polynomial strategy. The initial density of GraNet is set
at 0.8. Every 500 training steps, it prunes weights to achieve a density described by the formula:
di − (di − dt)

(
1− t−t0

n∆t

)3
, where di is the initial density, dt is the target density, and n∆t is set to

half of the total training time.

Table 6: Training FLOPs (TrFLOPs, ×1015), Inference FLOPs (InFLOPs, ×109), and the number
of model parameters (Param, ×106) for EfficientNet-B0 on TinyImageNet at various sparsity ratios
(S) using different DST algorithms.

TrFLOPs (×1015) InFLOPs (×109) Param (×106)

S 0.7 0.6 0.5 0.4 0.3 0.0 0.7 0.6 0.5 0.4 0.3 0.0 0.7 0.6 0.5 0.4 0.3 0.0

Dense - - - - - 1.98 - - - - - 6.63 - - - - - 4.26
SET/ RigL 0.66 0.85 1.04 1.23 1.42 - 2.21 2.85 3.48 4.12 4.75 - 1.89 2.29 2.68 2.68 3.08 -

MESTr / MESTg 0.72 0.92 1.13 1.34 1.55 - 2.21 2.85 3.48 4.12 4.75 - 1.89 2.29 2.68 2.68 3.08 -
GraNetr / GraNetg 0.89 1.02 1.15 1.32 1.46 - 2.21 2.85 3.48 4.12 4.75 - 1.89 2.29 2.68 2.68 3.08 -

19



Published as a conference paper at ICLR 2025

ImageNet: For the ImageNet dataset, we train ResNet50 for 90 epochs. The soft memory bound
for MEST is set to 0.2, and the sparse network’s density is 0.9, then the soft memory bound is
0.92, resulting in an initial model density of 0.92. This soft memory bound is decayed to 0 using a
polynomial strategy. The initial density of GraNet is set at 0.95. Every 2000 training steps, it prunes
weights to achieve a density described by the formula: di − (di − dt)

(
1− t−t0

n∆t

)3
, where di is the

initial density, dt is the target density, and n∆t is set to half of the total training time.

Table 7: Training FLOPs (TrFLOPs, ×1018), Inference FLOPs (InFLOPs, ×109), and the number
of model parameters (Param, ×106) for ResNet50 on ImageNet at sparsity ratios (S = 0.1) using
different DST algorithms.

TrFLOPs (×1018) InFLOPs (×109) Param (×106) Init density → Final density

Dense 2.28 8.21 25.56 1.0
RigL 2.17 7.80 23.00 0.9 → 0.9

MESTg 2.18 7.80 23.00 0.92 → 0.9
GraNetg 2.20 7.80 23.00 0.95 → 0.9

The Resource Consumption and Robustness. Even if it is outside of the scope of this paper, in
the traditional DST style, we provide an overview of the relationship between resource efficiency
and the model’s robustness against common corruption. Figure 9 showcases the computational
cost (i.e. training FLOPs and model sizes) and robustness of dense and dynamic sparse models on
TinyImageNet-C (results for other datasets can be found in the above.

Figure 9: The comparison of train-
ing FLOPs, parameter count (rep-
resented by the area of each cir-
cle), and robustness accuracy of
the dense and sparse EfficientNet-
B0 on TinyImageNet. Each point
represents the result for a specific
sparsity ratio.

We can find that the dense model, with the highest resource
usage (e.g., FLOPs and parameter count), does not necessar-
ily lead to better robustness. In the end, we also investigate
other training paradigms: iterative dense and sparse training,
represented by AC/DC Peste et al. (2021) algorithm. AC/DC
begins with a dense warm-up, then starts alternating dense and
sparse training, returning accurate sparse-dense model pairs
at the end of the training process. We find that AC/DC also
exhibits decent robustness, as in Figure 9. However, in most
cases, AC/DC tends to require more training FLOPs compared
with DST methods.

It is worth noting that the computational costs in this work are
theoretical and not fully realized gains on current hardware in-
frastructures. This is a common limitation in the literature on
sparse training methods, as most current hardware and soft-
ware systems are optimized for dense matrix operations rather
than sparse ones. However, recent advancements in model
sparsity are increasingly aligning with hardware and software
developments to fully leverage the benefits of sparsity. For ex-
ample, NVIDIA’s A100 GPU supports 2:4 sparsity Zhou et al. (2021), and other innovations are
making strides toward efficient sparse implementations Chen et al. (2019); Ashby et al. (2019). Si-
multaneously, software libraries such as Liu et al. (2021b); Mocanu et al. (2018) are emerging to
enable truly sparse network implementations. These advancements are paving the way for future
deep neural networks to achieve greater efficiency in terms of computation, memory, and energy
use.

A.4 THE ROBUSTNESS ACCURACY FOR DIFFERENT CORRUPTION TYPES AND SERVERITIES

Figure 10, 11, 12, 13 14 and 15 showcase the relative gains7 in robustness at each of these severity
levels. We observe that dynamic sparse models exhibit a more pronounced advantage in robustness
over dense models, particularly under high severity levels of high-frequency corruption.

7Defined as (Accs,l −Accdense)/Accd,l, where Accs,l and Accd,l represent the accuracies of dynamic
sparse and dense models, respectively, under severity level l.

20



Published as a conference paper at ICLR 2025

Figure 10: Compared with the dense model, the relative robustness gain of different dynamic sparse
models with sparsity 0.5 trained by (a) SET, (b) MESTr, (c) GraNetr under different severities of
CIFAR10-C.

Figure 11: Compared with the dense model, the relative robustness gain of different dynamic sparse
models with sparsity 0.5 trained by (a) RigL, (b) MESTg , (c) GraNetg under different severities of
CIFAR10-C.

Figure 12: Compared with the dense model, the relative robustness gain of different dynamic sparse
models with sparsity 0.5 trained by (a) SET, (b) MESTr, (c) GraNetr under different severities of
CIFAR100-C.

Figure 13: Compared with the dense model, the relative robustness gain of different dynamic sparse
models with sparsity 0.5 trained by (a) RigL, (b) MESTg , (c) GraNetg under different severities of
CIFAR100-C.

21



Published as a conference paper at ICLR 2025

Figure 14: Compared with the dense model, the relative robustness gain of different dynamic sparse
models with sparsity 0.5 trained by (a) SET, (b) MESTr, (c) GraNetr under different severities of
TinyImageNet-C.

Figure 15: Compared with the dense model, the relative robustness gain of different dynamic sparse
models with sparsity 0.5 trained by (a) RigL, (b) MESTg , (c) GraNetg under different severities of
TinyImageNet-C.

A.5 ANALYSIS THROUGH THE LENS OF FILTER

Figure 16 and 17 showcases the non-zero weight counts and the sum of weight magnitudes (i.e.,
absolute values) for each kernel in a specific layer of dynamic sparse VGG16 and ResNet34 trained
on CIFAR10 and CIFAR100, respectively.

Additionally, we investigated the accuracy of test data subject to high-frequency or low-frequency
information attenuation during dense or dynamic sparse training. In Figure 18, the results indi-
cate that at the beginning of training, the superiority of dynamic sparse models in handling high-
frequency information removal starts to appear, becoming more evident as training progresses.
Considering the phenomenon of sparse weight concentration on the filter after training, it becomes
evident that dynamic sparse training dynamically allocates computational resources to prioritize rel-
evant low-frequency features during the learning process.

A.6 DSCR HYPOTHESIS IN RECENT DST ALGORITHMS

Table 8: Robustness accuracy (%) of MLP on Fashion MNIST-C.
Dense Dynamic Sparse Training

Training Sparsity SET RigL CHTs+CSTI CHTs+BSW

19.82 ± 0.32 97% 23.44 ± 1.79 25.23 ± 1.39 24.50 ± 1.03 26.64 ± 1.06
95% 25.55 ± 0.32 25.03 ± 1.11 27.38 ± 0.25 27.13 ± 0.33

In this paper, we primarily
investigate the robustness
of fundamental DST mod-
els initialized from random
sparse networks with the
basic removal and regrowth
criteria, to validate our DSCR hypothesis in commonly used settings. With the emergence of other
recent and promising DST methods, we also include an initial exploration to further validate our
hypothesis on these methods, such as Cannistraci-Hebb soft training (CHTs) Zhang et al. (2024b;a),
which employ more complex growth criteria and topology initialization. We compare dense training
with CHTs using Correlated Sparse Topological Initialization (CHTs+CSTI) and bipartite small-
world networks (CHTs+BSW) on robustness accuracy, using the Fashion-MNIST corrupted dataset
with an MLP model, as shown in Table 8. More training details are provided in Appendix A.3.1.

22



Published as a conference paper at ICLR 2025

Figure 16: Visualizing non-zero weight count (1st row) and the sum of weight magnitudes (2nd row)
in filters of VGG16 (#layer feature.20, #layer feature.30 and #layer feature.40 with kernel size 3×3)
after training on CIFAR10 using different DST algorithms: (b) SET, (c) RigL, (d) MESTr and (e)
GraNetr, compared with (a) dense counterpart. Each point represents the corresponding value of a
filter.

The results indicate that the recent DST method (i.e., CHTs) achieves even more inspiring robustness
performance, further validating our DSCR hypothesis on the robustness of DST.

A.7 HOW DATA AUGMENTATION INTERACTS WITH DST?

Table 9: Robustness accuracy
(%) on CIFAR100 with and
without Mixup.

w/ mixup Dense training SET
× 51.68 52.60
✓ 54.75 54.93

We extend our analysis to explore how data augmentation (e.g.,
Mixup Zhang et al. (2018)) interacts with dynamic sparse train-
ing in comparison to dense training. From Table 9, we observe:
In general, data augmentation helps improve model generalization
by providing increased input variability. For DST, combining data
augmentation with dynamic sparse training can lead to even greater
robustness compared to dense training, suggesting that dynamic
sparse training (e.g., SET) interacts with data augumentation in a
complementary way.

23



Published as a conference paper at ICLR 2025

Figure 17: Visualizing non-zero weight count (1st row) and the sum of weight magnitudes (2nd row)
in filters of ResNet34 (#layer2.0.conv2, #layer2.1.conv1 and #layerlayer3.3.conv2 with kernel size
3 × 3) after training on CIFAR100 using different DST algorithms: (b) SET, (c) RigL, (d) MESTr

and (e) GraNetr, compared with (a) dense counterpart. Each point represents the corresponding
value of a filter.

A.8 THE PERFORMANCE OF DST ON OUT-OF-DOMAIN (OOD) TEST DATA

ImageNet-R Hendrycks et al. with 30,000 images of art, cartoons, and other 14 renditions from 200
ImageNet classes, presents a notable domain shift from the original dataset. We report the average
test accuracy on ImageNet-R for dense and DST models trained on the original ImageNet.

Table 10: Average classification accu-
racy (%) on ImageNet-R dataset. The
bold highlights result that are better than
the dense model.

Dense RigL MESTg GraNetg
37.84 40.04 38.33 38.46

ImageNet-v2 Recht et al. is a valuable dataset for
evaluating the generalization of models trained on orig-
inal ImageNet dataset. ImageNet-v2 contains three
test subsets: Top-images, Threshold-0.7, and Matched-
frequency. Each subset comprises ten images per class,
selected from a pool of candidates according to various
selection frequencies.

24



Published as a conference paper at ICLR 2025

Figure 18: The impact of high-frequency (top) and low-frequency attenuation (bottom) on TinyIm-
ageNet during training. Test accuracy for (a) dense model, (b) dynamic sparse model from SET. (c)
The accuracy difference between sparse and dense models, where a positive value indicates that the
sparse models perform better.

Table 11: Average robustness accuracy (%) on
ImageNet-v2 dataset. The bold highlights result
that are better than the dense model.

Dense RigL MESTg GraNetg
Top-images 77.80 77.88 78.33 78.21

Threshold-0.7 72.95 72.81 73.23 73.58
Matched-frequency 64.62 64.23 64.14 64.60

Avg. accuracy 71.79 71.64 71.90 72.13

As shown in Table 10 and 11, the results from
ImageNet-R and ImageNet-v2 correspond to
the evaluation on domain adaptation and gen-
eralization, respectively. The results show that
DST models reliably surpass dense models on
ImageNet-R and exhibit superior performance
in the majority of scenarios on ImageNet-v2.
This suggests that models trained with DST
not only handle common data corruptions ef-
fectively but also excel in the face of significant domain shifts.

A.9 THE PERFORMANCE OF DST ON THE SEGMENTATION TASK

We compared the performance of a dense trained fully convolutional network (FCN) with a VGG16
backbone on the Pascal VOC 2012 Everingham et al. clean dataset, then test on corrupted Pascal
VOC 2012 (generated following the ImageCorruption library 8, which includes 19 types of corrup-
tion at 5 severity levels). The results are presented in Table 12.

Table 12: Clean metric (%) on Pascal VOC
2012 and Robustness metric (%) on cor-
rupted Pascal VOC 2012.

Metric Dense training SET (s=0.2) SET (s=0.1)
clean pixAcc (↑) 85.65 85.63 85.66
clean mIoU (↑) 46.34 46.69 47.10

robustness pixAcc (↑) 76.80 77.30 77.39
robustness mIoU (↑) 22.60 22.73 23.09

Unlike classification tasks on CIFAR or ImageNet,
where the sparse topology is randomly initialized,
we first prune the backbone to obtain the sparse
model, then perform sparse fine-tuning on the train-
ing set of the Pascal VOC 2012 clean dataset, and fi-
nally test it on both the clean and corrupted versions
of the Pascal VOC 2012 test set, as the VGG16 back-
bone for the segmentor is typically pretrained on ImageNet. The results show that DST models are
not only robust in image and video classification but also in image segmentation tasks.

A.10 GRAD-CAM

Grad-CAM (Gradient-weighted Class Activation Mapping) Selvaraju et al. (2017) generates a
heatmap highlighting important regions by weighting the feature maps based on the gradient val-
ues. It provides practitioners with a visual indication of the areas on which the network focuses
when making predictions. We visualize and compare the Grad-CAM outputs of both dense models
and dynamic sparse models, as shown in Figure 19. We present different cases, including clean
background ((a) and (b)), and complex background (c). Interestingly, we observe that the highlight-
ing region of dynamic sparse models is smaller than that of the dense model. In Figure 19 (a), the
dynamic sparse models focus on the face of the cat for prediction, while the dense models pay atten-
tion to both the face and body of the cat. In Figure 19 (b), the dynamic sparse models specifically

8https://github.com/bethgelab/imagecorruptions

25



Published as a conference paper at ICLR 2025

emphasize the wings of the eagle. In contrast, the dense models primarily concentrate on a single
wing while also capturing irrelevant contexts, leading to larger attention regions. In the case of a
more complex background (In Figure 19 (c)), the dynamic sparse models tend to allocate some at-
tention to the surrounding elements. However, the attention regions are still relatively smaller and
primarily focused on the face of the bear, especially in the sparse model sparsified by SET.

These visualizations provide further support for our hypothesis that dynamic sparse models effec-
tively allocate limited resources to the most crucial features. As a result, dynamic sparse models can
be robust against image common corruptions, making them a promising approach for addressing
real-world challenges.

B IMPACT STATEMENT

In an era dominated by over-parameterized models and the pervasive presence of image corruption,
the design of resource-aware and robust AI models is of increasing importance. Gaining insight
into the robust behavior of dynamic sparse models against image corruption paves the way for em-
bracing these environmentally friendly models in challenging environments. This holds significant
implications across various domains, including medical diagnosis, robotics, autonomous vehicles,
and other AI applications. Furthermore, our insights into the inner workings of sparse models help
us understand the reasoning behind their robust decisions. Overall, we advance our fundamental
understanding of dynamic sparse training and provide future perspectives for scalable, efficient, and
trustworthy AI. We do not anticipate any negative societal impacts resulting from this research.

26



Published as a conference paper at ICLR 2025

Figure 19: Grad-CAM for TinyImageNet-C. The images are corrupted by different corruptions with
clean background (a) and (b), and complex background (c).

27


	Appendix
	Dataset Introduction
	Corruption Dataset

	Related benchmarks
	Experiment Setup
	Implementation Details
	The Computational and Memory Consumption

	The robustness accuracy for different corruption types and serverities
	Analysis Through the Lens of Filter
	DSCR Hypothesis in Recent DST Algorithms
	How data augmentation interacts with DST?
	The performance of DST on out-of-domain (OOD) test data
	The performance of DST on the segmentation task
	Grad-CAM

	Impact Statement

