Appendix
A Proof
In this section, we present complete proofs of our theoretical study, starting with notations.

A.1 Notations
Fourier transform of a real-valued sample with a finite duration is obtained as in Equation

Xp=F(x)= Y  xn,e 72" @)

n=—oo

The amplitude and phase for each frequency are calculated from the Fourier transform as follows.

A(x) = /Re(X;)2 + Im(X;,)?

P(x) = arctan2(Im(Xy), Re(Xy)), ®

where arctan is a 2-argument arctangent which is the angle measure in radians. The phasor, as in
Figure[T] of a sample is represented as in Equation 9]

Xp = F(x) = A(x)e? 7™ )

A.2  Proof for Proposition 2.3]

Proposition A.1 (Destructive Mixup). If Assumptions[2.1|and 2.2\ hold, there exist A ~ Beta(o, c)
or A ~ U(fB,1.0) with high values of § such that when linear mixup techniques are utilized, the
lower bound of the mutual information for the augmented sample distribution decreases to zero.

0<Z(y;x") <ZI(y;x*) where

. ) > (10)
xT=Ax+ (1 —-X)x and Sy (f) = Se+(f)
I —0o0

Proof.

xtT=Xx+(1-)Nx (11)
From the linearity of Fourier transformation and ignoring k in Xy for the sake of easiness.

Xt =AX+(1-MX (12)

Xt =X+ A\X - X) (13)

Let X = e 7% Xw),,, where ;. and wy, are random phase and frequency modulators for each
frequency, sampled from distributions ¢;, ~ @, wi ~ Q.

Xt = e 9 Xwy, + M(X — e 9P Xwy,) (14)

Xt =X [A+e 7% w; — Ae 7P wy] (15)

Xt =X [A+ (1 —Ne 7“Prw,] (16)

XT =X A+ (1= Nwg(cos (wey,) — jsin (wepy,))] (17)
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From the quasi-periodicity, assume that the frequency ranges of interest (f*, i.e., k*) are overlapped
for both samples while the sampled random modulators have the following relationship.

and 0 = [we,.] (mod 27), (18)

W =~
1

- A
where 6 is an odd multiple of 7. Equation[I7)can be simplified as follows.

X = X+ [A+ Acos (wey- )] (19)
X ~0 (20)
oo [ee]

Xho= > xpe 2 N x,e P 20 1)

= 1 N_, 2

*) - j2nf*n
Set+ (f) A}gnoo 5N ; e (22)
From Assumption 2.1}
Tyix) o [ Se(0)/ [ Seh) 3)
f* —o0

0 < Z(y;x") < Z(y;x) (24)

We use Euler’s formula to expand Equation |16| to While we use the frequency bins (k) and
frequency values in Hz (f) interchangeably for Equations 21|and O

Although the above proof is to show the resulting instances may not contain any task-relevant
information, it can also be demonstrated that the augmentation process can potentially discard the
partial task-specific information (not whole) if ¢, and wy, are close to indicated relationships.
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A.3 Proof for Theorem 3.1]

Theorem A.2 (Guarantees for Mixing). Under assumptionsand given any A € (0, 1], the
mutual information for the augmented instance lower bounded by the sampled )\ and anchor x.

M(y;x) < Z(y;xT) < Z(y; x*) where xt = F 1 (A(xT)ZP(xT)) (25)

Proof.
xt = .7-'_1(A( T)/P(xT)) where

A(xF) = MAX) + (1 — A\a)AR) and

(26)

P(x) — |AO] % (1 - Ap), ifAO >0

P(x —|—|A®\ (1—=XAp), otherwise
Xt = A(xH)el P 27)
[XF] = [4Gch)er" )| (28)
X*| = A(x") where [X|=] ) xfe /" (29)
XF| = AA(x) + (1 - N A%) (30)
X =M D0 xue 2™ (1= N) | Y Rpe 2R 31
Z Xne—j27rkn +(1_ Z ine—j%rkn >\ Z Xne—jQTrkn (32)
Se+(f) = A [ Se(f) (33)

r r

Using the ffcoo Se+(f) = f:f Sz(f) (i.e., both samples are normalized to have the same power) and
Assumption 2.1}

I(y;x") o</ o ( // S+ ( (34)
f*
M(y;x) < Z(y;x") < Z(y;x") (35)
Proof is completed with Equation [35]by combining equations [33]and 34} O

Although this proof ignores the effect of phase mixing on the mutual information with the assump-
tion[2.T} it is known that phase components carry semantically important features [45]]. Therefore, it
is necessary to note that the objective of this proof is to demonstrate that by applying mixup separately
to the phase and amplitude components, we can avoid destructive interference.
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B Datasets
In this section, we give details about the datasets that are used during our experiments.

B.1 Human Activity Recognition

UCIHAR Human activity recognition using smartphones dataset (UCIHAR) [34] is collected by 30
subjects within an age range of 16 to 48 performing six daily living activities with a waist-mounted
smartphone. Six activities include walking, sitting, lying, standing, walking upstairs, and walking
downstairs. Data is captured by 3-axial linear acceleration and 3-axial angular velocity at a constant
rate of 50 Hz. We used the pre-processing technique the same as in [37, [19]] such that the input
contains nine channels with 128 features (it is sampled in sliding window of 2.56 seconds and 50%
overlap, resulting in 128 features for each window). Windows are normalized to zero mean and unit
standard deviation before feeding to models. Also, we follow the same experimental setup with prior
works as follows. The experiments are conducted with a leave-one-domain-out strategy, where one of
the domains is chosen to be the unseen target [[19]. The contrastive pre-training is conducted with
all subjects without any label information except the target one. Training of the linear layer, which
is added to the frozen trained encoder, is only performed with the first five subjects of UCIHAR
after excluding the target subject. In other words, if the target subject is 0, the subjects from 1 to 29
are used to train the encoder without any label information. Then, subjects from 1 to 4 are used to
train the linear layer. And, evaluation is performed for subject 0. This is performed for the first five
subjects with three random seeds and the mean value is reported.

HHAR Heterogeneity Dataset for Human Activity Recognition (HHAR) is collected by nine
subjects within an age range of 25 to 30 performing six daily living activities with eight differ-
ent smartphones—Although HHAR includes data from smartwatches as well, we use data from
smartphones—that were kept in a tight pouch and carried by the users around their waists [33]].
Subjects then perform 6 activities: ‘bike’, ‘sit’, ‘stairs down’, ‘stairs up’, ‘stand’, and ‘walk’. Due to
variant sampling frequencies of smart devices used in HHAR dataset, we downsample the readings to
50 Hz and apply 100 (two seconds) and 50 as sliding window length with step size, the windows are
normalized to zero mean with unit standard deviation. We used the first four subjects (i.e., a, b, ¢, d)
as source domains.

USC USC human activity dataset (USC-HAD) is composed of 14 subjects (7 male, 7 female,
aged 21 to 49 with a mean of 30.1) executing 12 activities with a sensor on the front right hip. The
data dimension is six (3-axis accelerometer, 3-axis gyroscope) and the sample rate is 100 Hz. 12
activities include walking forward, walking left, walking right, walking upstairs, walking downstairs,
running forward, jumping up, sitting, standing, sleeping, elevator up, and elevator down. We used the
pre-processing technique with a smaller window size such that the input contains six channels with
100 features (it is sampled in a sliding window of 1 second and 50% overlap, resulting in 100 features
for each window). The same normalization is also applied to windows before feeding to models. We
used the same setup with UCIHAR while source subjects are chosen as the last four this time.

B.2 Heart Rate Prediction

IEEE SPC This competition provided a training dataset of 12 subjects (SPC12) and a test dataset
of 10 subjects [39]]. The IEEE SPC dataset overall has 22 recordings of 22 subjects, ages ranging
from 18 to 58 performing three different activities [83]]. Each recording has sampled data from three
accelerometer signals and two PPG signals along with the sampled ECG data and the sampling
frequency is 125 Hz. All these recordings were recorded from the wearable device placed on the
wrist of each individual. All recordings were captured with a 2-channel pulse oximeter with green
LED:s, a tri-axial accelerometer, and a chest ECG for the ground-truth HR estimation. During our
experiments, we used PPG channels. We choose the first five subjects of SPC12 as source domains
similar to activity recognition setup while the last six subjects of SPC22 are used for source domains
to prevent overlapping subjects with SPC12.

Dalia PPG dataset for motion compensation and heart rate estimation in Daily Life Activities

(DaLia) was recorded from 15 subjects (8 females, 7 males, mean age of 30.6), where each recording
was approximately two hours long. PPG signals were recorded while subjects went through different
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daily life activities, for instance sitting, walking, driving, cycling, working, and so on. PPG signals
were recorded at a sampling rate of 64 Hz. The first five subjects are used as source domains.

All PPG datasets are standardized as follows. Initially, a fourth-order Butterworth bandpass filter
with a frequency range of 0.5-4 Hz is applied to PPG signals. Subsequently, a sliding window of 8
seconds with 2-second shifts is employed for segmentation, followed by z-score normalization of
each segment. Lastly, the signal is resampled to a frequency of 25 Hz for each segment.

B.3 Cardiovascular disease (CVD) classification

CPSC China Physiological Signal Challenge 2018 (CPSC2018), held during the 7th International
Conference on Biomedical Engineering and Biotechnology in Nanjing, China. This dataset consists
of 6,877 (male: 3,699; female: 3,178) and 12 lead ECG recordings lasting from 6 seconds to 60
seconds with 500 Hz. We use the original labelling [40] with one normal and eight abnormal types as
follows: atrial fibrillation, first-degree atrioventricular block, left bundle branch block, right bundle
branch block, premature atrial contraction, premature ventricular contraction, ST-segment depression,
ST-segment elevated. We resampled recordings to 100 Hz and exclude recordings of less than 10
seconds.

Chapman Chapman University, Shaoxing People’s Hospital (Chapman) ECG dataset which pro-
vides 12-lead ECG with 10 seconds of a sampling rate of 500 Hz. The recordings are downsampled
to 100 Hz, resulting in each ECG frame consisting of 1000 samples. The labeling setup follows the
same approach as in [41] with four classes: atrial fibrillation, GSVT, sudden bradycardia, and sinus
rhythm. The ECG frames are normalized to have a mean of 0 and scaled to have a standard deviation
of 1. We split the dataset to 80-20% for training and testing as suggested in [41].

We choose leads I, II, III, and V2 during our experiments for both ECG datasets. We followed a
similar setup with prior works [57] and considered each dataset as a single domain different from
previous tasks. The fine-tuning of the linear layer, which is added to the frozen pre-trained encoder,
is performed with 80% of the same domain.

B.4 Maetrics

We used the common evaluation metrics in the literature for each task. Specifically, we used accuracy
(Acc) and F1 score for activity recognition [19], mean absolute error (MAE), and root mean square
error (RMSE) for heart rate prediction [39, |84], and the area under the ROC curve (AUC) for
cardiovascular disease classification [37].

In this section, we explain how to calculate each metric for different time-series tasks. For activity
recognition, the accuracy metric is computed by dividing the sum of true positives and true negatives
by the total number of samples where a window has a single label. The MF1 score is calculated as a
harmonic mean of the precision and recall where metrics are obtained globally by counting the total
true positives, false negatives, and false positives similar to [19].

For heart rate prediction, the Mean Absolute Error (MAE) and Root-Mean-Square Error (RMSE) are
calculated using the following equation:

1 K
MAE = — ; |HRmodel (k) — HRref (k)| (36)

RMSE — \/ S (HRmodel(k) — HRre f(k))? a7

K )

where K represents the total number of segments. The variables HRmodel(k) and HRref (k)
denote the output of the model and reference heart rate values in beats-per-minute for the k"
segment, respectively. This performance metric is commonly used in PPG-based heart rate estimation
studies [39]. The estimated heart rate values (HRmodel(k)) are obtained using our model, while the
reference heart rate values (HRre f(k)) are directly taken from datasets.
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The AUC score for CVD classification is calculated using the one-vs-one scheme where the average
AUC is computed for all possible pairwise combinations of classes for both datasets.

C Baselines

C.1 Prior Mixup Techniques

In this section, we give a detailed explanation of each mixup technique we compare our proposed
method.

LinearMix We apply linear mixup as in Equation [3§]to generate positive samples, if x has more
than one channel, mixup is applied independently for each of them.

xt = Ax+ (1 — N)X (38)

BinaryMix We implement the binary mixup [43]] by swapping the elements of x with the elements
of another randomly chosen sample X as shown below.

xt=mox+(1-m)ox, (39)

where m is a binary mask sampled from a Bernouilli(p) with high values, and © stands for Hadamard
product.

GeometricMix In Geometric Mixup, we create a positive sample corresponding to a sample x by
taking its weighted-geometric mean with another randomly chosen sample X same as [22] as shown
below.

xt =x* 4 x7N (40)

CutMix Cutmix is implemented similarly to Binarymix. However, instead of changing each sample
point with a probability, we cut a continuous portion using a rectangle mask M from a signal x and
replace it with the same portion of another randomly chosen one x. The starting point of the mask is
uniformly sampled while its length is sampled from lower values such that the augmented sample is
more similar to the anchor. If the signal has multiple channels, this process is applied to all channels
in the same section.

b
xt=Mox+(1-M)o®x, and M:rect<>, 41)
a

where b and a are the starting point and length of the rectangle wave, respectively.

AmplitudeMix AmplitudeMix is introduced for domain adaptation problems by mixing the ampli-
tude information of images without mixing the phase of two samples [45]. In our setup, we perform
amplitude mixing on the time series data across all channels while keeping the phase component
unchanged. In other words, we perform the following operations.

xT = F Y A(xT)£ZP(x")) where

A(xT) = MAX) + (1 — Ma)AX) and P(x1) = P(x) (+2)

SpecMix We implement the SpecMix by applying CutMix to the spectrogram of time-series where
the spectrogram is calculated using the short-time Fourier transform as follows.

XZ = Z Xpg[n — mR]e_ﬂ”k", (43)

n=—oo
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where g[n — mR)] is an analysis window of length M with hop length of R over the signal and
calculating the discrete Fourier transform (DFT) of each segment of windowed data. The length of
the Fourier transform is set to the sample size of the input time series while the hop and window
parameters are set to the quarter of the length.

C.2 Prior Methods for Sample Generation

In this section, we give a detailed explanation of prior methods for data generation methods.

Traditional Augmentations We apply two separate data augmentation to the anchor for creating
two instances, and the encoders are trained to maximize agreement using the contrastive loss in [15].
We search mainly for augmentations that are known in state-of-the-art works [19]. The detailed
augmentations are given in Table 22}

InfoMin We train a model gy(.), which is restricted to sample-wise 1 x 1 convolutions and ReLU
activations same as in [48]], to decrease the mutual information between two instances. In the original
paper, the input sample is split into two instances (X; and X5.3) and then adversarial training is
performed. As we do not have RGB channels for time-series data, we added Gaussian noise to the
signal for creating other instances and then perform adversarial training.

NNCLR We follow a similar setup to SimCLR by applying two separate data augmentations, then
we use nearest neighbors in the learned representation space as the positive in contrastive losses [49].

PosET We perform the dimension level mixing with extrapolation of positive features as follows:

2t =)ozt (1-N 05 (44)

where ® is Hadamard product, and A ~ Beta(«, ). We add 1 to sampled X for extrapolation as
in [50].

GenRep In the original implementation of GenRep, the authors use implicit generative models
(IGMs) such as BigBiGAN [83]] that are trained with millions of images to create the anchor and
positive instance by sampling nearby latent vectors. However, as the number of samples for training
is limited in time series and there is a well-trained generator for different time-series tasks, we use
our trained VAE for sampling nearby latent vectors as positives. Mainly, we sample an anchor from
real data, feed it to the encoder, add a Gaussian noise sampled from a truncated normal distribution,
and use the output of the decoder for the positive sample with the anchor.

STAug The Spectral and Time Augmentation (STAug) method is specifically proposed for the
time-series forecasting task, where the authors apply the empirical mode decomposition to decompose
time series into multiple subcomponents, then reassemble these subcomponents with random weights
to generate new synthetic series. Finally, in the time domain, the method uses the linear mixup to
generate samples from the reassembled components. Although, the mixing coefficient sampled from
a beta distribution in the original implementation, we observe significant performance decreases
when the same distribution with parameters is used in our experiments, possibly due to the generated
samples being far away from the anchor. We, therefore, investigate the case when the mixing
coefficient is sampled from uniform distribution with high values, e.g., same as our method. Since
there is no

Augmentation Bank The augmentation bank that perturbs frequency components of a time-series
signal is proposed in [21]] where the authors use it for unsupervised domain adaptation with a
different framework than SimCLR, namely time-frequency consistency (TF-C). As it is a novel data
augmentation technique, we have implemented the frequency augmentation bank as a baseline while
using the SimCLR framework for a fair comparison with other methods. The authors also employed
a collection of time-based augmentations for the time-domain contrastive encoder. Nonetheless, since
these augmentations have already been studied in previous CL setups, we chose to exclusively utilize
the frequency augmentation bank. In the paper, the authors mentioned using a small budget with
low-frequency perturbations results in a performance increase, thus we chose the budget with a single
frequency while choosing the o« = 0.5 with the same settings in the paper.
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DACL We perform the mixup for hidden representations, i.e., before applying projection-head, as
follows.

vt =)Av+ (I=X)v, (45)

where v is the fixed-length hidden representations of samples while X is sampled from uniform
distribution with high values.

IDAA We follow the original implementation of authors with their proposed VAE architecture
while optimizing the adversarial strength for each time-series task. We apply the FGSM adversarial
attack the same as in the original implementation [53]] by perturbing the encoded representation of a
sample while adding noises along the gradient sign’s direction of the loss.

One setup difference between this section and the previous mixup methods is that when we compare
our work with PosET, GenRep, DACL, and IDAA, we apply the best traditional data augmentation
techniques, which are used for SImCLR implementation, to the specific positive data generation
mechanisms. The reason for this approach is that the original implementations of certain works
indicate that the proposed methods achieve optimal results when used in conjunction with known
augmentations, where our observations align with these findings.

The detailed hyperparameters for each baseline with the corresponding time series tasks are given in
the following section.

D Implementation Details

D.1 Parameters for mixing

In this section, we provide the parameters that are used during our experiments. To determine the
optimal parameters of the baselines for each task, we conduct a grid search. This search is performed
on a small validation set taken from the largest dataset of the respective tasks, which are USC, Dalia
and Chapman. We believe that this approach ensures fairness and produces more realistic results, as
dataset-specific optimizations can lead to overfitting of parameters, particularly in smaller and less
diverse datasets.

Table 7: Parameters for baselines

Method Activity Recognition Heart rate Prediction CVD Classtfication
Linear Mixup A~U(0.9,1) A~ U(0.9,1) A~U(0.85,1)
Binary Mixup m~ U(0.8,1) m ~ U(0.9,1) m~U(0.9,1)
Geometric Mixup A ~ U(0.9,1) A~ U(0.9,1) A~ U(0.9,1)
CutMix b~ U(0,1) b~ U(0,1) b~U(0,1)
a~U(0.1,0.4) a~U(0.1,0.3) a~U(0.1,0.3)
AmplitudeMix Ay ~ U(0.9,1) A~ U(0.9,1) A~ U(0.8,1)
Specix b~ U(0,1) b~ U(0,1) b~ U(0,1)
a~U(0.1,0.4) a~U(0.1,0.3) a~U(0.1,0.3)
PosET A~ Beta(2,2) A\ ~ Beta(2,2) A ~ Beta(2,2)
GenRep A~ N(0,0.2,1.0) A~ N'(0,0.25,1.0) A~ N(0,0.2,1.0)
DACL A~ U(0.9,1) A~U(09,1) A~ U(0.85,1)
IDAA 6=0.1 6=0.15 0=02
Ours A~ U(0.7,1), A\p ~ U(0.9,1) A~ U(0.7,1), Ap ~ U(0.9,1)  Aa ~ U(0.7,1), Ap ~ U(0.9,1)

€=0.7, 1, p ~Nt(0.9,0.1,0.9) €=0.38 A, Ap ~N1,01,0.9) €=0.7, s, Ap ~N(1,0.1,0.9)

D.2 Baseline Encoder Architecture

For the baseline encoder model, we adopt the DeepConvLSTM as in [19] where the architecture has
4 convolutional layers with 5 x 1 size of 64 kernels while ReLU is followed each convolution. After
the convolutions, the tensor is passed through a dropout layer with a dropout rate of 0.5 to prevent
overfitting. Then, the output of dropout is fed into the 2-layer LSTM with 128 units. After training
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the baseline encoder, we attach a linear layer and freeze the previous layers for fine-tuning. This
architecture is widely used for the datasets we used during our experiments [37, 83| [19]], we therefore
adopt the same network across tasks.

D.3 VAE Models

We use the total correlation variational autoencoder (3-TCVAE) [86] to calculate the distance between
two encoded samples in the latent space. We train the model for 100 epochs with a learning rate
of le — 3 while setting the batch size to 2048. The latent dimensions and the ( values are set
to 10 and 5, respectively. Below, we present the tables providing detailed information about the
architectures of the encoder and decoder for datasets. The output of convolutional layers is fed to the
batch normalization before the activation layer is applied. For tasks Heart rate Prediction and CVD
Classification, we use task-specific encoder and decoder as the number of channels and input size for
datasets in each task are the same. However, two different networks, one for UCIHAR and one for
others, are designed for the Activity Recognition due to different number of input channels.

Table 8: Encoder Network for UCIHAR in Activity Recognition

Encoder

Layer Name Output size # of kernels Kernel size  Stride  Activation
Input Nx1x128x9

Convolution  Nx32x60x7 32 9x3 2x1 ReLU
Convolution  Nx32x27x5 32 7x3 2x1 ReLU
Convolution ~ Nx64x8x3 64 5x3 3x1 ReLU
Convolution  Nx128x2x1 128 5x3 2x1 ReLU
Convolution Nx512x1x1 512 2x1 1x1 ReLU
Convolution  Nx20x1x1 10 1x1 1x1

Table 9: Decoder Network for UCIHAR in Activity Recognition

Decoder
Layer Name Output size  # of kernels ~ Kernel size ~ Stride  Activation
Input Nx1x10x1
Transposed Convolution  Nx512x2x9 512 2x9 1x1 ReLU
Transposed Convolution  Nx128x8x9 128 4x1 6x1 ReLU
Transposed Convolution ~ Nx64x16x9 64 4x1 2x1 ReLU
Transposed Convolution  Nx32x32x9 32 4x1 2x1 ReLU
Transposed Convolution =~ Nx32x64x9 32 4x1 2x1 ReLU
Transposed Convolution  Nx1x128x9 1 4x1 2x1

Table 10: Encoder Network for USC and HHAR in Activity Recognition

Encoder

Layer Name Outputsize # of kernels Kernel size  Stride  Activation
Input Nx1x100x6

Convolution  Nx32x46x5 32 9x2 2x1 ReLU
Convolution  Nx32x20x4 32 9x2 2x1 ReLU
Convolution  Nx64x8x3 64 5x2 2x1 ReLU
Convolution  Nx128x2x2 128 5x2 2x1 ReLU
Convolution  Nx512x1x1 512 2x2 1x1 ReLU
Convolution ~ Nx20x1x1 10 1x1 1x1
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Table 11: Decoder Network for USC and HHAR in Activity Recognition

Decoder
Layer Name Output size ~ # of kernels  Kernel size  Stride  Activation
Input Nx1x10x1
Transposed Convolution  Nx512x2x6 512 2x6 1x1 ReLU
Transposed Convolution  Nx128x6x6 128 6x1 2x1 ReLU
Transposed Convolution  Nx64x12x6 64 4x1 2x1 ReLU
Transposed Convolution  Nx32x25x6 32 5x1 2x1 ReLU
Transposed Convolution  Nx32x50x6 32 4x1 2x1 ReLU
Transposed Convolution  Nx1x100x6 1 4x1 2x1

Table 12: Encoder Network for Heart rate Prediction

Encoder

Layer Name Output size # of kernels Kernel size  Stride  Activation
Input Nx1x200x1

Convolution  Nx32x94x1 32 13x1 2x1 ReLU
Convolution  Nx32x43x1 32 9x1 2x1 ReLU
Convolution Nx64x18x1 64 9x1 2x1 ReLU
Convolution  Nx128x6x1 128 7x1 2x1 ReLU
Convolution  Nx512x1x1 512 5x1 2x1 ReLU
Convolution ~ Nx20x1x1 20 2x1 1x1

Table 13: Decoder Network for Heart rate Prediction

Decoder
Layer Name Output size  # of kernels Kernel size Stride  Activation
Input Nx1x10x1
Transposed Convolution ~ Nx512x6x1 512 6x1 1x1 ReLU
Transposed Convolution  Nx128x12x1 128 4x1 2x1 ReLU
Transposed Convolution ~ Nx64x25x1 64 5x1 2x1 ReLU
Transposed Convolution ~ Nx32x50x1 32 4x1 2x1 ReLU
Transposed Convolution  Nx32x100x1 32 4x1 2x1 ReLU
Transposed Convolution ~ Nx1x200x1 1 4x1 2x1

Table 14: Encoder Network for CVD Classification

Encoder

Layer Name  Outputsize  #of kernels Kernel size Stride Activation
Input Nx1x1000x4

Convolution  Nx32x330x3 32 12x2 3x1 ReLU
Convolution  Nx32x107x2 32 10x2 3x1 ReLU
Convolution ~ Nx64x34x1 64 8x2 3x1 ReLU
Convolution ~ Nx128x9x1 128 8x1 3x1 ReLU
Convolution ~ Nx512x1x1 512 7x1 3x1 ReLU
Convolution Nx20x1x1 20 1x1 1x1

Table 15: Decoder Network for CVD Classification

Decoder
Layer Name Output size  # of kernels Kernel size Stride  Activation
Input Nx1x10x1
Transposed Convolution ~ Nx512x4x4 512 6x1 Ix1 ReLU
Transposed Convolution ~ Nx128x12x4 128 4x1 2x1 ReLU
Transposed Convolution ~ Nx64x36x4 64 5x1 2x1 ReLU
Transposed Convolution = Nx32x109x4 32 4x1 2x1 ReLU
Transposed Convolution  Nx32x331x4 32 4x1 2x1 ReLU
Transposed Convolution ~ Nx1x1000x4 1 4x1 2x1
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Figure 3: The experiment regarding the effect of phase mixup coefficients in eight datasets. a) shows
the performance in activity recognition, b) is for heart rate prediction using PPG, and finally ¢) shows
the cardiovascular disease classification
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Figure 4: The experiment regarding the effect of amplitude mixup coefficients in eight datasets. a)
shows the performance in activity recognition, b) is for heart rate prediction using PPG, and finally
¢) shows the cardiovascular disease classification

E Additonal Results

E.1 The effect and robustness of mixing coefficients

In this section, our experiments focus on observing the impact of a diverse range of mixing coefficients
for both phase and amplitude components. We decrease the lower threshold of distributions for
sampling the mixing coefficient by 0.1 and 0.2. For example, normally the phase mixup coefficient
for Activity Recognition is sampled from truncated normal A\p ~ A*(1,0.1,0.9) and uniform
Ap ~ U(0.9,1). We decrease the low threshold value from 0.9 to 0.8 and 0.7 and report the results
for both phase and amplitude. The results are reported in Figures [3]and [4] for eight datasets.

From Figures [3]and[] it can be inferred that the phase component is more sensitive to the changes. In
other words, a significant decrease in performance is observed when the mixing coefficients for the
phase are sampled from lower values whereas this effect is not as much as severe for the amplitude
coefficient, indicating that the amplitude of frequencies is more robust to changes compared to phase.

E.2 The performance in other frameworks

In this section, we investigate the effect of data augmentations in three different unsupervised learning
frameworks which are SimCLR [15], BYOL [59] and TS-TCC [16]]. For BYOL, the hidden size of
the projector is set to 128, the exponential moving average parameter is set to 0.996. For TS-TCC,
the A\; and Ao coefficients of temporal and contextual contrasting losses are set to 1, the same as
in the original implementation. In TS-TCC, the authors proposed to use a weak (jitter and scale)
and strong (permutation and jitter) augmentation together, which is shown as TS-TCC + Traditional
Augs in the tables. During our experiments, we followed the original implementation of TS-TCC
and applied additional augmentations after the strong one without changing the original contrastive
learning framework. We set the scaling ratio to 2 and 10 for permutation (splitting the signal into a
random number of segments with a maximum of 10 and randomly shuffling them). These parameters
for augmentation strengths are set to the same values as in the original implementation.
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Table 16: Performance comparison of our method in different CL frameworks for Activity Recognition

UCIHAR HHAR USsC
Method

ACCT MF11 ACCT MFI11 ACCT MF171
SimCLR + Traditional Augs. 87.05+ 1.07 86.13+£0.96 8548 £1.16 8431 +1.31 53474+1.10 52.09+0.95
SimCLR + Aug. Bank 6527 +1.12 71.16 £ 1.24 6795+ 145 7513+ 132 4328 £4.37 4731 +4.68
SimCLR + DACL 7312+ 123 6628 £1.11 80.89+£091 8131 £0.78 53.61 £2.60 51.76+2.21
SimCLR + Ours 91.60 + 0.65 90.46 +0.53 88.05+1.05 8795+ 1.10 60.13+0.75 59.13 + 0.69
BYOL + Traditional Augs. 8341 +095 82.13+1.12 8641+097 8631+1.10 5834+1.15 5504+£1.15
BYOL + Aug. Bank 7371 +£0.74 69.80 £ 1.10 84.60 £0.93 84.65+1.03 52.00+ 1.21 49.14 +1.18
BYOL + DACL 73.86 £ 1.12 70.46 £ 124 8276 £1.04 84.89+0.93 47.14+2.08 4534+298
BYOL + Ours 87.01 £1.10 8492+ 1.13 9031+ 1.16 9045+ 1.31 56.87 £091 55.01 £0.95
TS-TCC + Traditional Augs. 90.95 £ 0.87 90.30 £0.64 3557 +1.43 40.13+1.67 39.76 +1.61 43.12+1.10
TS-TCC + Aug. Bank 76.78 £0.95 76.52 +£0.97 20.25+1.54 19254132 21.37+1.78 20.15+ 1 48
TS-TCC + DACL 73.86 £ 1.12 7046 £ 124 3389+1.87 3741 +1.39 36.74+136 40.18+1.45
TS-TCC + Ours 91.86 + 097 9192 +1.02 3845+ 1.12 4352+ 1.33 4261 +1.92 4506+ 1.11

Table 17: Performance comparison of our method in different CL frameworks for Heart Rate

Prediction
Method IEEE SPC12 IEEE SPC22 DalLia
MAE] RMSE] MAE] RMSE] MAE] RMSE]

SimCLR + Traditional Augs. 20.67 +1.13 26.35+098 1684 £1.10 2223 +£0.72 12.01 £0.65 21.09 4 0.86
SimCLR + Aug. Bank 2731 £2.17 3793 +296 27.84+2.03 36414398 3587+4.18 40.61+3.74
SimCLR + DACL 21.85+1.63 28.17+1.75 1467 +£1.10 20.06+1.21 1844 +1.32 2561 +1.45
SimCLR + Ours 16.26 =0.72 2248 +0.95 12.254+0.47 18.20+0.61 10.57 +0.55 20.37 +0.73
BYOL + Traditional Augs. 20.68 £0.98 27.11 £0.85 21.16 +1.10 26.83+1.05 12.034+0.75 20.77 +0.83
BYOL + Aug. Bank 26.08 £1.05 32.62+093 21.87+1.03 29.134+1.03 18.63+0.91 28.30 4 0.87
BYOL + DACL 2645 +1.23 3350+1.32 2129+ 1.13 2734+1.33 15.114+0.93 2321 +0.83
BYOL + Ours 19.85 £0.88 26.10£094 2208 +1.24 2820+£1.13 11.45+£0.63 20.38 £0.80
TS-TCC + Traditional Augs. 11.08 £1.03 1697 £0.92 16.10+1.23 26.11 +1.11 16.18 +£1.03 24.27 £0.95
TS-TCC + Aug. Bank 1144 £1.01 17.06 £094 1379121 2241+£1.08 1728 =£1.12 2541+£0098
TS-TCC + DACL 11.60 £ 1.16 1826 £1.20 1525+126 2440+£1.10 1627 £1.16 2428 £0.97
TS-TCC + Ours 1082 +£0.65 1693 +0.73 13.63+£1.02 21.80+1.11 1590+0.57 23.81+0.89

Tables[16][I7) and [I8|compares the performance of three data augmentation techniques, traditional
time-series augmentations, DACL and our proposed method, in contrastive learning frameworks of
BYOL, SimCLR, and TS-TCC.

Table 18: Performance comparison of our method in different CL frameworks for CVD classification

Method CPSC 2018 Chapman
AUCT AUCT

SimCLR + Traditional Augs. 67.86 341 74.69 +2.04
SimCLR + Aug. Bank 81.78 £ 1.24 94.75 £ 0.90
SimCLR + DACL 8238 £0.84 92.28 +0.97
SimCLR + Ours 85.30 £ 0.45 95.90 +0.82
BYOL + Traditional Augs 7541 +£1.34 85.63+£1.43
BYOL + Aug. Bank 8351 £ 1.12 91.03 +1.18
BYOL + DACL 77.61 £1.16 81.62+1.24
BYOL + Ours 8325+ 1.03 91.23+1.15
TS-TCC + Traditional Augs  87.07 £ 1.10 92.03 +1.17
TS-TCC + Aug. Bank 86.67 £ 1.04 92.15+1.02
TS-TCC + DACL 87.63 £0.83 92.21 +£0.86
TS-TCC + Ours 88.05 £ 0.37 92.11£0.75

The results show that the BYOL is more robust to the choice of augmentations than SimCLR, which is
also indicated in the original paper [59]. Also, another important outcome of this ablation experiment
is that when the TS-TCC framework is used for datasets HHAR and USC, the performance decreases
compared to other datasets. A possible explanation for this decrease in the TS-TCC might be the
hyper-parameters of the augmentations that are used in the paper. The authors change the strength of
the permutation window from dataset to dataset. In our experiments, we used the same hyperparameter
for all activity recognition datasets, which can explain the outcome. This ablation experiment also
shows that the degree of traditional augmentations is important for contrastive learning to learn class
invariant representations.
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E.3 Do we still need data augmentations?

In this section, we conduct experiments to observe the performance of methods without additional
augmentations. During our experiments, we searched for the best traditional augmentation technique
for each method in a given task. We searched over common time series augmentation methods in
literature (Table[22), and applied them with baselines. Specifically, we apply Resample for Activity
Recognition, Permutation with Noise for Heart rate Prediction and Noise with Scaling for CVD
Classification. We have observed that these augmentations yield the best results for all baselines
when applied prior to the proposed techniques. However, for GenRep, we found that applying
the augmentations after generating instances results in better performance, similar to the original
work [S1]. We, therefore, apply these specified augmentations for each baseline and report the
corresponding results.

Different from other baselines, we observed performance increases for a few datasets when GenRep
is applied without any augmentations. This phenomenon can be attributed to the generation of
low-quality and less realistic positive samples, where additional augmentations lead to alterations in
semantic information, due to less number of samples during training VAE models. However, in the
end, we observe that applying additional augmentations always increases the performance on average
for all baselines in each task.

Table 19: Performance comparison of methods without Augs. in Activity Recognition datasets

UCIHAR HHAR [IN®
Method
ACCT MF11 ACC?t MF11 ACCt MF171
IDAA [53] 8223 +£0.69 79.84+0.89 88.98 +0.62  89.01 + 0.55 5923 +£1.10 56.11 +1.54
w/o Aug. 64.42 (-17.81)  65.17 (-14.67)  86.44 (-2.54) 86.31 (-2.70) 3522 (-24.01) 33.62(-22.59)
GenRep [51] 87.22+1.05 86.48 + 0.95 87.05 £ 0.95 86.45+090 50.13+£2.85 49.50 +2.73
w/o Aug. 88.01 (+0.79)  88.12 (+1.64)  86.51 (-0.54) 86.33 (-0.22)  48.31(-1.82)  47.33(-2.17)
DACL [22] 7312+ 123 6628 +1.11 80.89 + 0.91 81.31 £0.78 53.61 £2.60 51.76 +£2.21
w/o Aug. 45.17 (-27.95) 44.84 (-21.44) 56.70 (-24.19)  56.55 (-25.76)  27.12 (-26.49)  26.99 (-24.77)
Ours 91.60 £ 0.65  90.46 + 0.53 88.05 £ 1.05 8795+ 1.10 60.13+0.75 59.13 £ 0.69
w/o Aug. 84.04 (-5.56) 83.34 (-7.12) 86.70 (-1.35) 86.72 (-1.23)  45.55(-14.58) 44.94 (-14.19)

Table 20: Performance comparison of methods without Augs. in Heart Rate Prediction datasets

1IEEE SPC12 IEEE SPC22 DalLia
Method
MAE] RMSE| MAE] RMSE| MAE] RMSE|
IDAA [53] 19.02+0.96 2742+ 1.11 1537+ 1.21 2241+ 1.42 11.12 £ 0.64  20.45 + 0.69
w/o Aug. 20.19 (+1.17)  28.51 (+1.09) 16.34 (+0.97) 25.75 (+3.34) 16.01 (+4.89) 25.62 (+5.17)
GenRep [51] 21.02£1.41 2842+1.65 1567 +123 22334143 2541 +1.62 36.83 +1.87
w/o Aug. 20.51 (-0.51)  28.35(-0.07)  23.07 (+7.40) 33.20(+10.87) 20.03 (-5.38)  31.01 (-5.82)
DACL [22] 21.85+1.63 28.17+1.75 14.67 +1.10 20.06 + 1.21 18.44 +1.32 25.61 +1.45
w/o Aug. 22.75 (+0.90)  29.90 (+1.73) 20.88 (+6.21) 29.51 (+2.70) 28.24 (+9.45)  37.33 (+11.72)
Ours 16.26 £0.72 2248+ 095 12.25+047 18.20 +0.61 10.57 £0.55 20.37 £0.73
w/o Aug. 19.41 (+3.15) 26.23 (+3.75) 16.41 (+4.16) 25.71 (+7.51) 16.73 (+6.16)  27.43 (+7.06)
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Table 21: Performance comparison of methods without Augs. in CVD classification datasets

Method CPSC 2018 Chapman
AUC?T AUCT

IDAA [53] 80.90 +£0.73 93.63 £ 0.91
w/o Aug. 79.00 (-1.90)  92.37 (-1.26)

GenRep [51] 5249 £343 86.72+1.13
w/o Aug. 45.17 (-7.32)  84.51 (-2.21)

DACL [22] 82.38 +0.84 92.28 +£0.97
w/o Aug. 73.00 (-9.38)  75.10 (-17.18)

Ours 85.30 £ 0.45 95.90 + 0.82
w/o Aug. 79.67 (-5.63)  93.48 (-2.42)

Table 22: Common time series augmentations [[19]

Domain Augmentation Details
Noise Add Gaussian noise sampled from normal distribution, A"(0, 0.4)
Time Scale Amplify channels by a random distortion sampled from normal distribution N/ (2, 1.1)
Shuffle Randomly permute the channels of the sample. (Not available for Heart rate Prediction)
Negate Multiply the value of the signal by a factor of -1
Permute Split signals into no more than 5 segments, then permute the segments
and combine them into the original shape
Resample Interpolate the time-series to 3 times its original sampling rate
and randomly down-sample to its initial dimensions
Rotation Rotate the 3-axial (x, y, and z) readings of each IMU sensor by a random degree, which follows a
uniform around a random axis in the 3D space. (Only applied for Activity Recognition)
Time Flip Flip the time series in time for all channels, i.e., X 4u4[n] = x[—n]
Random Zero Out Randomly chose a section to zero out
Permutation + Noise ~Combination of Permutation and Noise
Noise + Scale Combination of Noise and Scaling
Highpass Apply a highpass filter in the frequency domain to reserve high-frequency components
Frequency  Lowpass Apply a lowpass filter in the frequency domain to reserve low-frequency components
Phase shift Shift the phase of time-series data with a randomly generalized number

Noise in Frequency

Add Gaussian noise, sampled from normal distribution A/ (0, 0.5), to the frequency spectrum
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E.4 The effect of interpolating phase components

Here, we investigate the effect of phase interpolation of two samples on the CL performance. In our
proposed method, we bring the phase components of the two coherent signals together by adding a
small value to the anchor’s phase in the direction of the other sample. In this section, we apply the
opposite case of our proposed method and increase the gap of phase difference between the anchor
and randomly chosen sample. However, we mix their amplitudes according to our proposed method
to only observe the phase effect. In other words, we perform the mixup as in Equation[46] Note that
the phase mixing in Equation 46| differs from the proposed method only by the sign change.

xT = F Y A(xT)2ZP(x")) where
AxT) = AA(x) + (1 — Aa)A(X) and
P(xT)=P(x) + AO (1 - \p)

(46)

Also, It is important to note that we sample the mixing coefficients for both amplitude and phase
from the same distributions in the proposed method to have a fair comparison. Tables 23|24|23]

Table 23: Performance comparison of our method and its ablation regarding the phase interpolation
in SimCLR and BYOL frameworks for Activity Recognition

M UCIHAR HHAR [N
ethod
ACC?t MFI11 ACCT MF11 ACCT MF171

SimCLR + Traditional Augs. 87.05+ 1.07 86.13+£096 8548 +1.16 8431+1.31 5347+1.10 52.09+0.95
SimCLR + Phase Gap 79.62 + 1.10  80.57 +1.03 86.55+0.83 86.68 +0.71 53.61 +2.60 51.76 +2.21
SimCLR + Ours 91.60 + 0.65 90.46 +0.53 88.05+1.05 8795+1.10 60.13+0.75 59.13 +0.69
BYOL + Traditional Augs. 83.41+£095 8213+ 1.12 86.41+097 8631+ 1.10 5834+ 1.15 5504+ 1.15
BYOL + Phase Gap 78.66 +0.63 75.45+1.02 8582+091 8516+0.92 56.144+0.67 56.20+0.75
BYOL + Ours 87.01 £1.10 8492+ 1.13 9031+ 1.16 9045+ 131 56.87+091 55.01 +0.95

Table 24: Performance comparison of our method and its ablation regarding the phase interpolation
in SimCLR and BYOL frameworks for Heart Rate Prediction

Method IEEE SPC12 IEEE SPC22 DaLia
MAE| RMSE/| MAE| RMSE] MAE] RMSE|

SimCLR + Traditional Augs. 20.67 £ 1.13 2635+ 0.98 1684+ 1.10 2223+0.72 12.01 £065 21.09+0.86
SimCLR + Phase Gap 1890 £ 1.43 2529+ 1.56 14.60+1.03 1984+1.15 1757 +1.13 27.72+135
SimCLR + Ours 1626 +0.72 2248+0095 12254047 1820+0.61 10.57+£0.55 20.37 +0.73
BYOL + Traditional Augs. ~ 20.68 £ 0.98 27.11 +0.85 21.16+ 1.10 2683+ 1.05 12.03+0.75 20.77 % 0.83
BYOL + Phase Gap 2593 +£096 32.68+090 21.87+103 29.13+1.03 17.46+083 27.24 +0.83
BYOL + Ours 19.85+0.88 26.10 094 22.08+124 2820+ 1.13 11.45+0.63 20.38+0.80

Table 25: Performance comparison of our method and its ablation regarding the phase interpolation
in SimCLR and BYOL frameworks for CVD classification

Method CPSC 2018 Chapman
AUCT AUCT

SimCLR + Traditional Augs. 67.86 &= 3.41 74.69 £+ 2.04
SimCLR + Phase Gap 7745 £ 1.10 91.95+0.91
SimCLR + Ours 85.30 £ 045 95.90 +0.82
BYOL + Traditional Augs 7541 £1.34 85.63 £ 1.43
BYOL + Phase Gap 83.11 £ 1.03 91.02+ 1.11
BYOL + Ours 8325+ 1.03 91.23+1.15
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E.5 The comparison of Mixup methods

In this section, we give a detailed comparison of prior mixup methods with ours below tables, which
are the explicit numbers for Figure 2| Our method demonstrates superior performance compared
to previous mixup techniques in 11 out of 14 metrics, indicating its effectiveness. Additionally, the
Amplitude Mixup technique, which yields comparable results in two datasets, further supports our
claim regarding the destructive effect of simultaneously mixing phase and magnitude for time series.
The relatively lower performance of Amplitude Mixup for some datasets can be explained by its
limited diversity in generating positive samples since this technique has no solution for mixing the
phase of samples in randomly chosen pairs. In other words, as the phase of the augmented instance is
the same as the anchor in Amplitude Mix, the diversity of generated positive samples is less compared
to other techniques.

Table 26: Performance comparison of ours with prior mixups in Activity Recognition datasets

Method UCIHAR HHAR [N
ACCYT MF11 ACCYT MF11 ACCYT MF11

Geo 36.31 £10.15 3321 £12.25 33.16 £8.32 31.15+£9.25 24854943 21.64£8.94
Amp 81.76 £0.89  80.78 £0.78 87.85+0.83 8553 +£1.10 41.29+0.56 39.77 +1.03
Spec 40.14 £2.05 3834+£195 56.73£2.01 5354+198 2345£255 21.30+241
Cut 5021+ 134 4823 +123 5771 +1.12 53.87+£1.09 25.63+£295 2341+3.11
Binary 74.13+1.12 7131 +1.10 77.124+0.75 7523 £0.95 4221+097 41.53+1.10
Linear 8223 £2.10 80.25+1.93 80.11 £2.05 8131 +£1.73 40.15+143 3971 +1.14
Ours 84.30 +£0.73  83.23+0.58 8451 +1.10 83.98+1.03 45.36+097 43.14+0.81

Table 27: Performance comparison of ours with prior mixups in Heart Rate Prediction datasets

Method _ IEEE SPCI2 IEEE SPC 22 DaLia
MAE] RMSE] MAE] RMSE] MAE] RMSE/

Geo 32.65+725 4890+987 37.15+6.74 3632+621 3845+731 41.32+621
Amp  23.01 £095 30.10+1.04 18.07+1.13 23.13+1.43 19.05=+1.63 3041+ 1.65
Spec  24.09 £4.10 38414398 2441+4.10 29.93+4.10 26.71 £4.34 3531 +3.93
Cut 2498 £393 3567 +4.15 21.77+445 2843+397 31.75+4.10 43.56+ 3.88
Binary 3223+ 1.67 4021+ 198 2255+ 1.87 2878+2.10 1971 £2.15 28.83 & 2.45
Linear 2431+ 1.54 3129+ 175 1852+ 143 2254+ 1.49 24.16+ 1.89 32.46 & 1.97
Ours  21.13+089 2821+ 1.15 1617 +0.85 21.13+1.05 16.64=+ 120 28.43+ 1.43

Table 28: Performance comparison of ours with prior mixups in CVD classification datasets

Method CPSC 2018 Chapman
AUCT AUCT

Geo 45.65 £ 643 6132 +£5.79
Amp 84.10 £ 1.05 89.83 +1.12
Spec 69.26 £3.10 70.48 £ 3.05
Cut 7220 £2.98 79.23 £2.75
Binary  80.53 £1.62 82.56 +1.45
Linear  78.02+1.43 90.21 £ 1.15
Ours 83.79 £1.10 93.85 £ 1.05
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F Illustrative Examples

In this section, we show examples of the destructive behavior of linear mixup and how our proposed
mixup technique solves this problem. In Figure[5|a), we show two PPG waveforms that are obtained
from IEEE SPC15 with the same label i.e., the same heart rate value. Also, we give the corresponding
frequency domain transformations of these two waveforms in Figure[5]b) where the frequency axis is
converted to heart rate in beats-per-minute i.e., 1 Hz corresponds to 60 bpm.

a) b)
Anchor Anchor
B Sample X 05 Sample X
= @
[0}
o1 To4
2 ) Two samples with the same label
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Figure 5: a) The waveforms of anchor and random sample, b) The frequency domain (A(x))
representation of two samples.

When the linear mixup is applied as in Equation [f7] with a A of 0.9, the resulting waveform is
anticipated to contain heart rate information to an extent similar to both the anchor and the sample.

xT=Xx+(1-M)x (47)

However, when there is a phase difference greater than /2 between these two samples in the
frequencies where the task-specific information is carried, the linear mixup destroys the information.
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Figure 6: a) The waveform of anchor and augmented sample with linear mixup, b) The frequency
domain (A(x)) representations of samples where the augmented waveform has lost all the information
in the critical frequency band, i.e., the task-specific information is lost.
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Figures [5] and [ demonstrate the destructive behavior of linear mixup instead of feature interpolation.
The linear mixup technique destroys the task-specific information even though the two samples have
the same labels and the mixup ratio is relatively high.

As our proposed mixup prevents this problem and interpolates between features of two samples, the
information is not lost but rather enhanced as both samples have the same label, shown in Figure

a) b)
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Figure 7: a) The waveform of anchor and augmented sample with proposed mixup technique, b)
The frequency domain (A(x)) representations of samples where the augmented waveform carries the
information in the critical frequency band as an interpolation of two samples.

As can be seen From figures []and[7] our proposed mixup technique not only prevents information
loss due to linear mixup but also generates an interpolated sample.
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G Performance in Supervised Learning Paradigm

We also conduct experiments in the supervised learning paradigm with our proposed mixup method to
see its effectiveness in different learning paradigms. We compare the performance of our method with
prior mixup techniques. During the experiments, we follow the original implementation where the
mixup is applied to the same minibatch after random shuffling. In the seminal work of mixup [31]], the
authors stated that interpolating only between inputs with equal labels does not lead to performance
gains. Therefore, we only perform the tailored mixup without implementing any VAEs to check the
similarity of the randomly chosen samples. We implement the tailored mixup for the supervised
learning paradigm as follows.

if AO© >0and \g > 0.5
if A® <0and A4 > 0.5

if A© > 0and A4y < 0.5
if A© <0and Ay < 0.5

Yyt = Aayx + (1 — Aa)ys,

)
+]A8] % (1= Ap), 48)
)

—|AB| x (1 — Ap),

where the coefficient for the A4 is chosen from a beta distribution with o € [0.1, 0.4] within the
same range of the original implementation [31]. The mixing for the phase is constrained to our
original implementation with a uniform Ap ~ U(0.9, 1). We searched for the best « value for each
time-series task and augmentation method. Unlike linear mixup and our mixup approach, for cutmix,

we followed the recommendation from the original paper and searched the « value close to 1.

Table 29: Performance comparison in Activity Recognition within supervised learning scheme

UCIHAR HHAR USC
Method

ACC?t MF11 ACCt MF11 ACCt MF11
W/o Augs. 65.66 +0.23 61.21 £0.15 91.58 +£0.07 91.64 £0.11 7193 +0.54 68.43 £0.78
Linear Mix 77.06 = 0.18 73.21 £0.17 93.64 +0.17 93.67 £0.08 74.45 4+0.28 71.93 £0.43
Amp Mix 7096 £0.19 67.14 £033 9250+0.15 9254 +£0.10 74.02+0.19 71.90 +0.26
Binary Mix 69.01 +£0.36 71.63 +0.11 9236 £0.19 9242 4+0.10 72.81 £0.15 70.98 £0.35
CutMix 67.14 +0.54 63.31 £048 9037043 90.36+0.76 57.89+0.34 61.45+0.57
Ours 81.60 £ 0.15 79.35+0.13 94.02+0.05 94.00+0.06 74.85+0.19 72.45+0.34

Table 30: Performance comparison in Heart Rate Prediction within supervised learning scheme

Method IEEE SPC12 IEEE SPC 22 DaLia
MAE/ RMSE| MAE/ RMSE] MAE/ RMSE,]
W/o Augs.  20.01 £0.03 27.16£0.05 20.29+0.87 26.60+1.13 6.58+0.10 11.30 £ 0.58
Linear Mix  20.07 £0.09 2693 £0.10 19.98 £0.12 2490+ 0.51 6.97 £0.14 12.07 £ 0.51
Amp Mix 20.14 £0.07 2698 £0.07 19.61 £0.07 24.11+0.21 11.20+0.17 16.07 £0.43
Binary Mix 21.05 £0.13 27.02 +£0.08 19.62+0.10 2523 +0.13 7.35+0.16 12.17 £ 0.53
CutMix 20.12+0.06 2689 +0.11 19.64+£0.13 24.18 £0.20 10.78 £1.23 14.40+1.43
Ours 19.97 £ 0.05 2698 £0.10 1945+0.12 24.35+0.18 6.49 £0.08 11.69 + 0.10
Table 31: Performance comparison in CVD classification within supervised learning scheme
Method CPSC 2018  Chapman
AUC?T AUC?T

W/o Augs.  82.01 £0.51 92.27 +0.35

Linear Mix  80.29 £0.93 93.02 + 0.33

Amp Mix 80.01 £0.36  89.11 +0.27

Binary Mix 78.10 £0.98 80.31 + 0.36

CutMix 80.75 +£0.78 89.17 + 0.58

Ours 83.75 £ 0.32 9526 + 0.24
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