
A Graph Measures for Subgraph454

In Section 3 of the main paper, we compare conventional metrics with distributional metrics. Moreover, we show that455

distributional metrics are easily decomposed into combinatorial metrics for combinatorial subgraph sampling and they are456

closely related to subgraph sampling methods proportional to the curvature. In this section, we provide adjuncts on several457

conventional metrics.458

(Conductance) The conductance is used as a measure to present the ratio of outer edges in graph theory. Let S ⊆ V be sampled459

partial nodes in the subgraph Ĝ. Then, the conductance of the cut (S,V\S) in the graph G = (V, E) is defined as follows.460

dφ(Ĝ,G) =
∑
x∈S,y∈V\S |exy|

min(vol(S), vol(V\S))
, (11)

where vol(S) =
∑
x∈S,y∈V |exy| is the volume of subset S and |exy| is the number of edges between x and y.461

In graph theory, the conductance of subset S is the ratio of edges going out to V\S. This is related to the mixing time, which462

indicates how fast the probability distribution defined on subset S propagates to a nonzero probability for the entire node463

V along the Markov chain. If the conductance of the sampled subgraph is small, training subset S can be biased according464

to a subset of nodes that rarely propagates to external nodes. Although a small conductance enables to preserve the cluster465

information, it cannot help preserve the entire graph information. Consequently, conductance is not a suitable indicator for466

subgraphs used for learning instead of the original graph.467

(Graph Edit Distance) Like the conductance dφ(Ĝ,G), there is a measure to match two different graphs by counting the468

number of nodes and edges in traditional graph theory. Unlike the exact graph matching problem that solves graph isomorphism,469

the graph edit distance measures the similarity between two different graphs (i.e., error-tolerant graph matching). Thus, the470

graph edit distance measures the minimum error of matching one graph to another.471

dGED(Ĝ,G) = min
(e1,e2,...,ek)∈P

k∑
i=1

c(ei), (12)

where c(ei) denotes the cost of each edit operation that includes vertex insertion, vertex deletion, edge insertion, and edge472

deletion. P(Ĝ,G) denotes a set of edit paths. A single path consists of several edit operations (e1, e2, ..., ek) used to modify Ĝ473

to match another graph G.474

However, it is computationally expensive to find the optimal editing path. To find the optimal editing path at a low computation475

cost, we introduce the following assumptions. Suppose that graph G = (V, E) is an unweighted graph. Ĝ is a subgraph that is476

defined for nodes S ⊂ V and has only edges ES→S ⊂ S × S. All edit costs c(ei) are assumed to have values of 1. Then, the477

graph edit distance between the subgraph Ĝ and the original graph G can be simplified as follows.478

dGED(Ĝ,G) = |V\S|+ |EV\S→V\S |+ |ES→V\S |, (13)
where dGED is calculated only using the number of nodes and edges in the subset. Although the conductance in (11) and graph479

edit distance in (13) contain structural information, they do not represent topological characteristics of the subgraphs.480

(Spectral Distance) We typically compare graphs based on spectral analysis. There are several spectral methods [53], of481

which Laplacian is used to transform the domain of graph data. Let A be the adjacency matrix that represents the graph G, and482

D be the degree matrix with diagonal elements defined by Dxx =
∑
y∈N (x)Axy. Then, the Laplacian matrix is defined as483

L = D −A, whereas the normalized Laplacian matrix is defined as L = D− 1
2LD− 1

2 . Using the eigendecomposition of the484

Laplacian matrix, we can interpret the graph in the spectral domain instead of the spatial domain.485

Suppose that the eigenvalues of Laplacian matrix L is arranged in ascending order, i.e., 0 = λ1 ≤ λ2 ≤ · · · ≤ λ|V|, with486

eigenvectors ϕ1 · · ·ϕ|V|, where the eigenvalues 0 = λ̂1 ≤ λ̂2 ≤ · · · ≤ λ̂|V| can be obtained from the Laplacian matrix L̂ of the487

subgraph Ĝ with common eigenvectors ϕ1 · · ·ϕ|V|. Then, the spectral distance between the original graph G and the subgraph488

Ĝ is defined as follows.489

dλ(Ĝ,G) =

√√√√ |V|∑
i=1

(λi − λ̂i)2. (14)

Thus, if the adjacency matrix A′ of graph G′ is defined by the permutation matrix P (i.e., A′ = PTAP), G′ is isomorphic490

to G and dλ(G′,G) = 0. However, it is difficult to understand which nodes and edges should be sampled for good subgraph491

sampling by comparing the original and subgraphs through spectral distance. In contrast, we can intuitively interpret the492

proposed distributional metric in the context of good subgraph sampling and show that it is related to the curvature.493

13

B Curvature and Graph Neural Networks494

(Graph Diffusion Kernel) Let G = (V, E) be an undirected graph with nodes V and edges E . The node features X ∈ R|V|×D495

are defined for nodes V and the structure of G is represented as a matrix form A. The symmetric normalized graph Laplacian496

matrix can be defined as L = D− 1
2 (D − A)D− 1

2 . Then, the graph convolution is defined as gψ(L) ∗ x = Ugψ(Λ)U
Tx for497

spectral filtering gψ(Λ) = diag(ψ), where ψ ∈ R|V| is a spectral coefficient and x ∈ R|V|×1 is a graph signal. However, the498

spectral filtering is computationally expensive because it requires the eigendecomposition process L = UΛUT to transform499

graph domain into signal domain. Thus, in [20, 9], approximated graph convolution has been presented using Chebyshev500

polynomials of Laplacian, i.e., Ugθ(Λ)UTx ≈ (
∑K
k=0 θkL

k)x, where θ ∈ RK+1 is a polynomial coefficient. Furthermore,501

many graph neural networks in [21, 41, 37, 22, 6, 35] are defined based on the diffusion matrix T =
∑∞
k=0 θkT

k with the502

diffusion coefficient θ and the transition matrix T . In diffusion-based methods, diverse kernels can be defined to aggregate503

and propagate the node features. For example, the first-order approximated graph convolution [20] uses the diffusion matrix504

T = D̃− 1
2 ÃD̃− 1

2 , where Ã is I +A, D̃ is a degree matrix of Ã. Random-walk, personalized page rank, and heat kernels use505

(D−1A)k,
∑∞
k=0 α(1− α)k(D−1A)k, and

∑∞
k=0 e

−t tk
k! (D

−1A)k, respectively. In the case of the diffusion kernel based on506

non-symmetric normalized graph Laplacian D−1(D −A), it can be easily interpreted as the curvature.507

Let G = (V, w,m) be a graph, where w and m are edge weights and node measures, respectively. If w(x, y) ∈ {0, 1}, G is508

referred to as the combinatorial graph with the corresponding adjacency matrix A. Then, the non-symmetric normalized graph509

Laplacian is discretized as follows. The Laplacian becomes a negative operator in the Riemannian manifold.510

∆f(x) =
∑
y∈V

w(x, y)(f(y)− f(x)), (15)

where m(x) =
∑
y∈N (x) w(x, y). Then, the probability measure [48] at each node can be defined by lazy random walk kernels.511

512

mϵ
x(y) := 1y(x) + ϵ∆1y(x), (16)

where mϵ
x(y) = 1 − ϵ if y = x, and mϵ

x(y) = ϵ · w(x,y)
m(x) , otherwise. Then, the integral for the measure mϵ

x is defined as513 ∫
fdmϵ

x =
∑
y∈V f(y)m

ϵ
x(y) = (f + ϵ∆f)(x). Based on this definition, the Wasserstein distance between mϵ

x,m
ϵ
y can514

be defined in the following assumptions. Let G = (V, w,m) be a graph and x ̸= y be nodes in the graph G. In addition,515

∇xyf = f(x)−f(y)
d(x,y) , and ∇xy∆f = ∆f(x)−∆f(y)

d(x,y) . Then, the 1-Wasserstein satisfies the following equality for the 1-Lipschitz516

function f .517

W1(m
ϵ
x,m

ϵ
y) = sup

f∈Lip(1)

∑
v∈V

f(v)(mϵ
x(v)−mϵ

y(v)) = d(x, y) sup
f∈Lip(1)

∇yx(f + ϵ∆f). (17)

The Ollivier-Ricci curvature κxy is defined as the ratio of the distributional distance W1(m
ϵ
x,m

ϵ
y) and the geodesic distance518

d(x, y). In addition, the following generalized inequality holds for any 1-Lipschitz function f without supremum:519

κϵxy ≤ 1−∇yx(f + ϵ∆f). (18)

Suppose that G is not a geometric graph, but a combinatorial graph with edges of length d(x, y) = 1 for all edges. Then, the520

matrix form is denoted as follows.521

κϵxy ≤ 1−∇yx

[
(I + ϵ(D−1A− I))X

]
, (19)

where X represents f , and I + ϵ(D−1A− I) represents first-order approximation of graph filter 1
2 (I +D−1A) when ϵ = 1

2 .522

(Curvature graph networks) If the GNNs are interpreted as diffusion-based graph neural networks in the aforementioned523

manner, the relationship between the curvature and the GNNs becomes clear. Thus, the curvature graph neural network [42]524

using the curvature as the kernel attention of the graph network has been proposed. The curvature measures how smoothly525

a message flows along the edge of the graph. Therefore, the negatively curved edges are likely to be inter edges of different526

communities. However, in [42], they design an indirect curvature attention network with mapping functions that can be learned527

by node features and node labels, because the curvatures only consider the structural information of the graph. Although the528

goal of the proposed method is to sample the subgraphs using only the structural information of graphs in large-scale graphs,529

we indirectly but experimentally show that the curvature contains useful information for learning graph networks.530

C Curvature and Substructures531

(Forman-Ricci curvature) The curvature considers how flat an geometric object is. To measure the curvature, the metric space532

must be defined as (X , d), in which X is a underlying space and the distance function is d : X × X → R. Fundamentally, the533

Riemannian manifold (M, g) for smooth manifolds M is equipped with the Riemannian metric g. The curvature κ can be534

interpreted as one of the Riemannian metrics of the Riemannian manifold. In other words, the curvature can be considered as a535

14

function that measures geometric quantities. Particularly, we focus on the Ricci-curvature, which can be defined in the discrete536

space (e.g., graphs through the Ollivier-Ricci curvature [28] and Forman-Ricci curvature [10]). The detailed differences have537

been studied in [31].538

The Ollivier-Ricci curvature is defined using the minimal transport cost between two points in a metric space. The Ricci-539

curvature can be discretized as a graph with the probability measure at each node. In contrast, the Forman-Ricci curvature540

is defined using topological arguments. It measures how fast the distance volume between the two points increases. Thus, it541

measures the dispersion rate of the geodesic. Then, the Forman-Ricci curvature is defined as follows.542

F(exy) = wexy

 wx
wexy

+
wy
wexy

−
∑

ex∼exy,ey∼exy

[
wx√

wexywex
+

wy√
wexywey

] (20)

= wexy

 wx
wexy

+
wy
wexy

−

 ∑
ex∼exy

wx√
wexywex

+
∑

ey∼exy

wy√
wexywey

 , (21)

where wexy
is an weight of edge ex,y and wx, wy are weights of nodes x, y. In addition, ex ∼ e denotes the set of edges543

connected to x except for exy and ey ∼ e denotes the set of edges connected to y except exy .544

The Forman-Ricci curvature has been used to find substructures [52] in the graph, because it is fast and scalable. However,545

despite these advantages, the association between structural errors of subgraphs and curvatures are unclear. Therefore, we546

attempt to explain the subgraph sampling via intuitive and descriptive Ollivier-Ricci curvatures. In this paper, we show that547

existing combinatorial subgraph sampling methods are closely related to the Ollivier-Ricci curvature.548

(Community) Finding communities using the curvature has been studied in [26]. In this study, the communities was found549

through Ricci flow, which used the Ollivier-Ricci curvature to reduce the weight of positively curved edges and increase the550

weight of negatively curved edges. The increase in weight can be interpreted as an increase in the length of the edge; thus, the551

association between two nodes is reduced. Therefore, the communities can be found by removing the edges with the reduced552

association by the surgery in specific iterations.553

wt+1(exy) = (1− σ)wt(exy)− σ · κt(exy)wt(exy), (22)

where σ is an update weight of curvatures and wt denotes an weights at the t-step. Then, the edge weight wt(exy) at time t is554

updated to the edge weight wt+1(exy) at time t+ 1 by the curvature κt(exy). As a result of the community separated by Ricci555

flow, we can show that positively (negatively) curved edges become intra-edges (inter-edges). Community detection problems556

have been widely studied for graph structural analysis and these characteristics have been used directly for subgraph sampling.557

For example, the cluster sampler obtains the samples of community-based subgraphs using a multi-level graph partitioning558

algorithm in the application of large-scale graphs. However, because the fixed number of partitions with the fixed number559

of nodes are sampled, it is difficult to obtain dynamic communities and find the optimal number of communities. Because560

neighbor samplers also sample a certain number of neighbors for each hop based on seed nodes, they can form the communities.561

However, because neighbors are randomly sampled, it is difficult to find hyper-parameters that construct suitable communities.562

D Proofs563

(Proposition 1) Let wx be a probability measure for node x in a sampled subgraph, which can be defined as wx =564 ∑
y∈V p(y|x)δy by combinatorial decomposition, where

∑
y∈N (x) p(y|x) = 1, δy = 1y. By Definition 2, the distributional565

distance dm(Gx, Ĝx) can be bounded by combinatorial decomposition as dm(Gx, Ĝx) ≤
∑
y∈N (x) p(y|x)dm(Gx, vy). Then, by566

the triangular inequality, the following inequalities hold.567

dm(G, vy) ≤ dm(Gx,Gy) + dm(Gy, vy) = W1(mx,my) +W1(my, δy) ≤ (1− κxy) + 1 = 2− κxy. (23)

Therefore, the distributional distance between the original graph and sampled subgraph can be represented for node x as follows.568

569

dm(Gx, Ĝx) ≤
∑

y∈N (x)

p(y|x)(2− κxy) = 2−
∑

y∈N (x)

p(y|x)κxy. (24)

(Corollary 1.1) Let Gp = (V, E) be a graph with positively curved edges κxy ≥ κ > 0 for any edge exy in E . Then, the570

diffused probabilities of random-walk steps can be defined using curvature κ. Suppose that the probability distribution diffused571

n-hop through the random walk kernel reflects local structures of n-hop at each node. Then, the distributional distance between572

15

the n-hop local structure G∗n
x with n-hop diffused probability measure m∗n

x and the sampled local structure Ĝx with probability573

measure wx can be represented as follows.574

dm(G∗n
x , Ĝx) = W1(m

∗n
x , wx) ≤

∑
y∈N (x)

p(y|x)
[
W1(m

∗n
x ,m∗(n−1)

x) + · · ·+W1(mx,my) +W1(my, δy)
]
. (25)

As shown in [28], the following inequality holds, i.e., W1(µ ∗ m, ν ∗ m) ≤ (1 − κ)W1(µ, ν). We use this inequality,575

W1(m
∗(i+2)
x ,m

∗(i+1)
x) ≤ (1− κ)W1(m

∗(i+1)
x ,m∗i

x), to derive the followings.576

dm(G∗n
x , Ĝx) ≤

∑
y∈N (x)

p(y|x)
[
(1− κ)n−1 + · · ·+ (1− κ) +W1(mx,my) +W1(my, δy)

]
(26)

=
∑

y∈N (x)

p(y|x)
[
(1− κ)(1− (1− κ)n−1)

1− (1− κ)
+W1(mx,my) + 1

]
(27)

≈ (1− κ)− (1− κ)n

κ
+ dm(Gx, Ĝx). (28)

(Proposition 2) In [28], (V, d) for ϵ-geodesic satisfies that if κuv ≥ κ for any pair of nodes with d(u, v) ≤ ϵ, then577

κxy ≥ κ for any pair of nodes x, y ∈ V . The Wasserstein distance can be represented using a duality form of578

W1(µ, ν) = supf∈Lip(1)
∫
V fdµ−

∫
V fdν. Then, the Wasserstein distance between two probability measures defined on two579

nodes is defined as follows.580

W1(mx,my) = sup
f∈Lip(1)

∑
v∈V

f(v) (my(v)−mx(v)) (29)

= sup
f∈Lip(1)

[(f(y) + ∆f(y))− (f(x) + ∆f(x))] (30)

= d(x, y) sup
f∈Lip(1)

∇yx(f +∆f). (31)

The curvature of edge exy is defined as κxy = 1 − W1(mx,my)
d(x,y) = inff∈Lip(1)(1 − ∇yx(f + ∆f)). Let two geodesic paths581

Pi,Pj be xi = v0, v1, · · · , vn = yi for Pi, xj = u0, u1, · · · , un = yj for Pj . Because these two paths are the shortest paths582

between starting and ending nodes, the Wasserstein distance is computed as follows.583

W1(mxi
,myi) ≤

n−1∑
k=0

W1(mvk ,mvk+1
) =

n−1∑
k=0

(1− κvk,vk+1
)d(vk, vk+1), (32)

584

W1(mxj
,myj) ≤

n−1∑
k=0

W1(muk
,muk+1

) =

n−1∑
k=0

(1− κuk,uk+1
)d(uk, uk+1). (33)

Therefore, it can be represented as follows.585

W1(mxi
,myi) =

(
inf

f∈Lip(1)
∇yixi

(f +∆f)

)
d(xi, yi), (34)

586

W1(mxj ,myj) =

(
inf

f∈Lip(1)
∇yjxj (f +∆f)

)
d(xj , yj). (35)

Because two geodesic paths Pi,Pj are the paths with length d(xi, yi) = d(xj , yj) = n on common graphs, the following587

inequality holds for any 1-Lipschitz function f that satisfies κ̄ < 0.588

∇yixi(f +∆f)× n−∇yjxj (f +∆f)× n =

n−1∑
k=0

(κukuk+1
− κvkvk+1

)d(vk, vk+1) = κ̄× n, (36)

where κ̄ = 1
n

∑n−1
k=0(κukuk+1

− κvkvk+1
) is the mean of differences in curvatures of the path. Because the curvature κvkvk+1

589

of edges in Pi is larger than κukuk+1
of edges in Pj , the mean of difference κ̄ is negative, i.e., κ̄ < 0. Thus, the following590

inequality holds.591

∇yixi(f +∆f)−∇yjxj (f +∆f) < 0. (37)

(Table 1) We present the approximated curvatures with 3-cycles in Definition 3 as follows.592

κxy ≥ −
(
1− 1

dx
− 1

dy
− △♯(x, y)

dx ∧ dy

)
+

−
(
1− 1

dx
− 1

dy
− △♯(x, y)

dx ∨ dy

)
+

+
△♯(x, y)

dx ∨ dy
, (38)

where ∆♯(x, y) denotes the number of triangles including the edge exy .593

16

• Edge sampler: The edge sampler samples the subgraphs based on probabilities p(exy) defined on each edge exy. The594

probability model is obtained from the symmetric edge weight wexy = weyx , which is calculated by the sum of the degree595

normalized edge weights wexy
∝ 1

dx
+ 1

dy
for exy . This probability model can be interpreted as the probability proportional596

to the approximated curvature in the case of ∆♯(x, y) = 0. We assume that each node in the graph has a degree greater597

than 1 d > 1. Then, (38) can be simplified as follows.598

κxy ≥ κ̂xy = −
(
1− 1

dx
− 1

dy

)
+

−
(
1− 1

dx
− 1

dy
−
)

+

= −2

(
1− 1

dx
− 1

dy

)
. (39)

Therefore, the edge sampler can be defined based on the weights proportional to the approximated Ollivier-Ricci curvature.599

600

p(exy) ∝ wexy
=
κ̂xy + 2

2
. (40)

• Node sampler: The node sampler also defines the probability model based on edge weights wexy like the edge sampler.601

Because the node sampler configures the subgraph by node-wise sampling, the probability p(vx) at each node x is needed.602

Therefore, the probability model is determined in proportion to the node weights, which are the sum of connected edge603

weights as p(vx) ∝
(∑

y∈N (x)
1
dy

)2

=
(∑

y∈N (x) wexy
− 1

)2

=
(∑

y∈N (x)(
1
dx

+ 1
dy
)− 1

)2

. Therefore, the node604

sampler also defines the probability model proportional to the approximated curvature without a cycle:605

p(vx) ∝

 ∑
y∈N (x)

wexy
− 1

2

=

 ∑
y∈N (x)

κ̂xy + 2

2
− 1

2

. (41)

• Cluster sampler: The cluster sampler is a multi-clusters sampler, which combines several clusters to configure a subgraph.606

As aforementioned, the curvature is related to intra-edges and inter-edges in the substructures in Section C as graph clusters.607

However, because the cluster sampler is for subset-unit sampling rather than for combinatorial sampling of minimum608

units such as nodes and edges, the probability model can be simplified through several assumptions for comparisons. The609

simplified probability model for the cluster sampler is clearly proportional to the approximated curvature.610

In general, the local clustering coefficient (Watts-Strogatz) is defined as follows.611

c(x) :=
| triangles in {N (x) ∪ x} |

| possible triangles in {N (x) ∪ x} |
=

1

dx(dx − 1)

∑
y∈N (x)

∆♯(x, y). (42)

The scalar curvature κx is defined as κx := 1
dx

∑
y∈N (x) κxy. Then, in the case of d-regular graph, the scalar curvature612

can have the following lower bound [19]:613

κx ≥ 1

d
× d×

(
−2 +

4

d
+

3∆♯(x, y)

d

)
. (43)

The local clustering coefficient is also simplified as follows.614

c(x) =
1

d(d− 1)
× d×∆♯(x, y). (44)

Therefore, the number of triangles is represented as ∆♯(x, y) = (d − 1)c(x). Subsequently, the curvatures κxy and615

clustering coefficient c(x) can be associated:616 ∑
y∈N (x)

(κxy + 2) ≥
∑

y∈N (x)

(
4

d
+

3(d− 1)

d
c(x)

)
= 4 + 3(d− 1)c(x). (45)

Then, the node-wise probability model for the cluster sampler is defined as follows.617

p(x) ∝ c(x) ≈
∑
x∈N (x)(κxy + 2)− 4

3(d− 1)
. (46)

(Proposition 3) We represent the difference between the exact curvature and approximated curvature as the difference of the618

distributional distance. Suppose that the edge length is 1. Then, the difference can be defined as follow.619

∥κxy − κ̂xy∥ = Ŵ1(mx,my)−W1(mx,my) ≥ 0, (47)

where Ŵ1(mx,my) denotes the approximated Wasserstein distance that is larger than the optimal distance W1(mx,my). We620

then present the upper bound Ŵ1(mx,my) of the distributional distance in the local structure {N (x) ∪ x} ∪ {N (y) ∪ y} as a621

17

Figure 5: Let G(n, p) be the ER-graph (Erdős-Rényi model) with n > 4 nodes and edges connected by the probability
0 ≤ p ≤ 1. Then, the number of cycles (3-cycles, 4-cycles, and 5-cycles) can be calculated probabilistically.

greedy calculated value. The distributional distance measures the distance transported from the neighboring nodes u ∈ N (x) of622

x to the neighboring nodes v ∈ N (y) of y. Each transport cost is calculated by multiplying the transported distance d(u, v)623

by the moved measure. If there is no path directly connected from each neighboring node of x to a neighboring node of y624

through a cycle, it moves through x and y. Because the distributional distance is symmetric, we assume that dy ≥ dx > 1 for625

convenience of the calculation.626

If the cycle is not considered in the local structure around two nodes, the approximated distributional distance is calculated as627

follows.628

Ŵ1(mx,my) = 2× 1

dx
× (dx − 1) + 0× 1

dx
− 1

dy
+ 1× 1

dy
× (dy − 1) =

(
3− 2

dx
− 2

dy

)
= 1− κ̂xy. (48)

It is the approximated distributional distance presented in (9). Then, if we calculate the approximated distributional distance629

considering the 3-cycles, we can compute Ŵ1(mx,my) more accurately:630

Ŵ1(mx,my) = 0× 1

dy
×∆♯ + 1×

(
1

dx
− 1

dy

)
×∆♯ + 2× 1

dx
× (dx −∆♯ − 1) + 0× 1

dx
− 1

dy
+ 1× 1

dy
× (dy −∆♯ − 1)

(49)

=

(
3− 2

dx
− 2

dy

)
−
(
∆♯

dx
+

2∆♯

dy

)
= 1− κ̂xy, (50)

where ∆♯ denotes ∆♯(x, y). It is also the approximated distributional distance in (3). As shown in this approximated distribu-631

tional cost with 3-cycles, the distributional distance becomes more accurate as the number of cycles to be considered increases.632

The distributional distance in (49) is defined as the distance in (48) minus the distance shortened by the 3-cycles.633

Then, we can consider how many cycles need to be considered to calculate the optimal transportation distance in the local634

structure {N (x) ∪ x} ∪ {N (y) ∪ y}. If only the local structure is considered, the distance transported from the neighboring635

node of x to the neighboring node of y through the 6-cycle is the same as the distance transported through x and y. Therefore,636

we can obtain the optimal transport distance limited to the local structure by considering until 5-cycles.637

Subsequently, to calculate the distributional distances considering 4-cycles and 5-cycles, we have to consider all the cases where638

various cycles are included simultaneously. However, we simply consider the case of adding 4 and 5-cycles on no-cycle and the639

maximum distance that can be reduced. Then, maximally reduced distances by 4-cycles, 5-cycles are presented as follows.640

(maximal reduced distance by 4-cycles) := −2× 1

dx
×□♯ − 1× 1

dy
×□♯ + 1× 1

dy
×□♯, (51)

641

(maximal reduced distance by 5-cycles) := −2× 1

dx
× ♯ − 1× 1

dy
× ♯ + 2× 1

dy
× ♯, (52)

where □♯ and ♯ abbreviate the number of 4-cycles □♯(x, y) and the number of 5-cycles ♯(x, y), respectively. And let’s642

assume that the degrees of nodes are also the same dx = dy = (n−1)p. As a result, the error between the optimal distributional643

distance and the approximated distributional distance with 3-cycles is presented as the upper bound.644

∥κxy − κ̂xy∥ ≤ (maximal reduced distance by 4-cycles) + (maximal reduced distance by 5-cycles) (53)

=
1

d
(2□♯ +□♯ −□♯ + 2 ♯ + ♯ − 2 ♯) =

2

d
□♯ +

1

d
♯ (54)

=
2

(n− 1)p
(n− 2)(n− 3)p3 +

2

(n− 1)p
(n− 2)(n− 3)(n− 4)p4 (55)

≤ 2d2p+ 2d3p

d
= 2dp+ 2d2p. (56)

18

E Algorithm Details645

(Graph Coarsening-based Sampling) Graph coarsening is to sample the edges to make the graph sparse. In this sampling646

method, the number of nodes is not reducible but only edges can be removed until the coarsened graph is out of bound in the647

defined error. Even if independent nodes without any edge are considered to remove, the method hardly samples the subgraphs648

with a similar number of nodes. This method can be used to merge linked nodes into a hyper node to reduce the size of the649

subgraph. However, it is not proper for node classification tasks, which needs to classify each node.650

(Graph Partitioning-based Sampling) Graph partitioning is to split the original graph into parts. Because minimizing losses651

at partition boundaries has priority, there is an association between graph partitioning and clustering. In the sense of clustering,652

the main objectives of this problem is the minimization of outer edges and maximization of inner edges. Therefore, a good653

partitioned graph tends to be clustered to have localized subgraphs, which makes each subgraph to be biased toward a specific654

neighborhood. Although it depends on the characteristics of the graph, learning with biased subgraphs is likely to have the655

same side effects as learning with biased mini-batches.656

(Graph Covering-based Sampling) Graph covering consists of vertex and edge covers, in which edges and nodes are covered657

by the vertex and edge covers, respectively. If the vertex cover is sampled to cover as many edges as possible, this vertex cover658

can induce a subgraph with a small number of nodes. However, finding the minimum vertex cover is an NP-hard optimization659

problem. The nodes of the vertex cover are not suitable for the subgraph sampling method, because they are very sparse or660

independent.661

(Graph Combinatorial Sampling) Graph combinatorial sampling is to configure the graphs by combining elements such as662

nodes and edges. Because each element is sampled independently according to the probability model, it is difficult to use global663

structural information compared with other methods. Therefore, it is not possible to sample the subgraphs that are optimal for a664

particular purpose. However, sampling can be done very efficiently even on large-scale graphs.665

The proposed method presents a probability model proportional to the curvature that can reflect local structural information to666

reduce the distributional distance from the original graph. Because our method has the form of combinatorial sampling, the667

optimal substructure for the local structure can be sampled. However, it is impossible to sample globally optimal substructures.668

Therefore, we set up an initial seed node, in which the locally approximated structure is distributed throughout the original669

graph. The randomly sampled nodes x ∼ U with uniform probabilities can be used as the initial seed node. Alternatively,670

nodes with a large scalar curvature x ∝ 1
dx

∑
y∈N (x) κxy can be set as seed nodes and nodes with a large sum of degree-671

normalized curvatures can be set as seed nodes. We observed that the seed nodes sampled based on the scalar-curvature make672

the sampled subgraphs with large curvatures and induce good performance on certain datasets. However, the stable performance673

is obtained when setting nodes with a large sum of degree-normalized curvatures as seed nodes. Thus, in our method, seed674

nodes are obtained through the following probability model p(x|V) ∝
∑
y∈N (x),y∈V p(x|y), where p(x|y) is the degree-675

normalized curvature 1
dy
κxy . We assume that the seed nodes S0 are distributed over the entire structure. Then, we recalculate676

the curvature-based probability model p(x|S0) ∝
∑
y∈N (x),y∈S0

p(x|y) for approximating the local structure N (S0) around677

the seed node S0. This step-wise sampling is performed to minimize the combinatorial distributional distance in Definition678

2 through the conditional probability model p(x|S0). The proposed method sets the number of steps t as a hyperparameter.679

Increasing the number of steps reduces the number of seed nodes |S0|. By refraining from being widely distributed across680

the entire structure, more accurate approximated local structures can be obtained. Newly sampled combinatorial components681 {
u0, u1, · · · , u[m/s]

}
of approximating the local structure N (Si) at each step are included in structural components of the682

subgraph Si+1 = Si ∪
{
u0, u1, · · · , u[m/s]

}
. The substructure including all the nodes is sampled, which becomes the subgraph683

at the last step.684

F Additional Experiments685

(Environment) The experiments were conducted on a machine equipped with a Intel Core i9-10980XE CPU @ 3.00GHz,686

NVIDIA GeForce RTX 3090, and 256GB DDR4 memory. We used Pytorch 1.9.0 with CUDA 11.1 and CUDNN 8.0.5.687

(Sampler details) We compared nine samplers including the proposed method. Among them, random walk sampler, cluster688

sampler, ppr sampler, neighbors sampler, and the proposed sampler can tune hyperparameters.689

• Random walk - walks : {2,4,6,8,10}690

• Cluster - parts : {10000,20000,40000,80000,100000}691

• Personalized Page Rank - topk692

• Neighbor - hop, neighbors693

• LoCur - steps : {1,2,3,4,5,6}694

19

For all experiments, the optimal hyperparameters for each dataset was determined empirically.695

Table 5 shows the time for sampling one graph using each sampler for all datasets. In Table 6, preprocessing means that it696

is performed on the entire step in an initial step, like partitioning for cluster sampler and computation of curvature for the697

proposed method. However, once these are preprocessed, sampling does not occur in the middle of training. Thus, it is negligible698

compared to total training time. When training for semi-supervised node classification tasks with the ogbn-arxiv graph 1%699

setting, memory can be saved by 36% compared to the case of using the entire graph, while the performance is reduced by only700

0.03% if the proposed sampler is used.701

Table 5: Sampling time (sec).
Task Dataset sampling ratio (%) random neighbor node edge random walk cluster ppr LoCur (ours)

Node classification

ogbn-arxiv 1 0.00713 0.21635 0.00811 0.04110 0.00635 0.01503 1.01422 0.03259
ogbn-arxiv 5 0.00784 0.23973 0.01245 0.04326 0.01139 0.04891 1.04189 0.03986
ogbn-arxiv 10 0.00932 0.25723 0.01660 0.04750 0.01528 0.09224 1.04576 0.04676
ogbn-mag 1 0.03867 1.05332 0.04227 0.21121 0.03882 0.07359 6.80543 0.23211
ogbn-mag 5 0.04313 1.17195 0.06083 0.23049 0.04992 0.20697 6.77334 0.26773
ogbn-mag 10 0.04936 1.29256 0.08332 0.25149 0.06205 0.45105 6.78215 0.35181

Graph classification

DD 20 0.00068 0.00358 0.00132 0.00129 0.00091 0.00474 0.14471 0.00381
REDDIT-B 20 0.00040 0.00176 0.00085 0.00055 0.00060 0.00590 0.15041 0.00160

REDDIT-5K 20 0.00043 0.00147 0.00060 0.00052 0.00056 0.00568 0.14438 0.00184
COLLAB 50 0.00035 0.00146 0.00049 0.00046 0.00051 0.00570 0.14296 0.00162

Table 6: Preprocessing time (sec).
Task Dataset #nodes #edges random neighbor node edge random walk cluster ppr LoCur (ours)

Node classification ogbn-arxiv 169,343 1,166,243 0.01238 0.01581 0.06482 0.05727 0.15548 3.04642 0.01228 30.40937
ogbn-mag 1,939,743 21,111,007 0.06353 0.11086 0.42007 0.36620 0.84027 16.71598 0.06209 31.07691

Graph classification

DD 284 694 0.00010 0.00025 0.00088 0.00036 0.00094 0.00024 0.00010 0.00314
REDDIT-B 400 455 0.00010 0.00021 0.00104 0.00031 0.00057 0.00019 0.00010 0.00307

REDDIT-5K 508 618 0.00010 0.00023 0.00130 0.00036 0.00058 0.00030 0.00010 0.00259
COLLAB 75 1179 0.00010 0.00021 0.00069 0.00030 0.00061 0.00020 0.00010 0.00307

(Labeling Node Classification) We present a new labeling node classification task, because existing node classification tasks702

are not suitable for subgraphs sampled by samplers. In existing semi-supervised node classification setting, train, valid, and test703

nodes were pre-split for the entire graph. Therefore, although good subgraphs are sampled, their performance is determined by704

the number of train nodes, which is pre-defined for the entire graph, in the subgraph. To avoid this problem, we propose a new705

task that samples only one subgraph, uses the subgraph for training, and tests all nodes of the entire graph. In this way, the706

generalization performance of the sampled subgraph can be evaluated without external factors.707

In this experiment, we evaluated several subgraph samplers with four GNN models using three datasets. For training, we used708

the Adam optimizer and the mean of the results obtained through ten runs was used as a performance index. The random seed709

was set to 1000 to enable reproducibility. For node classification tasks, gradient was updated per every iteration (per subgraph).710

The experimental setting for each GNN is the same across the datasets. If we used full samplers, the epoch was set to 500. If711

not, the epoch was set to 200.712

The dataset descriptions for node classification tasks are given in Table 7. The details of the GNN models can be found in Table713

8. Please note that when training GAT for the ogbn-mag dataset, the number of attention head was set to 1 due to the memory714

issue.715

Table 7: Node classification datasets.

Dataset #Nodes #Edges #Classes Node.dim
ogbn-arxiv 169,343 1,166,243 40 128
ogbn-mag 1,939,743 21,111,007 349 128

Table 8: Node classification baseline configurations.

Baseline
Training Model config

lr dropout #epoch hidden dim #layers #attention heads
GCN 0.01 0.5 200 256 3 -

GraphSAGE 0.01 0.5 200 256 5 -
GCNII 0.001 0.1 200 256 18 -
GAT 0.01 0.5 200 128 3 4

20

(Semi-supervised Node Classification) For this experiment, we followed general semi-supervised node classification settings.716

However, because of the aforementioned problem, we sampled 100 subgraphs when sampling 1% of nodes. The datasets and717

GNN settings are the same as those of the labeling task. We present numerical results in Table 9.718

Table 9: Semi-supervised node classification.
node

classification

ogbn-arxiv/GAT ogbn-arxiv/GCNII ogbn-mag/GCNII ogbn-mag/GAT

Valid acc (%) Test acc (%) Valid acc (%) Test acc (%) Valid acc (%) Test acc (%) Valid acc (%) Test acc (%)

random 63.50±0.9051 62.92±1.5138 67.94±0.3953 67.28±0.8320 31.61±0.4972 32.17±0.6322 27.65±0.4529 29.11±0.5694

neighbor 68.76±0.4069 68.20±0.5315 70.43±0.2307 69.77±0.5997 34.04±0.6178 34.13±0.8366 30.66±0.6429 31.68±0.9938

node 67.20±0.5178 66.81±0.6102 66.39±0.3706 65.71±0.6186 30.05±0.4664 30.99±0.5589 26.27±0.8824 27.65±1.1153

edge 67.31±0.5181 66.84±0.7397 69.66±0.2105 68.95±0.5871 31.97±0.4184 32.21±0.5373 30.40±0.7125 31.63±0.7575

random walk 67.50±0.3482 67.38±0.6506 70.18±0.3671 69.46±0.6359 32.75±0.5707 32.80±0.6941 30.76±0.7666 31.91±0.9151

cluster 66.12±0.8913 65.76±1.1373 71.55±0.2047 70.77±0.6731 35.17±0.5612 35.46±0.7138 31.78±0.7862 32.91±0.7804

ppr 66.06±0.4956 65.02±0.7743 69.21±0.3486 67.68±0.9033 32.23±0.4246 32.50±0.4054 28.13±0.5190 29.50±0.5450

LoCur (Ours) 68.71±0.4200 67.74±0.7181 71.05±0.3059 70.43±0.4124 34.92±0.7565 34.90±1.1214 31.96±1.0061 33.11±1.1926

original graph 72.11±0.0679 71.12±0.2742 73.78±0.0934 72.55±0.2465 N/A N/A N/A N/A

(Graph classification)719

Unlike node classification tasks, graph classification typically uses the graphs without preprocessing, because the number of720

nodes is not as large as the graph dataset for node classification. However, even in this case, advantages of using sampled721

subgraph for graph classification are clear.722

First, because the number of nodes in the input graphs is limited to the sample size, training can be facilitated by preventing723

the fluctuation of memory usage. The size of the graphs constituting the dataset for graph classification is not consistent. For724

example, the average number of nodes of the graphs in the DD dataset is 284, while the number of nodes in the largest graph is725

5748. The variable size of input causes fluctuations in memory usage, especially if the device is constrained.726

Second, training time can be considerably reduced. The large dimension of the node feature induces the large training time727

saving. In addition, it is more evident when we use social network datasets. For the social network datasets,the node degree is728

typically used as the node feature in the form of one hot vector, because there is no given node feature. Thus, the dimension729

of the node feature is the largest degree among the graphs of the whole dataset. However, if we use the subgraphs with a730

limited number of nodes as training data, the maximum of degree cannot exceed the sample size. In this case, by reducing the731

dimension of the node feature, we can reduce the computational cost. For instance, the REDDIT-BINARY dataset has a max732

degree of 3782, and the degree is used as the node feature in the one-hot vector form. Instead of using the 3782-dimensional733

node features, we can use only 80-dimensional node features, if we set the sample size of the subgraph to 80.734

Third, although a new graph with arbitrary size is given, the trained GNN can work well. As aforementioned, when using the735

node degree as a node feature for the social datasets, the dimension of the node feature is set to the max degree across the whole736

training graphs. However, if a new graph with a degree that is greater than the max degree is given, the inference is impossible.737

In contrast, if the feature dimension is bound to the sample size, no problem occurs.738

Graph classification tasks predict the label assigned to the entire graph by grasping the whole structure of the graph. Therefore,739

it is very different from node classification tasks, where the local context near the nodes is important to predict the label assigned740

to each node. In general, the graph classification task includes the pooling stage, in which each node feature is aggregated741

to create a graph-level feature, and commonly used methods are mean pooling and sum pooling. Due to the existence of the742

pooling stage, when sampling the subgraphs for graph classification, we need to sample various nodes that are important either743

in the global context or in the local context.744

To grasp the graph structure for graph classification, many studies [50, 55, 51] have been reported, which consider the entire745

graph as a set of building blocks such as subgraph or motif. The Mesoscopic structure can be captured by finding a subgraph746

or motif that preserves local properties. In [55], global structures were represented by considering the interaction between747

these local structures. Therefore, the following conclusion can be drawn. In subgraph sampling for graph classification, which748

includes a special process called pooling, it is necessary to evenly sample intra-motif nodes, which captures local structures as749

well as inter-motif nodes that play an important role in the connection between motifs.750

It is challenging to sample the subgraphs so as to preserve the global context while maintaining the local structure of the original751

graph with existing sampling methods. However, because our sampling probability model is based on the curvature, we can752

sample a subgraph that satisfies both conditions.753

21

In [49, 26], it was examined how the curvature in the graph represents the local and global characteristics of the graph. In754

particular, in [49], it was described how ricci curvature was related to global centrality and local properties, respectively. If the755

curvature is negative and smaller, edges connect motifs for global connectivity. Conversely, if the curvature is positive and the756

clustering coefficient is high, edges exist inside the motifs. Therefore, to sample the subgraphs that can preserve the global and757

local structure, the negatively and positively curved edges should be evenly selected. However, because the sampling size is758

limited, we select the most negative and positive edges to form a subgraph. Therefore, the proposed method is designed to759

sample in proportion to the square of the deviation from the average curvature.760

The benchmark datasets used for graph classification can be divided into two types, bioinformatics dataset and social datasets.761

Among them, we selected datasets whose average number of nodes were relatively large to demonstrate the effectiveness of762

the proposed subgraph sampling method. Therefore, REDDIT-BINARY, REDDIT-MULTI-5K, and COLLAB[56] were used763

for the social datasets, and DD[46] was used for the bioinformatics dataset. For the DD,REDDIT-BINARY and REDDIT-5K764

datasets, the subgraph sample size was set to 1/5 of the average number of nodes in the dataset. Because the graphs in the765

COLLAB dataset are small, the sampling ratio was set to 1/2. Table 10 describes the datasets used for this experiment.766

Table 10: Graph classification datasets.

Dataset #Graphs #Classes Avg.Nodes Avg.Edges Max.node Node.dim Sample size
DD 1,178 2 284.32 715.66 5748 89 50

REDDIT-B 2,000 2 429.63 497.75 3782 - 80
REDDIT-5K 4,999 5 508.52 594.87 3648 - 100

COLLAB 5,000 3 74.49 2457.78 492 - 30

The performance was evaluated using 10-fold cross validation according to [54, 47]. In the DD dataset, which is a bioinformatic767

dataset, node features were given. For graph-level pooling, SUM pooling was used as a readout function. Batch size and epoch768

were set to 32 and 200, respectively. For three social datasets, we used the node degree as features in the form of one-hot vectors769

according to [54, 47], because there were no node features. For graph-level pooling, MEAN pooling was used as a readout770

function, and batch size and epoch were set to 128 and 350, respectively. For the cluster sampler, in which ‘parts’ should be set771

as a hyperparameter (i.e., how many parts to view the entire graph). We set the ‘parts’ to be determined by the size of the graph772

(number of nodes) regardless of the dataset. Table 11 contains the details of several baselines for graph classification.773

Table 11: Configurations of graph classification baselines.

Type Dataset Baseline Training Model config
lr dropout #epoch batch size hidden dim #layers #attention heads

Bioinformatics DD

GCN 0.01 0.5

200 32 32

2 -
GraphSAGE 0.01 0.5 4 -

GCNII 0.001 0.5 17 -
GIN-0 0.01 0.5 4 -

GAT-GC 0.01 0 4 1

Social network
REDDIT-B

REDDIT-5K
COLLAB

GCN 0.01 0.5

350 128 64

2 -
GraphSAGE 0.01 0.5 4 -

GCNII 0.001 0.5 17 -
GIN-0 0.01 0.5 4 -

GAT-GC 0.01 0 4 1

Table 12 shows graph classification accuracy according to the sampling ratio. As shown in the table, the proposed method exhibits774

the state-of-the-art performance, regardless of the sampling ratio. Tables 13, 14, 15, and 16 show graph classification accuracy775

on the DD, REDDIT-BINAR, REDDIT-MULTI-5, and COLLAB datasets, respectively. These comparisons consistently show776

the effectiveness of the proposed method.777

Table 12: Graph classification accuracy according to sampling ratio.

GCN DD/10% DD/20% REDDIT-B/10% REDDIT-B/20% REDDIT-5K/10% REDDIT-5K/20% COLLAB/20% COLLAB/50%
random 76.74±3.5290 79.44±4.6153 78.07±3.1554 81.38±2.8620 34.64±1.4852 38.41±1.6066 64.98±1.3776 69.34±1.6663

neighbor 69.75±3.2693 72.42±2.1710 78.45±2.3932 82.99±2.2842 41.39±1.6787 46.99±1.7218 64.94±2.0262 68.77±1.9170
node 77.66±3.3531 78.95±4.6996 87.71±2.1584 89.34±1.6096 45.94±1.5994 50.34±1.5081 64.85±1.9100 69.01±2.0218
edge 75.25±2.4826 74.45±2.1898 81.13±1.7302 87.08±2.1656 39.39±2.0594 46.56±1.4944 64.38±1.9147 69.03±1.7245

random walk 69.08±2.2111 72.83±3.5998 80.17±1.5837 84.37±1.5300 40.46±1.4986 45.95±1.6980 64.90±1.2438 69.25±1.2352
cluster 66.07±2.1793 66.00±3.4210 69.41±3.1951 72.86±2.3574 31.71±2.1585 33.84±1.1456 56.55±0.5435 62.11±1.8089

ppr 76.46±3.4249 75.15±4.2903 79.68±2.7840 80.99±2.2588 42.60±1.8427 46.10±1.3539 60.42±1.5170 66.52±1.7044
LoCur (Ours) 77.17±2.8647 79.56±4.3048 87.55±1.5493 90.12±1.1265 46.08±2.3627 49.99±1.5247 65.40±1.7117 69.48±1.7263

22

Table 13: Graph classification accuracy on DD (%).

DD GCN GraphSAGE GCNII GIN-0 GAT-GC
random 79.44±4.6153 79.00±4.3275 78.05±2.8671 76.88±4.8735 78.39±5.0960

neighbor 72.42±2.1710 73.01±4.2728 73.22±3.5919 71.75±2.0162 75.36±3.3472
node 78.95±4.6996 77.89±4.2335 77.56±3.8740 76.01±4.2048 78.07±4.2521
edge 74.45±2.1898 73.44±3.2937 72.04±2.2719 72.00±2.6178 75.12±1.5757

random walk 72.83±3.5998 71.31±2.8796 72.81±2.6505 72.58±3.5552 73.40±3.6231
cluster 66.00±3.4210 64.64±2.4281 65.35±2.1771 66.22±2.8087 65.10±2.6852

ppr 75.15±4.2903 75.56±4.6815 74.13±4.1562 74.55±3.7862 75.97±4.1399
LoCur (Ours) 79.56±4.3048 78.38±4.0667 77.02±2.9737 77.32±4.0964 78.26±3.3836

original graph 81.35±2.9971 82.88±4.0471 77.99±4.1586 80.16±3.4829 81.29±3.3207

Table 14: Graph classification accuracy on REDDIT-BINARY (%).

REDDIT-B GCN GraphSAGE GCNII GIN-0 GAT-GC
random 81.38±2.8620 81.78±2.9289 80.45±3.5311 81.40±2.6747 82.15±2.7213

neighbor 82.99±2.2842 83.96±1.8825 84.56±2.2474 84.48±1.4364 84.96±1.8539
node 89.34±1.6096 90.15±1.3836 89.33±1.6985 89.73±1.6502 90.28±1.4688
edge 87.08±2.1656 87.20±1.6394 85.99±1.6241 86.64±1.6287 87.23±2.3865

random walk 84.37±1.5300 85.30±1.1102 81.85±1.8239 83.83±1.8106 84.82±2.1063
cluster 72.86±2.3574 71.91±2.3884 71.84±3.3214 74.09±2.1185 73.89±2.8110

ppr 80.99±2.2588 81.73±2.2829 80.71±1.9299 83.07±1.5707 84.90±2.3119
LoCur (Ours) 90.12±1.1265 90.94±1.2293 90.14±0.6997 90.24±1.0670 91.19±1.2035
original graph 81.61±2.1039 79.81±2.4883 84.73±2.3256 86.91±1.9735 92.55±2.1038

Table 15: Graph classification accuracy on REDDIT-MULTI-5K (%).

REDDIT-5K GCN GraphSAGE GCNII GIN-0 GAT-GC
random 38.41±1.6066 38.23±1.4061 38.03±1.8110 37.95±1.5313 38.36±1.3094

neighbor 46.99±1.7218 47.40±1.2698 46.39±0.8856 46.25±0.4337 46.69±1.0210
node 50.34±1.5081 50.15±1.9532 50.11±1.7265 50.54±1.5885 50.30±1.5571
edge 46.56±1.4944 46.89±1.2716 45.28±1.4890 46.11±1.6029 46.03±2.1224

random walk 45.95±1.6980 46.63±1.6052 45.49±1.5282 45.65±1.4225 45.60±1.7709
cluster 33.84±1.1456 34.64±1.8862 32.69±1.6914 33.89±1.2318 35.12±1.4595

ppr 46.10±1.3539 46.64±1.5032 46.70±1.1571 46.26±1.6166 47.09±1.3578
LoCur (ours) 49.99±1.5247 50.36±1.5384 50.07±1.4427 49.71±1.5194 50.16±1.8804

original graph 49.04±1.5736 48.45±1.1268 50.36±1.4778 50.38±1.2109 58.17±4.6943

Table 16: Graph classification accuracy on COLLAB (%).

COLLAB GCN GraphSAGE GCNII GIN-0 GAT-GC
random 69.34±1.6663 69.28±1.3070 69.30±1.5405 68.95±1.3834 68.12±1.4702
neighbor 68.77±1.9170 68.56±1.5034 68.53±0.9320 67.87±1.1613 67.47±1.2766

node 69.01±2.0218 69.70±1.8717 69.29±1.7179 69.12±1.8614 68.42±1.9550
edge 69.03±1.7245 68.91±1.5967 69.30±1.4742 68.20±1.8398 68.41±1.4364

random walk 69.25±1.2352 68.97±1.2933 68.31±1.4007 68.91±1.0469 68.54±1.0148
cluster 62.11±1.8089 61.47±1.4807 61.16±1.5676 61.85±1.2656 61.19±1.3943

ppr 66.52±1.7044 66.98±1.4292 66.22±1.8055 65.76±1.3993 66.04±1.1868
LoCur (Ours) 69.48±1.7263 70.04±1.8101 69.61±1.7005 69.33±1.6915 69.20±1.2228
original graph 84.22±1.4804 83.57±1.7301 84.33±1.6665 84.35±1.3020 91.91±3.7769

23

(Visualization) Figs.6 and 7 visualize the subgraphs produced by several different samplers. As shown in the figures, the778

proposed method samples the subgraphs to include representative structures without bias compared to other methods.779

Figure 6: Subgraph examples for the REDDIT-BINARY graph.

Figure 7: Subgraph examples for the Karate club graph.

24

Appendix References780

[46] Paul D. Dobson and Andrew J. Doig. Distinguishing enzyme structures from non-enzymes without alignments. Journal of Molecular781

Biology, 330(4):771–783, 2003.782

[47] Federico Errica, Marco Podda, Davide Bacciu, and Alessio Micheli. A fair comparison of graph neural networks for graph classification.783

arXiv preprint arXiv:1912.09893, 2019.784

[48] Florentin Münch and Radosław K Wojciechowski. Ollivier ricci curvature for general graph laplacians: Heat equation, laplacian785

comparison, non-explosion and diameter bounds. Advances in Mathematics, 356:106759, 2019.786

[49] Chien-Chun Ni, Yu-Yao Lin, Jie Gao, Xianfeng David Gu, and Emil Saucan. Ricci curvature of the internet topology. In 2015 IEEE787

conference on computer communications (INFOCOM), pages 2758–2766. IEEE, 2015.788

[50] Johan Ugander, Lars Backstrom, and Jon Kleinberg. Subgraph frequencies: Mapping the empirical and extremal geography of large789

graph collections. In Proceedings of the 22nd International Conference on World Wide Web, WWW ’13, page 1307–1318, New York,790

NY, USA, 2013. Association for Computing Machinery.791

[51] Jinhuan Wang, Pengtao Chen, Bin Ma, Jiajun Zhou, Zhongyuan Ruan, Guanrong Chen, and Qi Xuan. Sampling subgraph network with792

application to graph classification. IEEE Transactions on Network Science and Engineering, 8(4):3478–3490, 2021.793

[52] Melanie Weber, Jürgen Jost, and Emil Saucan. Detecting the coarse geometry of networks. In NeurIPS Relational Representation794

Learning, 2018.795

[53] Peter Wills and François G Meyer. Metrics for graph comparison: a practitioner’s guide. Plos one, 15(2):e0228728, 2020.796

[54] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural networks? In International Conference on797

Learning Representations, 2019.798

[55] Qi Xuan, Jinhuan Wang, Minghao Zhao, Junkun Yuan, Chenbo Fu, Zhongyuan Ruan, and Guanrong Chen. Subgraph networks with799

application to structural feature space expansion. IEEE Transactions on Knowledge and Data Engineering, 33(6):2776–2789, 2019.800

[56] Pinar Yanardag and S. V. N. Vishwanathan. Deep graph kernels. In KDD, pages 1365–1374, 2015.801

25

	Introduction
	Related Work
	Metric for Combinatorial Subgraphs
	Curvature-based Local Structural Approximation
	Localized Curvature-based Combinatorial Sampling
	Experiments
	Conclusion
	Graph Measures for Subgraph
	Curvature and Graph Neural Networks
	Curvature and Substructures
	Proofs
	Algorithm Details
	Additional Experiments

