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ABSTRACT

We study generalization and knowledge reuse capabilities of deep neural networks
in the domain of abstract visual reasoning (AVR), employing Raven’s Progressive
Matrices (RPMs), a recognized benchmark task for assessing AVR abilities. Two
knowledge transfer scenarios referring to the I-RAVEN dataset are investigated.
Firstly, inspired by generalization assessment capabilities of the PGM dataset and
popularity of I-RAVEN, we introduce Attributeless-I1-RAVEN, a benchmark with
10 generalization regimes that allow to test generalization of abstract rules ap-
plied to held-out attributes. Secondly, we construct I-RAVEN-Mesh, a dataset that
enriches RPMs with a novel component structure comprising line-based patterns,
facilitating assessment of progressive knowledge acquisition in transfer learning
setting. The developed benchmarks reveal shortcomings of the contemporary deep
learning models, which we partly address with Pathways of Normalized Group
Convolution (PoNG) model, a novel neural architecture for solving AVR tasks.
PoNG excels in both presented challenges, as well as the standard I-RAVEN and
PGM setups. Encouraged by these promising results, we further evaluate PONG
in another AVR task, visual analogy problem with both synthetic and real-world

images, demonstrating its strength beyond PRMs.

1 INTRODUCTION

Generalization, the ability of a model to perform well on unseen <
data, remains a fundamental challenge in deep learning (DL). While N
DL methods have demonstrated remarkable achievements in vari-
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ous domains, their generalization capabilities are often questioned, v

particularly in tasks that demand abstract problem-solving and rea- < co e

soning skills (Chollet, 2019). One such domain is abstract vi-
sual reasoning (AVR) (Mitchelll [2021; ivan der Maas et al. 2021}
Stabinger et al., |2021; Matkinski & Mandziuk, [2023)) that encom-
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human cognition believed to be crucial for reasoning in never- Q@
encountered settings (Snow et al., |1984} |Carpenter et al.l [1990). |©
The most popular AVR tasks are Raven’s Progressive Matrices
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(RPMs) (Raven| [1936; [Raven & Courtl [1998]), which constitute a
common problem found in human IQ tests. Typical RPMs com-
prise two components — the context panels arranged in a 3 x 3 grid
with the bottom-right panel missing and up to 8 answer panels, out

Figure 1:

RPM example.

The correct answer is A.

of which only one correctly completes the matrix. Solving an RPM instance requires identification
of underlying abstract rules applied to certain attributes of the objects composing the instance (see

Fig. 1] for an illustrative example).

Design of computational methods capable of tackling RPMs has for decades been an active area
of research (Evans, |1964; |Gentner, [1980; [Foundalis| [2006; [Lovett et al., 2007; Kunda et al., [2010;
Strannegard et al., 2013). Consequently, a number of works considered automatic creation of RPM
datasets (Matzen et al., 2010; [Wang & Su, 2015; [Mandziuk & Zychowski, 2019) and a wide suite
of predictive models (Hernandez-Orallo et al., 2016; |Hernandez-Orallo, |2017) were proposed, with
DL methods showing the most promising performance (Yang et al., 2022; Matkinski & Mandziuk,
2022)). While this rapid progress led to exceeding the human level in particular problem setups (Wu
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et al., [2020; [Mondal et al., |2023), a fundamental challenge of generalization to novel problem set-
tings remains largely unattained.

Initial works designed several RPM datasets (Matzen et al., |2010; |[Wang & Sul 2015; [Hoshen &
Werman, 2017), however, measuring generalization was not their focus. While some works ex-
plored knowledge transfer between related tasks (Mandziuk & Zychowski, 2019; Tomaszewska
et al., 2022)), the complexity of the datasets was limited and consequently they didn’t pose a chal-
lenge for contemporary DL methods. To measure generalization in modern DL models, the PGM
dataset was introduced (Barrett et al., 2018). PGM defines eight generalization regimes, each spec-
ifying the distribution of objects, rules and attributes in train and test splits. For instance, in the
Held-out Triples split, a given rule—object—attribute triplet (e.g. Progression on Object’s
Size) was assigned only to one of the two splits. In effect, the models were tested on triplet combina-
tions different from training ones, allowing to assess their generalization capabilities. A subsequent
work proposed RAVEN (Zhang et al.| 2019a)), another RPM dataset with enriched perceptual com-
plexity of matrices instantiated in seven visual configurations (Center, 2x2Grid, 3x3Grid,
Left-Right, Up-Down, Out-InCenter, Out-InGrid). Moreover, the benchmark is char-
acterized by a moderate sample size, i.e. 70K instances, compared to 1.42M RPMs per each of the
eight regimes in PGM. Due to this size disparity, subsequent research gravitated towards RAVEN
and its revised variants (I-RAVEN (Hu et al.l 2021) and RAVEN-Fair (Benny et al.| 2021)), which
didn’t require substantial computational resources to train DL models.

Drawing inspiration from the broad adoption of RAVEN and the generalization assessment capa-
bilities of PGM, this paper proposes a novel suite of generalization challenges stemming from I-
RAVEN (Hu et al.l [2021) (a revised variant of RAVEN that removes a bias in RAVEN’s answer
panels). However, unlike I-RAVEN, the proposed suite of benchmarks allows for a direct assess-
ment of the generalization and knowledge transfer of AVR models. Compared to PGM, our datasets
feature compositionality and variety of figure configurations, and their processing doesn’t require
substantial computational resources. Furthermore, they include structural annotations, which are
utilized, for example, in recent neuro-symbolic approaches.

First, we introduce Attributeless-I-RAVEN, comprising 10 generalization regimes. The 4 primary
regimes correspond to specific held-out attributes ({Position, Type, Size, Color}), resp. The
training matrices in these regimes adhere to the Constant rule for the respective attribute, whereas
test matrices employ a rule different from Constant for this attribute (i.e., Progression,
Arithmetic,or Distribute Three). Moreover, we propose 6 extended regimes: 3 of them
feature a held-out attribute pair, while another 3 replace the Constant rule in the training set with
each remaining rule. In effect, each regime comprises different distributions of training and test
data.

Next, we propose I-RAVEN-Mesh, a variant of [-lRAVEN with a new grid-like structure overlaid on
the matrices. The dataset enables assessing generalization to incrementally added structures and
progressive knowledge acquisition in a transfer learning (TL) setting.

In investigations involving 11 contemporary AVR DL models, we observed that the introduced
benchmarks present a substantial challenge for the tested methods. This prompted the develop-
ment of Pathways of Normalized Group Convolution (PoNG), a novel AVR model that excels in
both problem setups: generalization to held-out attributes and incremental knowledge acquisition.

Our main contributions can be summarized as follows:

* We introduce the Attributeless-I-RAVEN (A-I-RAVEN) dataset that enables measuring gen-
eralization across 10 regimes.

* We construct I-RAVEN-Mesh, an extension of [-RAVEN with a new component structure
that facilitates assessment of progressive knowledge acquisition in a TL setting.

* We evaluate the performance of state-of-the-art AVR models on the introduced bench-
marks, uncovering their limitations in terms of generalization to novel problem settings.

* We propose a new neural architecture for solving AVR tasks termed PoNG, which excels
in addressing both introduced challenges, as well as the standard I-RAVEN and PGM se-
tups. Additionally, PONG demonstrates the state-of-the-art performance in visual analogy
problem (VAP) in both synthetic and real-world setups.
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2 RELATED WORK

Generalization in AVR. In recent years, a variety of AVR problems and corresponding datasets
have emerged (Bongard, |1968} INie et al., 2020; [Fleuret et al., 20115 |Q1 et al., [2021}; [Shanahan et al.}
2020; Jiang et al.| 2024 [Hill et al.| [2019; [Zhang et al., 2020) and several attempts have been made
to measure generalization in contemporary AVR models based on the introduced benchmarks. In
particular, distinct visual configurations were employed in RAVEN to assess how a model trained on
one configuration performs on the remaining ones (Zhang et al.l 2019a; |Spratley et al., 2020; Zhuo
& Kankanhallil [2021)). Although in such a setting the visual aspects of train/test matrices come from
different distributions, the underlying rules and attributes remain the same. In contrast, A-I-RAVEN
enables studying the generalization of rules applied to held-out attributes, shifting the focus from
perception towards reasoning. Besides RPMs, the limits of generalization have been explored in
other AVR tasks as well. Visual Analogy Extrapolation Challenge evaluates model’s capacity for
extrapolation (Webb et al., 2020). However, such specialized datasets might favor models that ex-
plicitly embed the notion of extrapolation in their design and aim for being invariant only to specific
attributes such as object size or location. Differently, our benchmarks allow verifying the model’s
capacity to learn a given concept from the data and generalize it to novel settings. This perspective
links our work to the recent literature on concept learning (Odouard & Mitchell, [2022}; [Moskvichev
et al.| [2023). However, the concept-oriented benchmarks that originate from ARC (Chollet, [2019)
remain largely unsolved by DL models and pose a significant challenge even for leading multi-modal
large language models (Mitchell et al., 2023). In contrast, both benchmarks proposed in this work
are attainable by DL models, though further advances in generalization abilities of the models are
necessary to consider them solved.

Model architectures. Preliminary attempts to solve RPMs with DL models involve WReN (Bar-
rett et al.l 2018)) that reasons over object relations using Relation Network (Santoro et al., 2017),
or SRAN (Hu et al.l 2021) that relies on a hierarchical architecture with panel encoders devoted
to particular image groups. A common theme enabling generalization in DL models is to explicitly
identify RPM objects. To this end, RelBase (Spratley et al.,|2020) employs Attend-Infer-Repeat (Es-
lami et al., [2016), an unsupervised scene decomposition method, STSN (Mondal et al., |2023)) uti-
lizes Slot attention (Locatello et al.;2020) to decompose matrix to slots containing particular objects
and Temporal Context Normalization (TCN) (Webb et al., [2020) to normalize latent matrix panel
representations in a task-specific context, and MRNet (Benny et al.l 2021) presents a multi-scale
architecture. SCL (Wu et al., 2020) proposes the scattering transformation, CoPINet (Zhang et al.,
2019b) and CPCNet (Yang et al., [2023b) rely on contrastive architectures, PredRNet (Yang et al.,
2023a)) learns to minimize the prediction error, ALANS (Zhang et al.,2021) and PrAE (Zhang et al.,
2022)) employ neuro-symbolic architectures, and SCAR (Matkinski & Mandziukl 2024b) adapts its
computation to the structure of the considered matrix. Despite the high variety of AVR models,
experiments on the introduced benchmarks reveal their shortcomings in terms of generalization and
knowledge transfer. In this context, we propose PONG, a new AVR model that excels in the presented
tasks by combining parallel architecture, weight sharing, and tactical normalization.

3 METHODS

The set of attributes in I-RAVEN is A = {Position, Number, Type, Size, Color} and the
set of rules is R = {Constant, Progression, Arithmetic, Distribute Three}. For
an attribute a € A and a dataset split s € S, where S = {train, validation, test}, we define the set
of rules applicable to a in split s by R(a,s) C R. In [-RAVEN all rule—attribute pairs are valid in
all splits:

R(a,s) =R, Vac AANVseS (1)

3.1 ATTRIBUTELESS-I-RAVEN

To probe generalization in DL models, we present A-I-RAVEN, a benchmark composed of 10 gen-
eralization regimes. Example matrices are illustrated in Fig. [2] with additional samples provided in
Appendix [Al Each regime defines a set of held-out attributes A*, each with a corresponding rule
r*(a),a € A*. In train and validation splits, held-out attribute a € A* is governed by r*(a). In
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(a) A/Positiontrain  (b)A/Position test (c) A/Color train (d)A/Color test

Figure 2: Attributeless-I-RAVEN. Left: Matrices from the A/Position regime belonging to
the 2x2 Grid configuration. In (a), object position is constant across rows, while in (b) object
numerosity is governed by the Distribute Three rule. Right: Matrices from the A/Color
regime belonging to the Left—Right configuration. In (c), object color is constant across rows in
left and right image parts, while in (d) it’s governed by the Progression rule. Correct answers are
marked in a green dotted border. Please refer to Appendix [A]for examples from other generalization
regimes.

the test split, a € A* is governed by a different rule sampled from R — {r*(a)}. In effect, during
training, the model doesn’t see rule—attribute combinations required to solve test matrices. There
are no rule-related constraints on the remaining attributes. In summary, we have:

{r*(a)} ifa € A* A's € {train, validation},
R(a,s) = ¢ R —{r*(a)} ifa€ A* As=test, (2)
R ifag A

We define 4 primary regimes with 7*(a) = Constant that correspond to individual held-out at-
tributes (|A*| = 1), denoted as A/ <Attribute> (e.g., A/ Type). Since Position and Number
attributes are tightly coupled (e.g., it’s impossible to increase cardinality of objects while keeping
their position constant), we allocate a single generalization regime, A/Position, to cover both
attributes. In addition, we define 6 extended regimes as supplementary generalization challenges.
In the first group a pair of attributes is held-out in the training set, i.e. |A*| = 2. Specifically,
we introduce 3 new regimes: A/ColorSize, A/ColorType, and A/SizeType, based on the
respective attribute pairs. In the second group, Constant rule in r*(a) is replaced with each
of the 3 remaining rules, leading to A/Color-Progression, A/Color-Arithmetic, and
A/Color-DistributeThree regimes. While this modification could be applied to all the de-
scribed regimes, we focus on the Color attribute due to its broad range of possible values.

3.2 I-RAVEN-MESH

The other of the proposed benchmarks is designed to probe progressive knowledge acquisition in a
TL setting. [-RAVEN-Mesh extends I-RAVEN by introducing a novel visual component overlaid
on top of the existing I-RAVEN components (see Fig.[3). Though the dataset can serve as a learning
challenge on its own, the main motivation behind its introduction is to employ models pre-trained on
I-RAVEN and fine-tune them on I-RAVEN-Mesh with a configurable train sample size, facilitating
analysis of their TL performance. The mesh grid comprises from 1 to 12 lines placed in predefined
locations. The set of available lines covers the inner and outer edges of a 2 x 2 grid (12 lines in
total). The mesh component has two attributes: A™" = {Number, Position}, which govern
the count and location of lines, respectively. To each attribute a rule » € R can be applied. Table
describes the effect of applying a given rule—attribute pair to the mesh component. = To generate
the mesh component of an -RAVEN-Mesh matrix, we sample one of the two attributes a € A™eh
and a corresponding rule € ‘R that governs its values. As the attributes often depend on each other
(e.g., it’s impossible to increase the number of lines while keeping their position constant), we don’t
constrain the value of the other attribute. The rule—attribute pairs for the base I-lRAVEN components
are generated in the same way as in the original dataset. To generate answers to the matrix, we follow
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Figure 3: I-RAVEN-Mesh. Matrices with the Position attribute of the mesh component gov-
erned by all applicable rules. For the sake of readability, we present examples belonging to the
Center configuration. (a) Line position is constant in each row. (b) The line pattern displayed in
the first column is rotated by 90 degrees in subsequent columns. (c) The union set operator applied
to the first and the second column produces line positions in the third column. (d) Each row contains
lines arranged in one out of three available patterns. Correct answers are marked in a green dotted
border. Please refer to Appendix @for examples concerning the Number attribute.

Table 1: Description of rule—attribute pairs in -RAVEN-Mesh. D3 marks Distribute Three.

Attribute  Rule Description

Constant Each image in a given row contains the same number of lines.
Progression The count of lines in a given row changes by a constant factor (e.g. 2,4, 6).
Arithmetic The number of lines in the third column is determined based on an arithmetic

Number operation applied to the preceding columns (e.g. 3 — 1 = 2).
D3 Three line counts are sampled and spread among images in a given row.
Constant Each image in a given row contains the same position of lines.

Progression A panel arrangement is sampled in each row and rotated by 90 degrees in
subsequent columns.
Position Arithmetic The position of lines in the third column is computed based on a set operation
(union or difference) applied to the preceding columns.
D3 Three line arrangements are sampled and spread among images in a given row.

the impartial algorithm proposed in I-RAVEN (Hu et al.| 2021). In addition, each matrix contains
at least one incorrect answer that differs from the correct one only in the mesh component, ensuring
that the solver has to identify the correct rule governing the mesh component in order to solve the
matrix. To facilitate training with an auxiliary loss, in which the model additionally predicts the
representation of rules governing the matrix (Barrett et al., 2018), we extend the base set of rule
annotations with ones concerning the Mesh component.

3.3 PATHWAYS OF NORMALIZED GROUP CONVOLUTION (PONG)

In initial experiments, we’ve found out that SOTA AVR models struggle in the proposed generaliza-
tion challenges. Consequently, we introduce PoONG (Fig. @), a novel model that outcompetes base-
lines across a number of problem settings. The model follows a typical two-stage design. Firstly, it
generates an embedding of each image panel. Then, it aggregates representations of matrix panels
to predict the index of the correct answer. The details are described in Appendix

Let (X, y,r) denote an RPM, where X = {x,}1¢, is the set of image panels comprising 8 context
panels {z;}%_, and 8 answer panels {z;}1%,, z; € [0,1]"** i = 1,...,16 is a grayscale image
of height h and width w, y € {0, 1}8 is the one-hot encoded index of the correct answer, r €
{0,1}4" is the multi-hot encoded representation of matrix rules of dimensionality d,. using sparse
encoding (Matkinski & Mandziukl [2024a). In each experiment h = w = 80, while d,. is determined
by the number of matrix components in the corresponding dataset (d, = 48 for -RAVEN-Mesh,
d, = 40 otherwise; see Appendix [C]for details).
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Figure 4: PoNG. (a) The panel encoder embeds each input image z; independently, producing h;.
Context panel embeddings {h;}5_, together with the embedding of k’th answer hy, are stacked and
processed with the reasoner, leading to 2. (b) The pathways block, a key component of PoNG,
comprises four parallel pathways P1 — P4. (c) P3 and (d) P4 employ novel normalized group convo-
lution operators. PosEmb denotes position embedding, G-C the group convolution module used in
P3, and GP-C the group-pair convolution module used in P4. The red dashed line marks the point
after which G-C and GP-C perform analogous computation.

Panel encoder. The first component of the model has the form £ : = — h, where h € R is the
input panel embedding of dimensionality dj,. Following RelBase (Spratley et al., 2020)), the module
comprises 2 blocks of the same architecture. Each block includes 2 parallel pathways that build
high-level and low-level features, resp. The first one contains 2 convolutional blocks, each with
2D convolution, ReLU, and Batch Normalization (BN) (loffe & Szegedy, 2015)). The second one
contains 2D max pooling followed by 2D convolution. The sum of both pathway results forms the
block output. Differently from RelBase, we flatten the height and width dimensions of the resultant
embedding, pass it through a linear layer with ReLU, flatten the channel and spatial dimensions,
and pass the tensor through a feed-forward residual block with Layer Normalization (LN) (Ba et al.,
2016). Finally, we concatenate the tensor with a position embedding (a learned 25-dimensional
vector for each cell in the 3 x 3 context grid), leading to h.

Reasoner. The second component of the model has the form R : {hi}§:1 U hi — z, where hy,
is the panel embedding of k’th answer. For each answer panel, the reasoner produces embedding
zi, that describes how well the considered answer fits into the matrix context. Panel embeddings
{h;}8_; U hy, are stacked and processed by a sequence of 3 reasoning blocks interleaved with 2
bottleneck layers for dimensionality reduction. Each reasoning block comprises BN and 4 parallel
pathways, outputs of which are added together to form the output of the block. Next, the latent
representation is passed through adaptive average pooling, flattened, processed with a linear layer
with ReLU, passed through BN and projected with a linear layer to z;, € R128,

Pathways. The key aspect of the reasoner module are its pathways. Each takes an input tensor
of shape (B, C, D), where B is the batch size, C' is the number of channels, and D is the feature
dimension. In the first reasoning block D = dj and C' = 9 corresponds to the number of panel
embeddings in the considered group. Pathways are described as follows: P1 — a pointwise 1D
convolution layer that mixes panel features at each spatial location; P2 — a sequence of 2 blocks, each
comprising 1D convolution, ReLU, and BN, that builds higher level features spanning neighbouring
spatial locations; P3 — analogous to P2, but 1D convolution is replaced with a group 1D convolution
that splits the tensor into several groups along the channel dimension, applies a 1D convolution with
shared weights to each group, and adds together the representations of each group; P4 — analogous
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to P3, but groups are arranged into pairs concatenated along the channel dimension and processed
with a 1D convolution with shared weights. In contrast to (Krizhevsky et al.| [2012)), the proposed
group convolution layers in both P3 and P4 apply TCN (Webb et al.| 2020) to the outputs in each
group. In the first layer P3 and P4 split the input tensor into 3 groups, which allows for producing
embeddings of each matrix row and each pair of rows, resp. Though we apply the pathways block
in the RPM context, we envisage it as a generic module, also applicable to other settings involving
a set of vector representations of shape (B, C, D).

Answer prediction. Eight representations of the context matrix filled-in with the respective an-
swer, {z; }%_,, are processed with three prediction heads. The target head PY : z;, — ¢, employs
two linear layers interleaved with ReLU to produce score g € R describing how well the an-
swer k aligns with the matrix context. The aggregate rule head P : {z;}}_, — 71 computes
the sum of inputs and processes it with two linear layers interleaved with ReLLU, producing a la-
tent prediction of matrix rules 7; € R . The target-conditioned rule head P5 : {z;}3_, — 72
processes its input through a linear layer and computes a weighted sum of the resultant embed-
dings with weights given by the predicted probability distribution over the set of possible an-
swers o({gx}3_,), where o denotes softmax. The model is trained with a joint loss function
L =CE(c({¥r}r_1),v) + BBCE({(71,7)) +YBCE({(r32,7)), where ¢ denotes sigmoid, CE cross-
entropy, BCE binary cross-entropy, 5 = 25 and « = 5 are balancing coefficients.

4 EXPERIMENTS

We assess generalization of state-of-the-art models for solving RPMs on A-I-RAVEN, evaluate pro-
gressive knowledge acquisition on I-RAVEN-Mesh, and conduct an ablation study to showcase the
contribution of the respective modules that constitute PONG. We also evaluate PONG on two addi-
tional VAPs comprising synthetic (Hill et al.,|2019) and real-world (Bitton et al., [2023)) images.

Experimental setup. In all experiments we use the Adam optimizer (Kingma & Ba, [2014) with
51 =0.9, By =0.999, € = 10~8 and a batch size set to 128. Learning rate is initialized to 0.001 and
reduced 10-fold (at most 3 times) if no progress is seen in the validation loss in 5 subsequent epochs,
and training stops early in the case of 10 epochs without progress. Unless stated otherwise, each
model configuration was trained 3 times with a different seed, and we report mean and standard
deviation for these runs. In each experiment, we utilize 42000 training, 14 000 validation, and
14 000 test matrices, following the standard data split protocol taken in prior works (Zhang et al.|
2019a; Hu et al.,|2021). Experiments were run on a worker with a single NVIDIA DGX A100 GPU.

Baselines. In addition to the simple CNN-LSTM baseline (Barrett et al., 2018]), we assess general-
ization of SOTA AVR models including WReN (Barrett et al.,|2018)), CoPINet (Zhang et al.,2019b),
RelBase (Spratley et al., |2020), SCL (Wu et al., [2020), ALANS (Zhang et al., 2021), SRAN (Hu
et al.,[2021)), PrAE (Zhang et al.|2022), CPCNet (Yang et al.,|2023b)), PredRNet (Yang et al.,2023a),
and STSN (Mondal et al., 2023). For direct comparison, we evaluate all models on I-RAVEN fol-
lowing the above-described experimental setup.

Reproducibility. To guarantee reproducibility of experiments, we use a fixed set of random seeds
and turn off hardware and framework features concerning indeterministic computation wherever
possible. Together with the code, we provide the full training script that can be used to run all train-
ing jobs. The training job is packaged as a Docker image with fixed dependencies to isolate the con-
figuration of the training environment. The released code allows for generation of all datasets from
scratch, eliminating the dependency on file-hosting services required to distribute the data. The code
for reproducing all experiments is publicly accessible at: <hidden-for-blind-review>.

Generalization on Attributeless-I-RAVEN. In the first set of experiments we evaluate all con-
sidered models on 4 primary generalization regimes of A-I-RAVEN. The results are presented in
Table |2 along with the reference results on I-RAVEN and I-RAVEN-Mesh. PoNG outperforms all
selected baselines across all settings. Among baseline models, the best results on A/Color are
achieved by RelBase, followed by SCL. In the remaining attributeless regimes, SCL outperforms
other baselines with RelBase taking the second place. Interestingly, the top 3 models rely on rather
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Table 2: Single-task learning. Mean and standard deviation of test accuracy for three random seeds.
Best dataset results are marked in bold and the second best are underlined. Pos. denotes Position.

| I-RAVEN | Mesh | A/Color A/Pos. A/Size A/Type
ALANS 27.0 (£8.4) | 15.9(£26) | 15.2(£1.4) 16.0(£1.0) 23.3(£6.5) 19.0(£3.4)
CPCNet 70.4 (£6.4) | 66.6 (£5.1) | 51.2 (£3.8) 68.3 (£4.0) 43.5(£3.5) 38.6 (£4.3)
CNN-LSTM | 27.5 (£1.5) | 28.9(£0.4) | 17.0 (£3.1) 24.0(£29) 13.6(*£1.4) 14.5(£0.8)
CoPINet 43.2 (£0.1) | 41.1 (£0.3) | 32.5(+0.2) 41.3 (£1.6) 21.8(4£0.2) 19.8(£0.9)
PrAE 19.5 (£04) | 33.2 (£0.4) | 47.9(£0.9) 68.2(£3.3) 41.3(+1.8) 37.0(£1.7)
PredRNet 88.8 (£1.8) | 59.2 (£6.4) | 59.4 (+1.0) 73.7(£0.7) 47.5(£1.3) 40.2 (£1.3)
RelBase 89.6 (£0.6) | 84.9 (+4.4) | 67.4 (£2.7) 76.6(+£03) 51.1(£24) 44.1(£1.0)
SCL 83.4 (£2.5) | 80.9(£1.5) | 65.1 (£2.0) 76.7(£7.1) 65.6(£2.4) 49.5(£1.8)
SRAN 58.2(+£1.6) | b7.8 (£0.2) | 38.3 (£1.0) 56.9(£0.7) 34.4(£3.00 30.7(£2.2)
STSN 51.0 (£24.8) | 48.7 (£11.5) | 39.3 (£6.9) 36.1 (£19.9) 38.4 (£16.6) 39.1 (£5.0)
WReN 18.4 (£0.0) | 25.7(+0.2) | 16.9 (£0.5) 17.3(+0.4) 12.4(£0.5) 15.1(£0.7)
PoNG (ours) | 95.9 (+0.7) | 89.3 (£2.4) | 80.3 (£4.3) 793 (+07) 73.5(+£3.1) 594 (+£6.9)

shallow architectures, yet outcompete other methods that rely on a deeper layout, such as SRAN or
STSN. This suggests that parameter-efficient AVR models not only excel in solving RPMs but also
generalize better.

Generalization regimes of A-I-RAVEN pose a bigger )
challenge than the base dataset. While PONG, the best
performing model, achieved 95.9% test accuracy on I-
RAVEN, on A-I-RAVEN regimes it scored from 59.4%
(on A/Type) to 80.3% (on A/Color). Fig.[5] dis-
plays the difference in PONG’s performance on test and
validation splits. On I-RAVEN and I-RAVEN-Mesh
the difference is negligible, as in these datasets both
splits follow the same distribution. However, the dif-
ference in attributeless regimes is significant, which
indicates the need for further research on generaliza-
tion. In Appendix [E] we present further evaluation on
6 extended A-I-RAVEN regimes. As shown in Ta- Figure 5: Dataset difficulty. PONG’s per-
ble[T0} replacing the Constant rule in the training set formance on test and validation splits.
with Progression or DistributeThree yields

a dataset of similar complexity (the best model achieves 81.4 / 81.3% accuracy), while using the
Arithmetic rule increases the difficulty (the best model scored 70%). Furthermore, using a pair
of held-out attributes significantly increases the complexity. For instance, in A/SizeType, the
most challenging regime, the best result is only 33.5%. Notably, PONG outperforms all other mod-
els in 5 out of 6 settings. We conclude that A-I-RAVEN provides a suite of challenging regimes of
variable complexity, in which even the best performing models are far from solving all test matrices.
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Progressive knowledge acquisition on I-RAVEN-Mesh. In the second set of experiments we
employ I-RAVEN-Mesh to examine the TL ability of each model, besides ALANS, CNN-LSTM,
and WReN that performed poorly in all previous tasks. To this end, we consider variants of partial
I-RAVEN-Mesh dataset with a fraction g € {6—14, ..., 1} of the training set and compare the per-
formance of a model trained from scratch on a partial dataset to that of a model pre-trained on full
I-RAVEN and fine-tuned on a part of [-RAVEN-Mesh. Fig. |6 shows that for ¢ = 6—14 pre-training
PrAE, CoPINet, SRAN, CPCNet, and RelBase on I-RAVEN leads to gains smaller than 15 p.p.,
whereas pre-training PONG, SCL, PredRNet and STSN improved their accuracy by 19.6, 34.8, 23.4
and 29.6 p.p., resp. In addition, TL clearly improved performance of SCL, PredRNet and STSN
in all considered settings, in particular for ¢ = 1 by 5.9, 20.5 and 18.8 p.p., resp., indicating their
capacity for knowledge reuse.

Ablation study. We performed an ablation study considering several simplified variants of PONG.
The results are presented in Table [3] The removal of P3 and P4 reduces model performance, espe-
cially on A/ Type (—5.5 p.p.). Similarly, disabling TCN leads to generally worse results, primarily
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Figure 6: Transfer learning. Mean and standard deviation of test accuracy on I-RAVEN-Mesh
across three random seeds. Models were trained in two setups: 1) from scratch on [-lRAVEN-Mesh
with variable sample size; 2) pre-trained on full I-lRAVEN and fine-tuned on I-RAVEN-Mesh with
variable sample size. Mean test accuracy for setups 1) and 2) is shown below and above the plot
lines, resp.

Table 3: PoNG ablations. Test accuracy averaged across 3 random seeds and a difference to the
default model setup (cf. Table |Z[) Union denotes application of all ablations.

‘ I-RAVEN ‘ Mesh ‘ A/Color A/Pos. A/Size A/Type
w/oP3 and P4 | 95.6 (— 0.3) | 88.0 (- 1.3) | 789 (- 1.4) 78.6 (- 0.7) 73.9 (+ 0.4) 53.9 (- 5.5)
w/o TCN 96.0 (+ 0.1) | 90.8 (+ 1.4) | 75.4 (- 4.9) 80.3 (+ 1.0) 66.6 (— 6.9) 57.5 (- 1.9)
v=0 95.7 (= 0.1) | 8.8 (= 0.5) | 74.2 (- 6.1) 79.6 (+ 0.3) 73.0 (- 0.5) 56.9 (- 2.5)
B=0 94.2 (- 1.7) | 914 (+ 2.1) | 79.0 (- 1.3) 77.5(- 1.8) T70.3 (- 3.2) 53.3 (- 6.1)
Yy=0AB=0|79.7(-16.2) | 32.7 (-56.7) | 72.1 (- 8.2) 75.1 (- 4.2) 64.9 (— 8.6) 49.0 (-10.3)
union 81.4 (-14.5) | 32.5 (-56.8) | 76.2 (— 4.1) 74.1 (- 5.2) 66.9 (- 6.6) 46.0 (—13.4)

on A/Color (—4.9 p.p.) and A/Size (—6.9 p.p.). Training without P (v = 0) or P7 (8 = 0)
typically reduces model performance, but training with one of these rule-based prediction heads
compensates to some degree the lack of the other. However, the removal of both (y = 0 A 8 = 0)
deteriorates results across all datasets, signifying high relevance of the auxiliary training signal in
PoNG’s training. To confirm the inherent out-of-distribution generalization abilities of PONG, we
evaluated the model on all PGM regimes without performing any hyperparameter optimization (we
only changed the batch size to 256 to reduce training time). Table ] shows that PONG achieves
state-of-the-art results on PGM, particularly on the Held-out Attribute Pairs, Held-out Triple Pairs
and Held-out Triples regimes, exceeding the best reference model by 12.5, 21.1 and 22.7 p.p., resp.
We conclude that strong performance of PONG on A-I-RAVEN and I-RAVEN-Mesh should not be
attributed to any specific bias of the model towards these two datasets.

Synthetic visual analogies. The VAP benchmark (Hill et al., 2019) was introduced to assess
the analogy-based reasoning capabilities of the learning systems. It comprises five generalization
regimes: Novel Domain Transfer, Novel Target Domain: Colour of Shapes, Novel Target Domain:
Type of Lines, Novel Attribute Values: Interpolation, Novel Attribute Values: Extrapolation, which
test the model’s generalization to novel domains or attribute values. We compared PoNG to re-
sults reported in (Yang et al. [2023al Table 2d), a recent paper introducing the PredRNet model
that achieves SOTA results across most VAP regimes. We run PoONG with three random seeds and
present its average test accuracy and standard deviation. The results are showcased in Table[5] PONG
presents best results in 3 out of 5 settings, showing its applicability to AVR tasks beyond RPMs.
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Table 4: PGM. Test accuracy of PoNG in all regimes of the PGM dataset. The Interpolation regime
is denoted as Inter., Held-out Attribute Pairs as HO-AP, Held-out Triple Pairs as HO-TP, Held-out
Triples as HO-Triples, Held-out Attribute line-type as HO-LT, Held-out Attribute shape-colour as
HO-SC, and Extrapolation as Extra. For reference, we provide results of PredRNet (Yang et al.,
2023al) and SCL (Wu et al., [2020; [Matkinski & Mandziukl, [2024al).

Model ‘ Neutral Inter. HO-AP HO-TP HO-Triples HO-LT HO-SC Extra.
PredRNet 97.4 70.5 63.4 67.8 234 27.3 13.1 19.7
SCL 87.1 56.0 79.6 76.6 23.0 14.1 12.6 19.8
PoNG (ours) 98.1 75.2 92.1 97.7 46.1 16.9 12.6 19.9

Table 5: Visual Analogy Problems (Hill et al.,[2019). Results of LBC, NSM, and PredRNet come
from (Yang et al.,|[2023a] Table 2d). For PONG, we present mean and std of test accuracy for three
random seeds. ND denotes Novel Domain, NTD — Novel Target Domain, NAV — Novel Attribute
Values, Inter. — Interpolation, Extra. — Extrapolation.

| ND Transfer ~ NTD LineType NTD ShapeColor NAV Inter. NAV Extra. | Avg

LBC 0.87£0.005 0.76 £0.020  0.78 & 0.004 0.93 £0.004 0.62£0.020 | 0.79
NSM 0.88 0.79 0.78 0.93 0.74 0.82
PredRNet 0.96 £0.003 0.82-+0.010 0.80 +0.010 0.97 £0.002 0.72+0.060 | 0.85
PoNG (ours) | 0.98 £0.001 0.78 £0.006  0.81 £ 0.006 0.98 +0.000 0.68 £0.007 | 0.84

Table 6: VASR (Bitton et al., 2023). Results of selected baselines come from (Bitton et al., 2023}
Table 3). For PONG, we present mean with std and best-of-3 test accuracy for three random seeds.
Sup. denotes Supervised.

Distractors \ Zero-Shot ViT ~ Zero-Shot Swin  Sup. Concat  PoNG (best-of-3) PoNG (mean = std)

Random 86.0 86.0 84.1 92.0 91.8+0.3
Difficult 50.3 52.9 54.9 70.5 69.5+£1.1

Real-world visual analogies. The VASR dataset (Bitton et al., 2023) presents visual analogies
comprising real-world images. In effect, the learner needs to additionally understand a rich real-
world scene, before attempting to solve the presented analogy problem. Following the approach
proposed by the VASR authors, we employed the Vision Transformer (ViT) (Dosovitskiy et al.,
2021)) as a perception backbone that produces image embeddings. Specifically, we used the same
model variant as (Bitton et al.| 2023)), which is ViT-L/32 pre-trained on ImageNet-21k at resolution
224x224 and fine-tuned on ImageNet-1k at resolution 384x384. We replaced the panel encoder of
PoNG with this frozen pre-trained backbone and trained the rest of the model from scratch. We
evaluated the model on two VASR splits including random and difficult distractors, resp. As shown
in Table [6] in both cases our model outcompetes the strongest result among baselines with 92.0%
vs. 86.0% and 70.5% vs. 54.9%, resp. The results support the claim that PONG is a versatile model
with strong analogical reasoning capabilities, applicable to both synthetic and real-world domains.

5 CONCLUSION

We investigate generalization capabilities of DL models in the AVR domain. To accelerate research
in this area, we propose two RPM benchmarks. Attributeless-I-RAVEN introduces 10 generalization
regimes of variable complexity that assess model’s capability to solve matrices with rules applied
to novel attributes. [-RAVEN-Mesh overlays line-based patterns on top of the RPM, facilitating TL
studies. Experiments on 11 strong literature AVR models reveal their limitations in terms of general-
ization. To elevate state-of-the-art, we introduce PONG, a novel AVR model capitalizing on parallel
design, weight sharing, and normalization. PONG outcompetes all baselines on the presented chal-
lenges, and achieves significant improvement over SOTA reference models on PGM. Furthermore,
PoNG excels in solving visual analogy problems comprising both synthetic and real-world images.
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Figure 7: Attributeless-I-RAVEN. Left: Matrices from the A/Type regime belonging to the
Center configuration. In (a), object type is constant across rows, while in (b) it’s governed
by the Distribute Three rule. Right: Matrices from the 2/Size regime belonging to the
Out-InCenter configuration. In (c), object size is constant across rows in both inner and outer
image parts, while in (d) the inner and outer components are governed by the Arithmetic and
Progression rules, resp.
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Figure 8: Attributeless-I-RAVEN. Left: Matrices from the A/ColorSize regime belonging to
the Up—-Down configuration. In (a), object color and size is constant across rows in both compo-
nents, while in (b) they are governed by Progression and Distribute Three in the up-
per component, resp., and by Distribute Three in the lower one. Right: Matrices from the
A/ColorType regime belonging to the 2x2 Grid configuration. In (c), object color and type is
constant across rows, while in (d) they are governed by the Distribute Three rule.

A ADDITIONAL MATRIX EXAMPLES

Figure [7] presents matrix examples from A/Type and A/Size, the primary regimes
of Attributeless-I-RAVEN. Figures [8] [9] and [I0] depict matrix examples from the ex-
tended regimes of Attributeless-I-RAVEN: A/ColorSize and A/ColorType (Fig. [§),
A/SizeType and A/Color-Progression (Fig. E[), and A/Color—-Arithmetic and
A/Color-DistributeThree (Fig.[I0). Figure[II]presents matrix examples from I-RAVEN-
Mesh concerning the Number attribute.

B LIMITATIONS AND FUTURE WORK

In this work we study generalization and knowledge transfer in contemporary AVR models employ-
ing RPM datasets, and compare the introduced PONG model with SOTA models in solving visual
analogy problems. However, the set of problems in the AVR domain also includes other tasks not
covered in the paper (Matkinski & Mandziuk, [2023)). The Machine Number Sense dataset presents
visual arithmetic problems (Zhang et al., [2020), VAEC defines an extrapolation challenge (Webb
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Figure 9: Attributeless-I-RAVEN. Left: Matrices from the A/SizeType regime belonging to the
Center configuration. In (a), object size and type are constant across rows, while in (b) they are
governed by the Progression rule. Right: Matrices from the A/Color-Progression regime
belonging to the 3x3 Grid configuration. In (c), object color is governed by the Progression
rule, while in (d) by Distribute Three.
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Figure 10: Attributeless-I-RAVEN. Left: Matrices from the A/Color—-Arithmetic regime
belonging to the Out-InCenter configuration. In (a), object color in the inner component is
governed by Arithmetic, while in (b) itis governed by Distribute Three. Right: Matrices
from the A/Color-DistributeThree regime belonging to the Left-Right configuration.
In (c), object color is governed by the Distribute Three rule in both components, while in (d)
by Constant in the left component and by Arithmetic in the right one.

et al., 2020), while ARC proposes a set of diverse tasks in a few-shot learning setting (Chollet,
2019). Future research in this area may juxtapose the performance of AVR models across a set of
benchmarks oriented towards generalization to ensure generalization advances beyond the RPM and
visual analogy datasets.

In the paper we claim that the proposed pathways block, a key component of the introduced model,
is a generic module also applicable to other tasks that require reasoning over a set of objects (vector
embeddings). Nevertheless, the experimental evaluation of PONG presented in the paper is focused
on RPM benchmarks, including I-RAVEN, I-RAVEN-Mesh, Attributeless-I-RAVEN, and PGM, and
two visual analogy datasets, i.e. VAP and VASR. Assessing model’s performance on other problems
constitutes an interesting extension of this work.

C DATASET DETAILS

Rule encoding. As discussed in Section [3.3] we use sparse encoding (Matkifski & Mandziuk]
2024a)) to represent the set of matrix rules as a vector r € R such that d,, = 48 for [ RAVEN-
Mesh and d,. = 40 otherwise. The set of rules R in I-RAVEN is {Constant, Progression,
Arithmetic, Distribute Three} and the set of attributes A is {Position, Number,
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Figure 11: I-RAVEN-Mesh. The examples showcase matrices with the Number attribute of the
mesh component governed by all applicable rules. (a) Line number is constant in each row. (b) The
number of lines increases by 2 from left to right. (c) The number of lines in the third column is the
difference between the number of lines in the second and first columns. (d) The numbers of lines in
each row compose a set {2,3,6}.

Type, Size, Color}. It follows that there is [R| x |.A| = 20 unique rule-attribute pairs. In
addition, the Left-Right, Up—-Down, Out—-InCenter, and Out-InGrid configurations in
I-RAVEN comprise two components in which rules exist independently, e.g., the Left-Right
component contains matrices with separate rules applied to the left and right sides. This gives an up-
per bound of 40 rule—attribute combinations in each configuration. As discussed in Section [3.2]and
presented in Table [I] the Mesh component introduced in I'RAVEN-Mesh comprises two attributes
and four rules, leading to a total of 48 rule—attribute combinations per configuration. As an example,
in the Up-Down configuration of [-RAVEN-Mesh, there are 20 rule—attribute combinations for the
upper component, another 20 for the lower component, and 8 for the Mesh component. The sparse
encoding encodes each rule in a matrix as a one-hot vector and applies the OR operation to the set
of one-hot vectors, producing a multi-hot representation of matrix rules.

D MODEL DETAILS

Tables[7] [8] and[9]list all PONG hyperparameters.

E EXTENDED RESULTS

Table [T0| shows the aggregated performance of all considered models on 6 extended A-I-RAVEN
regimes.

Tables |'1;1'|— @ present the results (mean and standard deviation) of all considered models on test
and validation splits and the difference between these two splits for particular datasets/regimes. The
results support the analysis of dataset difficulty presented in Section[d The difference in model per-
formance between test and validation splits in [-RAVEN (Table ﬂ;fl) and [-RAVEN-Mesh (Table @)
is negligible. In Attributeless-I-RAVEN regimes, however, the difference is significant, showing
limitations of all evaluated models in terms of generalization. Across 4 primary regimes (Tables[13]—
[I6), the biggest difference concerns the A/ Type regime, suggesting that generalization of rules ap-
plied to novel shape types constitutes a real challenge for the contemporary models. In all 3 extended
regimes concerning held-out attribute pairs (A/ColorSize,A/ColorType,and A/SizeType)
the performance difference on test and validation splits is bigger than in the primary regimes (see
Tables[T7—[T9). This drop stems from overall weaker performance on the test split, confirming high
difficulty of these regimes. Model performance on the next 3 regimes concerning the Color at-
tribute and rules other than Constant (A/Color—-Progression, A/Color-Arithmetic,
and A/Color-DistributeThree) is better, though further progress in generalization is re-
quired to fully close the performance gap between test and validation splits (see Tables 20]—[22).
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Table 7: PoNG hyperparameters: Panel encoder £. The parameters of convolution layers are
denoted as [# input channels — # output channels, kernel size, stride, padding]; of pooling layers
as [kernel size, stride, padding]; of linear layers as [# input neurons — # output neurons]; of flatten
operators as [input dimensions — output dimensions]; of position embedding as [dimensionality of
the position embedding vector].

LAYER | HYPERPARAMETERS
CoNv2D-RELU-BN2D [1—-32,7%x7,2x2,3x3]
CONV2D-RELU-BN2D [32 = 32,7 x 7,2 x 2,3 x 3]
MaxPooL [3x3,2x2,1x1]
MaxPooL 3x3,2x2,1x1]
CoNvV2D [1—32,1x1,1x1,0x0]
Sum

CoNv2D-RELU-BN2D [32 = 32,7 x7,2x2,3x3]
CONV2D-RELU-BN2D [32 = 32,7 x 7,2 x 2,3 x 3]
MAXxPooL [3x3,2x2,1x1]
MAXPoOL [3x3,2x2,1x1]
CONV2D [32 = 32,1 x 1,1 x1,0x 0]
Sum

FLATTEN (HEIGHT & WIDTH) [5 x5 — 25]
LINEAR-RELU [25 — 25]
FLATTEN (DEPTH & SPATIAL) [32 x 25 — 800]

LN

LINEAR-RELU [800 — 1600]

LN

LINEAR [1600 — 800]

Sum

POSITION EMBEDDING [25]

Tables 23] —[34] present the results (mean and standard deviation) of all considered models in detail
for all matrix configurations. The most challenging configurations in I-RAVEN and I-RAVEN-
Mesh are 3x3Grid and Out-InGrid, in which image panels contain more objects than in
the remaining configurations. Apparently, such setups require stronger reasoning capabilities to
correctly identify the rules applied to multiple objects. Also, the results on the Left-Right
and Up-Down configurations are relatively weaker in majority of regimes. In these configura-
tions, rules may be applied to both matrix components (left/right and up/down, resp.), which de-
mands stronger reasoning capabilities. This also concerns the Out—InGrid configuration in the
A/Size regime, and the Out-InCenter configuration in the A/SizeType regime. Results
in the A/Position regime are close-to-perfect in configurations comprising a single object in
each component (Center, Left-Right, Up—Down, and Out-InCenter) and weaker in the
remaining configurations (2x2Grid, 3x3Grid and Out-InGrid). This performance drop can
be attributed to the fact that Posit ion attribute can only be effectively applied to the 2x2Grid,
3x3Grid and Out-InGrid configurations allowing modification of the object’s position. In the
remaining configurations its application does not introduce any changes.

18



Under review as a conference paper at ICLR 2025

Table 8: PoNG hyperparameters: Reasoner R. The parameters of convolution layers are denoted
as [# input channels — # output channels, kernel size, stride, padding]; of group and group-pair
convolution layers as [# input channels — # output channels, kernel size, stride, padding, groups];
of pooling layers as [kernel size, stride, padding]; of linear layers as [# input neurons — # output
neurons|; of flatten operators as [input dimensions — output dimensions].

LAYER | HYPERPARAMETERS
STACK

BN1D

ConNvI1D [9 — 32,1,1,0, BIAS = FALSE]
CoNV1D-RELU-BN1D [9—32,7,1,3]
G-C-TCN-RELU-BN1D [3—32,7,1,3,3]
GP-C-TCN-RELU-BN1D 6 —32,7,1,3,3]
AvGPooL1D [10,8,1]

BN1D

ConvIiD [32 — 32,1, 1,0, BIAS = FALSE]
CoNV1D-RELU-BN1D [32 = 32,7,1,3]
CoNV1D-RELU-BNI1D [32 — 32,7,1,3]
G-C-TCN-RELU-BN1D [4—32,7,1,3,8]
G-C-TCN-RELU-BN1D [4 —32,7,1,3,8
GP-C-TCN-RELU-BN1D [16 — 32,7,1,3,4]
GP-C-TCN-RELU-BN1D [16 — 32,7,1,3,4]
AvGPooL1D [6,4,1]

BN1D

CoNVv1D [32 — 32,1,1,0,B1AS = FALSE|
CoNVID-RELU-BNI1D [32 — 32,7,1,3]
CoNV1D-RELU-BN1D (32 = 32,7,1,3]
G-C-TCN-RELU-BN1D [4 — 32,7,1,3,8]
G-C-TCN-RELU-BN1D [4—32,7,1,3,8]
GP-C-TCN-RELU-BN1D [16 — 32,7,1,3,4]
GP-C-TCN-RELU-BN1D (16 — 32,7,1,3,4]
ADAPTIVE AVGPOOL1D [25 — 16]

FLATTEN (DEPTH & FEATURE DIM) [32 x 16 — 512]
LINEAR-RELU-BN1D [512 — 512]

LINEAR [512 — 128]

Table 9: PONG hyperparameters: Prediction heads. The parameters of linear layers are denoted

as [# input neurons — # output neurons].

LAYER

‘ HYPERPARAMETERS

TARGET HEAD PY

LINEAR-RELU-LINEAR
LINEAR

[128 — 128]
[128 — 1]

AGGREGATE RULE HEAD Py

Sum
LINEAR-RELU
LINEAR

[128 — 128]
(128 — d.]

TARGET-CONDITIONED RULE HEAD Pj

WEIGHTED SUM
LINEAR

[128 — d,]
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Table 10: A-I-RAVEN extended regimes. CS, CT, and ST denote ColorSize, ColorType, and
SizeType, resp. P, A, and D3 denote Progression, Arithmetic, and Distribute Three, resp.

| a/cs A/CT A/ST A/Color-P A/Color-A A/Color-D3
ALANS 15.1 (£3.3) 17.7(£3.2) 15.7(£3.2) 24.8(£188) 18.3(£6.6) 22.4 (£7.7)
CPCNet 33.0 (£5.3) 25.0(£0.9) 24.1(£1.2) 50.5(£0.6) 45.9 (£2.7) 37.8 (£0.9)
CNN-LSTM | 13.4 (£0.9) 14.7(£1.7) 13.0(£0.1) 17.2(£1.5) 17.1 (£3.7) 20.6 (£6.7)
CoPINet 18.3(£0.3) 17.2(£0.1) 19.7(x0.7) 35.8 (£0.6) 35.2 (£0.5) 26.9 (+0.5)
PrAE 30.0 (£1.1) 26.7 (£0.7) 25.6 (£0.8) 62.3(£0.9) 43.0(£26.5) 55.1 (£0.8)
PredRNet 31.0 (£1.6) 28.0(£0.7) 27.9(£05) 62.3(£2.2) 56.9 (£ 1.4) 48.5 (£0.9)
RelBase 36.6 (£0.8) 29.7 (+0.6) 31.1(+1.0) 73.0(£1.8) 66.2 (£1.0) 65.7 (£4.6)
SCL 40.8 (+3.2) 32.0 (£2.3) 33.5(+0.7) 75.6(+£10.1) 60.0 (£4.1) 63.9 (+4.3)
SRAN 22.7(£1.1) 20.9(£0.9 23.3(£0.3) 42.1(£2.3) 39.9 (£2.7) 34.6 (£3.6)
STSN 27.3 (£4.6) 21.9 (+4.6) 12.3(£0.1) 399 (£14.7) 25.7 (£10.6) 20.7 (£7.7)
WReN 13.5(£0.1) 13.8(£0.7) 14.1(+0.2) 18.0(£0.4) 17.1 (£0.2) 17.7 (£0.6)
PoNG (ours) | 44.7 (£2.1) 343 (+0.8) 32.1(£2.1) 814 (£3.1) 70.0 (+4.1) 81.3 (£1.6)

Table 11: I-RAVEN. Table 12: I-RAVEN-Mesh.

| Test Val Test — Val | Test Val Test — Val

ALANS 27.0 (£8.4) 27.0(£86) + 0.1 ALANS 15.9 (+2.6) 17.1(+£3.6) — 1.3
CPCNet 70.4 (£6.4) 69.6 (£6.9 + 0.7 CPCNet 66.6 (+£5.1) 66.5 (£5.4) + 0.1
CNN-LSTM | 27.5 (+1.5) 274 (£1.7) + 0.1 CNN-LSTM | 28.9 (#0.4) 29.3 (+06) — 0.4
CoPINet 43.2 (£0.1) 42.5(+06) + 0.7 CoPINet 41.1 (£0.3) 41.3 (+£0.2) — 0.2
PrAE 19.5(£04) 194 (£08) + 0.0 PrAE 33.2 (£0.4) 33.0(£0.9 + 0.1
PredRNet 88.8 (+1.8) 88.3(+1.9 + 0.5 PredRNet 59.2 (£6.4) 59.3 (6.9 — 0.0
RelBase 89.6 (£0.6) 89.5(£05) + 0.1 RelBase 84.9 (£4.4) 85.0(£4.5) — 0.1
SCL 83.4 (£2.5) 83.0(+25 + 04 SCL 80.9 (+1.5) 81.0(+1.5 — 0.1
SRAN 58.2 (£1.6) 58.0(£1.3) + 0.2 SRAN 57.8 (£0.2) 58.0 (£0.3) — 0.2
STSN 51.0 (£24.8) 51.4 (£25.00 — 0.4 STSN 48.7 (£11.5) 48.8 (+10.9) — 0.1
WReN 18.4 (+£0.0) 185(+0.3) — 0.1 WReN 25.7 (£0.2) 25.6 (£0.4) + 0.0
PoNG (ours)| 95.9 (+0.7) 95.6 (+0.7) + 0.3 PoNG (ours)| 89.3 (+2.4) 89.1 (+25) + 0.3

Table 13: A/Color. Table 14: A/Position.

| Test Val Test — Val | Test Val Test — Val
ALANS 15.2 (£1.4) 16.4 (£2.1) — 1.2 ALANS 16.0 (£1.0) 15.2(+1.3) + 0.8
CPCNet 51.2 (£3.8) 77.0(£6.1) —25.7 CPCNet 68.3 (£4.0) 90.6 (+£5.3) —22.3
CNN-LSTM [17.0 (£3.1) 31.0 (&4.4) —13.9 CNN-LSTM | 24.0 (£2.9) 36.4 (£3.7) —124
CoPINet 32.5(+0.2) 499 (+0.7) —174 CoPINet 41.3 (£1.6) H4.7(x1.7) —134
PrAE 47.9 (£0.9) 60.9 (£1.4) —13.0 PrAE 68.2 (£3.3) 80.1 (£34) —12.0
PredRNet 59.4 (£1.0) 92.2 (+1.00 =329 PredRNet 73.7(£0.7) 97.4 (+£0.5) —23.6
RelBase 67.4 (+2.7) 95.2 (+0.4) —27.8 RelBase 76.6 (£0.3) 97.0(£0.2) —20.4
SCL 65.1 (£2.0) 84.4 (£0.5) —19.2 SCL 76.7 (£7.1) 94.7 (£5.3) —18.0
SRAN 38.3 (£1.0) 63.7(£0.3) —25.4 SRAN 56.9 (£0.7) 75.6 (£1.4) —18.8
STSN 39.3 (£6.9) 71.3 (+x17.00 —32.0 STSN 36.1 (£19.9) 50.7 (£27.3) —14.6
WReN 16.9 (£0.5) 23.2(+08) — 6.3 WReN 17.3 (£04) 23.3(+0.5) — 6.0
PoNG (ours) [80.3 (£4.3) 96.9 (+0.4) —16.6 PoNG (ours) | 79.3 (+£0.7) 98.2 (+0.1) —18.9
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Table 15: A/Size.

Table 16: A/ Type.

Test Val Test — Val Test Val Test — Val
ALANS 23.3 (£6.5) 24.6 (£10.6) — 1.2 ALANS 19.0 (£3.4) 25.2(£52) — 6.3
CPCNet 43.5 (£3.5) 79.2 (£2.1) —35.6 CPCNet 38.6 (+4.3) 85.2(£3.3) —46.7
CNN-LSTM | 13.6 (+1.4) 37.2(£3.1) —23.6 CNN-LSTM |14.5 (+0.8) 38.5(+0.8) —24.0
CoPINet 21.8 (+0.2) 60.7 (£0.1) —38.9 CoPINet 19.8 (£0.9) 58.8 (£2.6) —39.0
PrAE 41.3 (£1.8) 59.7 (+1.8) —184 PrAE 37.0(£1.7) 61.1(£1.4) —24.1
PredRNet 47.5 (£1.3) 92.5(+0.8) —45.0 PredRNet |40.2 (+£1.3) 93.9 (£0.1) —53.7
RelBase 51.1 (£2.4) 92.9 (+04) —41.8 RelBase 44.1 (£1.0) 93.4 (£0.2) —49.3
SCL 65.6 (£2.4) 94.0 (£2.6) —284 SCL 49.5 (+£1.8) 95.9 (+0.7) —46.4
SRAN 34.4 (£3.0) 78.1(+0.2) —43.7 SRAN 30.7 (£2.2) 788 (+£0.7) —48.1
STSN 38.4 (+16.6) 68.9 (£34.1) —30.5 STSN 39.1 (£5.0) 66.2 (+x17.7) —27.0
WReN 12.4 (+0.5) 29.5(+0.5) —17.1 WReN 15.1 (+0.7) 23.4(+06) — 8.2
PoNG (ours)| 73.5 (+3.1) 97.1(+05) —23.6 PoNG (ours)|59.4 (+6.9) 96.1 (+0.8) —36.7

Table 17: A/ColorSize. Table 18: A/ColorType.

| Test Val Test — Val | Test Val Test — Val
ALANS 15.1 (£3.3) 16.4(+£43) — 1.3 ALANS 17.7 (£3.2) 204 (£6.2) — 2.7
CPCNet 33.0 (£5.3) 86.1 (£1.4) —53.1 CPCNet 25.0 (£0.9) 84.4 (£2.7) —594
CNN-LSTM [13.4 (+0.9) 53.1 (+6.1) —39.8 CNN-LSTM |14.7 (£ 1.7) 53.3 (£5.9) —38.7
CoPINet 18.3 (£0.3) 71.7(+0.3) —53.4 CoPINet 17.2 (£0.1) 72.8 (+£0.5) —55.6
PrAE 30.0 (£1.1) 63.2(£2.3) —33.1 PrAE 26.7 (£0.7) 58.8 (£2.6) —32.1
PredRNet [31.0 (£1.6) 95.4 (+£04) —64.4 PredRNet [28.0 (+0.7) 91.6 (+0.6) —63.6
RelBase 36.6 (£0.8) 95.2 (£0.6) —58.7 RelBase 29.7 (£0.6) 93.0 (£4.0) —63.3
SCL 40.8 (+3.2) 94.2 (+1.7) —53.4 SCL 32.0 (£2.3) 96.4 (+04) —64.4
SRAN 22.7 (£1.1) 84.3 (£0.7) —61.7 SRAN 20.9 (£0.9) 84.4(+1.9) —63.5
STSN 27.3 (£4.6) 84.5 (+12.7) —57.2 STSN 21.9 (£4.6) 76.2 (£22.2) —54.3
WReN 13.5 (+£0.1) 43.4 (+£1.4) —29.9 WReN 13.8 (£0.7) 41.3 (+1.0) —27.5
PoNG (ours) [44.7 (£2.1) 973 (£0.5) —52.6 PoNG (ours) |34.3 (£0.8) 96.6 (+0.5) —62.3

Table 19: A/SizeType. Table 20: A/Color-Progression.

| Test Val Test — Val | Test Val Test — Val
ALANS 15.7 (£3.2) 21.6 (£11.7) — 5.9 ALANS 24.8 (£18.8) 26.0 (£20.2) — 1.2
CPCNet 241 (£1.2) 87.0(£1.8) —62.9 CPCNet 50.5 (£0.6) 75.5 (£0.7) —25.0
CNN-LSTM [13.0 (+0.1) 53.6 (+£0.2) —40.6 CNN-LSTM | 17.2 (+1.5) 29.6 (+x2.7) —124
CoPINet 19.7 (£0.7) 72.8(£0.3) —53.1 CoPINet 35.8 (£0.6) 48.9 (+0.5) —13.1
PrAE 25.6 (£0.8) 65.0(£3.7) —394 PrAE 62.3 (£0.9) 65.1 (£3.7) — 2.8
PredRNet [27.9 (+0.5) 94.8 (+£0.3) —66.9 PredRNet 62.3 (£2.2) 91.0 (£2.5) —28.7
RelBase 31.1 (+£1.0) 94.6 (+1.4) —63.5 RelBase 73.0 (£1.8) 95.0 (+0.8) —22.0
SCL 33507 97.2(+06) —63.7 SCL 75.6 (£10.1) 88.8 (£7.1) —13.2
SRAN 23.3 (£0.3) 88.4(+£0.3) —65.1 SRAN 42.1 (£2.3) 64.4 (£1.8) —224
STSN 12.3 (#£0.1) 12.5(+05) — 0.2 STSN 39.9 (£14.7) 70.7 (£28.9) —30.8
WReN 14.1 (£0.2) 50.9 (£0.7) —36.8 WReN 18.0 (£0.4) 18.8(£04) — 0.7
PoNG (ours) [32.1 (+2.1) 96.6 (£0.9) —64.5 PoNG (ours) | 81.4 (£3.1) 974 (+£03) —16.0
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Table 21: A/Color—-Arithmetic.

Table 22: A/Color-DistributeThree.

| Test Val Test — Val | Test Val Test — Val
ALANS 18.3 (+6.6) 19.2 (6.5 — 0.9 ALANS 224 (£7.7) 21.5(x£70) + 0.9
CPCNet 45.9 (£2.7) 74.3 (£1.8) —284 CPCNet 37.8(+£0.9) 74.5(£05) —36.7
CNN-LSTM | 17.1 (£3.7) 26.0 (+x4.5) — 8.9 CNN-LSTM |20.6 (+6.7) 24.9 (+0.5) — 4.3
CoPINet 35.2 (£0.5) 45.5(+0.8) —10.4 CoPINet 26.9 (£0.5) 48.7(£05) —21.8
PrAE 43.0 (£26.5) 43.4 (£26.7) — 04 PrAE 55.1 (+£0.8) 63.4(£37 — 83
PredRNet 56.9 (+1.4) 89.5(+0.4) —32.6 PredRNet  |48.5 (£0.9) 89.7 (+0.9) —41.2
RelBase 66.2 (£1.0) 93.5(+0.2) —27.3 RelBase 65.7 (£4.6) 93.7 (£1.6) —28.0
SCL 60.0 (+4.1) 85.0 (£1.5) —25.1 SCL 63.9 (+4.3) 83.4(£1.4) —195
SRAN 39.9 (£2.7) 61.7(£3.2) —21.8 SRAN 34.6 (£3.6) 64.7(£2.3) —30.1
STSN 25.7 (£10.6) 39.5 (£25.8) —13.7 STSN 20.7 (£7.7) 53.5 (£23.2) —32.8
WReN 17.1(£0.2) 18.2(£03) — 1.1 WReN 17.7 (£06) 18.3 (£0.6) — 0.6
PoNG (ours)| 70.0 (+4.1) 96.3 (+£0.3) —26.3 PoNG (ours)|81.3 (+1.6) 96.8 (+0.9) —15.5

Table 23: I-RAVEN. Results from Tableextended to each matrix configuration.

|  Mean Center  2x2Grid 3x3Grid L-R U-D o-IC 0-1IG
ALANS 27.0 (£8.4) 28.8(+£9.2) 25.6 (£5.2) 26.7 (£7.7) 32.1 (+£13.2) 31.9 (£12.0) 24.3 (£8.5) 19.8 (£3.8)
CPCNet 70.4 (+£6.4) 85.0 (£10.9) 53.1 (£10.9) 45.2 (£7.0) 89.3 (£4.4) 89.9 (£5.1) 84.3 (£1.3) 46.0 (£5.7)
CNN-LSTM | 27.5 (£1.5) 41.2 (£4.3) 27.1 (£3.1) 24.8 (£3.3) 23.4 (£1.9) 22.5(£0.2) 28.3 (£2.0) 25.6 (£0.7)
CoPINet 43.2 (£0.1) 51.8(+£0.7) 34.0 (£0.6) 29.9 (+0.6) 47.2(£0.6) 49.9 (£0.6) 49.2 (£0.9) 40.3 (£1.2)
PrAE 19.5 (£0.4) 20.2 (£0.7) 36.8 (£1.0) 17.3(£1.8) 16.4 (£0.7) 15.3 (£0.7) 15.8 (£1.4) 14.6 (£0.6)
PredRNet 88.8 (£1.8) 98.7(+£0.2) 93.4(+£1.3) 80.3 (£4.8) 98.5(+£0.5) 97.7(£0.3) 97.7(£1.0) 55.3 (£7.3)
RelBase 89.6 (£0.6) 99.1 (+£0.2) 90.6 (£0.7) 82.2 (+1.4) 95.2(+0.3) 97.7(+0.5) 98.0 (£0.5) 64.2 (£2.1)
SCL 83.4 (£2.5) 98.6 (£0.2) 81.6(£3.3) T73.1(£0.7) 86.7(£5.3) 86.3 (£5.7) 88.4(£3.2) 69.4 (+0.5)
SRAN 58.2 (+£1.6) 80.7 (£2.8) 46.7 (£0.8) 39.7(£1.2) 68.1(£2.9) 66.5(£3.1) 62.6 (£0.3) 42.9 (£1.0)
STSN 57.2 (£20.0) 74.5 (£25.0) 52.3 (£17.3) 47.1 (£14.9) 61.8 (£25.9) 60.8 (£26.3) 64.4 (£24.7) 40.9 (£9.3)
WReN 18.4 (£0.0) 24.5(£3.2) 17.2(+1.1) 17.3(£09) 15.1 (£1.0) 16.8 (+£1.0) 18.7(+0.5) 19.6 (£0.4)
PoNG (ours) | 95.9 (+0.7) 99.5 (+0.1) 97.8 (£0.9) 91.2(+1.2) 98.7 (+0.5) 98.7 (+0.6) 98.8 (+£0.3) 86.5 (+2.1)

Table 24: I-RAVEN-Mesh. Results from Table extended to each matrix configuration.

|  Mean Center 2x2Grid 3x3Grid L-R U-D 0-IC 0-1IG
ALANS 15.9 (£2.6) 16.3 (£2.8) 15.8 (£2.9) 16.1 (£2.7) 16.0 (£3.5) 17.1 (£3.6) 15.6 (+1.9) 14.2 (£0.6)
CPCNet 66.6 (£5.1) 73.2 (£11.6) 53.4 (£5.0) 50.1 (£2.9) 78.4 (£3.9) 76.9 (£4.4) 74.9 (£3.2) 58.9 (£5.4)
CNN-LSTM | 28.9 (£0.4) 30.5 (£0.9) 27.4 (+£0.7) 28.4 (£0.5) 28.9 (£0.5) 29.0 (£0.8) 28.8 (£0.3) 29.1 (£1.5)
CoPINet 41.1 (£0.3) 41.5 (£0.3) 38.2 (+0.3) 34.6 (£0.2) 42.2 (+£1.7) 42.4 (£0.2) 46.0 (£0.3) 42.9 (£0.5)
PrAE 33.2 (£0.4) 38.1(£1.0) 39.1 (+0.1) 19.9 (£0.9) 41.3 (+1.7) 41.7 (£0.7) 28.4 (+1.5) 23.7 (£1.0)
PredRNet 59.2 (£6.4) 67.9 (£5.4) 50.7 (£4.3) 47.2 (£2.9) 65.2 (£8.9) 63.0 (£9.3) 65.1 (£9.5) 55.0 (£5.0)
RelBase 84.9 (£4.4) 92.5(+2.3) 81.5(£5.8) 75.5 (£5.8) 88.4 (+3.4) 90.4 (+2.8) 90.3 (+5.0) 75.3 (£6.7)
SCL 80.9 (£1.5) 88.5 (£2.5) 77.6 (£1.2) 73.5 (+1.8) 83.1 (£0.0) 82.8 (£0.6) 86.7 (£0.8) 74.1 (£5.5)
SRAN 57.8 (£0.2) 65.7 (£0.3) 46.6 (£0.9) 45.1 (£0.9) 64.0 (£0.2) 66.1 (£1.3) 63.8 (£0.4) 53.5(£0.6)
STSN 48.7 (£11.5) 63.8 (£20.2) 45.2 (£9.7) 43.4 (£7.3) 43.9 (£6.9) 44.0 (£7.9) 52.8 (£17.2) 49.0 (+12.6)
WReN 25.7 (£0.2) 26.4 (£0.5) 24.5 (£0.4) 25.7 (£0.6) 25.7 (£0.3) 24.9 (£1.4) 25.9 (£0.1) 26.3 (£0.2)
PoNG (ours) | 89.3 (£2.4) 91.6 (+3.5) 89.6 (+2.3) 82.8 (£2.7) 90.8 (+£2.4) 91.7 (+2.3) 91.0 (£1.8) 87.7 (£2.2)
Table 25: A/Color. Results from Tableextended to each matrix configuration.
‘ Mean Center 2x2Grid 3x3Grid L-R U-D O-IC 0-IG
ALANS 15.2 (£1.4) 14.7 (£2.3) 16.7 (£2.0) 15.1 (£1.5) 15.6 (£2.8) 15.7 (£2.0) 14.6 (£1.8) 14.0 (£ 1.5)
CPCNet 51.2 (£3.8) 48.3 (£6.8) 41.1 (£6.7) 38.9 (£2.6) 57.4 (£2.7) 57.5 (£2.0) 67.1 (£2.4) 48.0 (£5.7)
CNN-LSTM |17.0 (£3.1) 17.9 (£4.6) 17.3 (£2.7) 16.3 (£2.3) 15.8 (£1.8) 15.9 (£2.6) 18.3 (£4.6) 17.9 (£3.6)
CoPINet 32.5 (£0.2) 33.0 (£0.8) 28.9 (£0.7) 27.0 (£0.2) 30.0 (£0.4) 30.7 (£0.7) 39.2 (£0.6) 38.7 (£1.7)
PrAE 47.9 (£0.9) 50.0 (£1.5) 57.7 (£1.8) 36.7 (£2.2) 61.8 (£1.6) 60.8 (£1.1) 37.8 (£0.5) 30.3 (£1.5)
PredRNet  [59.4 (£1.0) 52.9 (+1.0) 61.3 (£0.3) 56.9 (+2.2) 58.0 (£0.7) 57.8 (£1.3) 69.9 (£0.3) 59.5 (+6.0)
RelBase 67.4 (£2.7) 62.8 (£4.5) 66.8 (£2.6) 63.4 (£2.4) 66.4 (£3.4) 66.2 (£3.8) 76.2 (£3.2) 70.2 (£2.4)
SCL 65.1 (£2.0) 71.3 (£5.2) 66.2 (£2.1) 57.6 (£1.9) 57.5 (£5.0) 56.6 (£4.9) 74.0 (£0.7) 73.5 (£0.6)
SRAN 38.3 (£1.0) 40.1 (£2.4) 35.0 (£0.7) 31.5 (£1.4) 35.9 (£3.5) 36.2 (£2.6) 47.4 (£0.7) 42.0 (£0.6)
STSN 39.3 (£6.9) 39.5 (£1.8) 39.9 (£7.6) 38.6 (+7.0) 31.9 (£9.1) 30.0 (+7.4) 49.6 (£8.0) 45.3 (£9.0)
WReN 16.9 (£0.5) 18.7(£0.6) 17.1 (£0.4) 16.2 (£0.7) 15.3 (£0.5) 15.7 (£1.3) 17.7 (£0.3) 17.5 (£0.8)
PoNG (ours) | 80.3 (+4.3) 84.4 (+10.1) 85.4 (+6.8) 80.3 (£5.1) 72.3 (+3.7) 71.3 (+3.8) 88.9 (+3.1) 79.0 (+3.7)
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Table 26: A/Position. Results from Table[2|extended to each matrix configuration.

\ Mean Center 2x2Grid 3x3Grid L-R U-D 0-1IC 0-1IG
ALANS 16.0 (+£1.0) 15.0 (+1.9) 18.1 (+0.8) 16.8 (+1.3) 16.7 (+1.6) 16.5(£1.0) 15.2 (+0.5) 14.0 (£2.6)
CPCNet 68.3 (£4.0) 89.4 (£8.8) 29.1 (£2.3) 30.1 (£3.6) 96.1 (£3.1) 96.5 (£2.8) 94.3 (£2.6) 42.6 (+6.2)
CNN-LSTM | 24.0 (£2.9) 43.8 (£5.6) 13.8 (£1.8) 14.5 (£1.2) 25.4 (£1.9) 26.0 (£2.9) 29.1 (£5.1) 15.1 (£3.2)
CoPINet 41.3 (£1.6) 51.2 (£2.6) 22.2 (£0.7) 22.2 (+0.7) 53.1 (£2.4) 52.8 (£2.7) 53.3 (£1.6) 34.5(£1.6)
PrAE 68.2 (£3.3) 86.0 (£5.5) 56.5 (£1.9) 50.2 (£1.9) 92.0 (£4.7) 92.3 (£4.5) 62.0 (£5.1) 38.1 (£1.6)
PredRNet 73.7 (£0.7) 99.2 (£0.2) 36.2 (£1.4) 36.2 (+£1.5) 98.7 (£0.7) 98.9 (£0.1) 98.6 (+0.2) 48.2(+1.1)
RelBase 76.6 (£0.3) 99.1 (£0.1) 39.7 (£1.1) 39.9 (£2.5) 96.1 (+£0.3) 98.0(+0.3) 98.8 (£0.0) 64.3 (£0.8)
SCL 76.7 (£7.1) 99.2 (£0.8) 51.6 (£7.6) 43.4 (£9.7) 93.4 (£8.9) 93.9 (£8.1) 95.6 (£5.3) 60.0 (£9.5)
SRAN 56.9 (£0.7) 80.0 (£5.1) 31.2(£0.6) 30.3 (£0.7) 73.9(£1.2) 74.0 (£2.5) 69.9 (£0.6) 39.0 (£4.4)
STSN 36.1 (£19.9) 54.1 (£22.8) 19.5 (£6.6) 20.5 (£9.0) 39.7 (£32.8) 41.7 (£30.0) 48.3 (£30.2) 30.1 (£10.6)
WReN 17.3 (£0.4) 21.1(£1.5) 15.6 (£0.3) 15.9 (£1.2) 15.4(£1.1) 16.3(+0.5) 19.7(£1.2) 16.8 (£1.1)
PoNG (ours) | 79.3 (£0.7) 99.6 (£0.1) 54.5 (+1.0) 44.0 (+2.8) 98.8 (+0.1) 98.9 (+0.2) 98.7 (+0.2) 60.6 (+2.8)

Table 27: A/S1ize. Results from Table [2[extended to each matrix configuration.

|  Mean Center  2x2Grid 3x3Grid L-R U-D 0-1IC 0-1G

ALANS 23.3 (£6.5) 23.9 (£7.4) 23.6 (£4.9) 22.1 (£5.8) 26.6 (£8.1) 26.9 (£8.6) 22.0(£7.1) 18.4 (£3.9)
CPCNet 43.5 (£3.5) 48.8 (£6.3) 38.2(£3.9) 36.3(£1.8) 51.8(£4.1) 50.6 (+1.7) 47.8 (£6.2) 31.0 (£2.8)
CNN-LSTM| 13.6 (+1.4) 15.8 (£2.4) 16.6 (£1.3) 15.0 (£2.3) 12.7(£1.3) 12.3 (£1.1) 11.2(£1.9) 11.5(+1.1)
CoPINet 21.8 (£0.2) 22.9(£1.0) 25.9(£1.2) 27.0(£0.3) 20.1(£0.9) 22.1(£0.5) 15.0(£0.5) 19.4 (£0.6)
PrAE 41.3 (£1.8) 38.9 (£4.1) 49.5(+1.6) 34.4(£3.8) 54.2(x£1.7) 53.9(£3.5) 31.4(x2.2) 27.0(£1.4)
PredRNet 47.5(£1.3) 55.4 (£3.9 52.9(+0.5) 50.3 (£0.3) 48.2(+1.3) 48.1(£1.0) 39.0(+0.3) 38.1(£5.2)
RelBase 51.1 (£2.4) 59.3 (£1.8) 54.3 (£0.7) 52.8(£0.5) 50.3 (£3.0) 52.8 (£1.5) 42.0 (£7.1) 46.5 (£4.7)
SCL 65.6 (£2.4) 66.2 (+£3.9) 72.1 (+55) 67.0(+4.5) 61.7(+0.5) 62.0(£0.3) 68.6 (+3.7) 61.5 (+1.9)
SRAN 34.4 (£3.00 39.4 (£7.7) 359 (£2.0) 359 (£1.3) 35.8(£29) 37.3(£46) 30.4 (£6.1) 26.2 (£2.7)
STSN 38.4 (£16.6) 40.6 (+£14.9) 42.0 (£21.7) 38.4 (£18.5) 36.8 (£16.8) 38.3 (£16.1) 40.1 (+16.7) 33.1 (£13.3)
WReN 12.4 (£0.5) 13.8 (£0.5) 14.1(£0.1) 15.0(£0.6) 13.3(£0.9) 13.3(£0.9) 82 (£1.0)0 9.2(£0.9)

PoNG (ours)| 73.5 (+£3.1) 84.0 (+2.9) 81.1 (£8.1) 752 (+86) 67.7(£3.4) 653 (+1.1) 789 (£3.3) 62.5(+1.9)

Table 28: A/ Type. Results from Table |2{extended to each matrix configuration.
‘ Mean Center 2x2Grid 3x3Grid L-R U-D 0-IC 0-IG

ALANS 19.0 (£3.4) 18.5 (£4.9) 19.7 (£1.7) 18.9 (£3.8) 22.1 (£3.5) 20.8 (£4.5) 17.6 (£3.1) 15.2 (£3.1)
CPCNet 38.6 (£4.3) 33.3 (£4.5) 45.5 (£5.0) 42.4 (£3.1) 40.8 (£3.4) 40.4 (£4.3) 32.2 (£5.0) 34.7 (£6.6)
CNN-LSTM |14.5 (£0.8) 13.1 (£0.7) 17.0 (£0.7) 17.3 (£0.8) 13.8 (£1.9) 13.5(£0.8) 13.9 (£1.8) 12.9 (£1.1)
CoPINet 19.8 (£0.9) 18.4 (£1.8) 25.8 (£0.5) 25.5 (£0.6) 18.7 (£1.7) 16.9 (£1.6) 13.8 (£1.0) 19.5 (£0.8)
PrAE 37.0 (£1.7) 37.1 (+1.8) 46.7 (£1.6) 30.9 (£1.8) 46.6 (£2.1) 46.9 (£2.5) 25.6 (+4.7) 25.4 (£0.6)
PredRNet |40.2 (£1.3) 30.3 (£2.3) 49.1 (£1.2) 51.8 (£2.4) 39.6 (£2.5) 37.5 (£2.2) 32.8 (£2.2) 39.9 (£0.8)
RelBase 44.1 (£1.0) 39.4 (£0.9) 50.9 (£0.5) 51.0 (£0.4) 40.6 (+-2.4) 41.6 (+0.8) 37.6 (£1.5) 47.1 (+1.4)
SCL 49.5 (+£1.8) 47.5 (£2.4) 58.8 (£4.0) 57.6 (+0.6) 47.8 (£ 1.1) 47.2 (£1.6) 40.9 (+4.0) 46.3 (£2.0)
SRAN 30.7 (£2.2) 30.2 (£1.0) 37.3 (£1.3) 36.3 (£0.9) 33.0 (£3.3) 32.3 (£3.5) 21.3 (£4.6) 23.9 (£1.9)
STSN 39.1 (£5.0) 48.5 (+3.5) 44.6 (+11.3) 40.6 (£9.7) 38.3 (£8.5) 36.8 (+7.7) 35.1 (+1.6) 30.1 (£0.9)
WReN 15.1 (£0.7) 15.5 (£2.0) 15.6 (£0.5) 16.3 (£1.9) 14.1 (£0.1) 14.8 (£0.3) 14.5 (£1.4) 15.0 (£0.5)
PoNG (ours)|59.4 (+6.9) 58.4 (£7.4) 69.7 (£7.9) 654 (£7.4) 56.6 (£8.1) 56.6 (£8.9) 53.2 (+6.3) 55.4 (+4.2)

Table 29: A/ColorSize. The table presents results from Table [10|extended to each matrix con-
figuration.

| Mean Center 2x2-Grid 3x3-Grid L-R U-D O0-IC 0-IG
ALANS 15.1 (£3.3) 15.2 (£4.3) 17.2 (£2.7) 17.2 (£3.9) 14.9 (£3.4) 13.8 (£4.5) 13.7 (£1.9) 13.7 (£2.4)
CPCNet 33.0 (£5.3) 33.0 (£4.4) 34.6 (£4.7) 32.6 (£2.2) 28.0 (£5.7) 30.8 (£6.5) 35.8 (£7.6) 36.3 (£7.8)
CNN-LSTM |13.4 (+0.9) 14.3 (£1.0) 15.6 (+2.4) 14.4 (£1.0) 13.4 (#0.3) 13.8 (+1.1) 11.7 (£1.7) 10.4 (£0.8)
CoPINet 18.3 (#£0.3) 19.7 (£0.8) 24.8 (£0.3) 23.5 (£2.0) 13.9 (£1.3) 15.2 (£0.3) 12.5 (£0.5) 18.4 (£0.5)
PrAE 30.0 (£1.1) 27.1 (£2.6) 40.1 (£1.2) 30.8 (£1.9) 29.9 (£1.3) 30.6 (£1.2) 26.2 (£1.5) 25.7 (£0.5)
PredRNet  [31.0 (£1.6) 31.2 (£2.4) 40.5 (£0.8) 37.0 (£2.3) 25.9 (£1.6) 27.9 (£2.9) 23.7 (£0.5) 30.0 (£1.4)
RelBase 36.6 (£0.8) 36.5 (£0.5) 41.4 (£0.3) 38.4 (£1.3) 32.2 (£0.4) 37.1 (+£0.6) 33.2 (£3.2) 36.8 (£1.6)
SCL 40.8 (£3.2) 40.8 (+2.4) 49.2 (+£8.2) 45.7 (£5.5) 29.8 (£3.3) 30.7 (£2.0) 43.4 (+2.9) 46.0 (£2.4)
SRAN 22.7 (£1.1) 18.7 (£2.1) 29.3 (£1.8) 26.6 (£0.5) 19.0 (£2.4) 18.4 (£2.5) 22.5 (£1.9) 23.7 (£0.8)
STSN 27.3 (£4.6) 28.9 (£6.1) 30.3 (£5.3) 29.3 (£5.9) 24.3 (£6.0) 24.6 (£5.0) 28.8 (£5.8) 26.1 (£1.4)
WReN 13.5 (£0.1) 14.6 (£0.7) 14.3 (£0.2) 15.0 (£0.4) 15.2 (£0.2) 14.4 (+£0.8) 11.1 (£1.2) 10.1 (£0.2)
PoNG (ours) |44.7 (+2.1) 46.1 (£3.1) 53.5 (+2.5) 48.4 (+3.4) 36.9 (+3.1) 35.1 (+£2.9) 48.6 (+4.0) 44.2 (+1.6)
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Table 30: A/ColorType. The table presents results from Table [10|extended to each matrix con-

figuration.
‘ Mean Center 2x2-Grid 3x3-Grid L-R U-D 0-IC 0-1IG

ALANS 17.7 (£3.2) 17.4 (£4.4) 18.4 (£1.6) 17.6 (£2.4) 19.7 (£5.9) 19.0 (£5.4) 17.1 (£3.4) 14.9 (£1.3)
CPCNet 25.0 (£0.9) 21.0 (£1.2) 33.0 (£4.5) 28.4 (£1.6) 23.3 (£1.1) 20.9 (£1.7) 21.5 (£2.4) 26.5 (£2.0)
CNN-LSTM |14.7 (£1.7) 13.9 (£3.2) 18.6 (£1.6) 16.7 (£1.9) 14.7 (£1.3) 12.8 (£0.8) 13.4 (£3.0) 12.4 (£ 2.8)
CoPINet 17.2 (#£0.1) 14.4 (£0.5) 23.2 (£0.8) 23.6 (£0.7) 13.6 (£0.7) 13.5 (+0.6) 13.2 (£1.0) 18.6 (£1.0)
PrAE 26.7 (£0.7) 24.3 (£1.0) 35.9 (£0.5) 27.3 (+£1.6) 30.3 (£1.2) 28.1 (+0.9) 17.5 (£0.6) 23.1 (£1.1)
PredRNet  |28.0 (£0.7) 20.6 (+1.1) 38.3 (£1.6) 35.2 (£1.6) 26.1 (£1.4) 23.8 (£0.6) 23.3 (£1.1) 28.7 (£1.5)
RelBase 29.7 (£0.6) 23.2 (£0.8) 36.6 (£0.6) 34.4 (£1.0) 25.0 (£2.0) 23.7 (£0.9) 27.5 (£1.1) 37.0 (£0.2)
SCL 32.0 (+£2.3) 25.9 (+3.8) 44.4 (£2.4) 40.1 (£1.9) 26.1 (£3.0) 24.4 (+£1.8) 27.1 (£1.9) 35.7 (£2.1)
SRAN 20.9 (£0.9) 20.2 (£2.6) 27.2 (£1.9) 24.9 (£1.9) 19.2 (£0.6) 18.2 (£0.9) 15.7 (£0.5) 20.5 (£0.7)
STSN 21.9 (£4.6) 21.9 (£4.1) 26.9 (£7.7) 25.3 (£8.1) 20.5 (£2.0) 20.7 (£2.7) 18.6 (£4.7) 19.8 (£4.7)
WReN 13.8 (£0.7) 13.1 (£2.0) 16.0 (£0.5) 14.5 (£0.7) 13.3 (£1.1) 14.0 (£1.1) 13.3 (£0.3) 13.1 (£1.1)
PoNG (ours) |34.3 (£0.8) 29.4 (+1.4) 43.4 (+1.4) 41.2 (£2.8) 29.5 (+1.2) 29.2 (+0.8) 29.7 (+1.6) 37.2 (+1.6)

Table 31: A/SizeType. The table presents results from Table|10|extended to each matrix config-

uration.
|  Mean Center 2x2-Grid 3x3-Grid L-R U-D 0-IC 0-1IG

ALANS 15.7 (£3.2) 14.0 (£2.0) 18.6 (£5.4) 18.2 (£5.7) 15.1 (£2.0) 14.8 (£1.8) 14.0 (£1.3) 15.6 (£5.3)
CPCNet 24.1 (£1.2) 26.3 (£1.8) 30.1 (£2.0) 29.0 (£0.4) 22.3 (£0.6) 22.8 (£0.5) 17.8 (£1.4) 20.1 (£2.5)
CNN-LSTM |13.0 (£0.1) 13.1 (£0.4) 14.2 (£0.9) 14.0 (£0.6) 13.2 (£0.9) 12.1 (£0.0) 12.3 (£0.7) 12.6 (£1.2)
CoPINet 19.7 (£0.7) 20.9 (£1.6) 23.5 (£0.8) 22.6 (£0.9) 19.1 (+£1.1) 19.0 (£0.7) 17.4 (£1.8) 15.5 (£0.9)
PrAE 25.6 (£0.8) 23.1 (£1.1) 35.2 (£1.0) 27.1 (£2.0) 28.0 (£0.6) 26.3 (£0.9) 17.6 (£0.3) 21.9 (£1.3)
PredRNet  |27.9 (+£0.5) 25.8 (+1.3) 38.4 (+1.3) 35.2 (£0.6) 25.0 (£0.7) 26.7 (£0.7) 17.8 (£1.5) 25.9 (£0.9)
RelBase 31.1 (£1.0) 33.3 (£3.0) 39.3 (£0.8) 37.9 (£0.8) 28.4 (£1.9) 29.2 (£1.9) 22.1 (+£1.6) 27.5 (£1.2)
SCL 33.5 (+0.7) 41.3 (+0.6) 44.0 (+2.4) 39.7 (£0.8) 30.7 (+0.4) 29.3 (+1.6) 23.2 (+0.6) 26.1 (£0.4)
SRAN 23.3 (£0.3) 23.7 (£2.6) 30.8 (£1.7) 28.2 (£0.6) 21.0 (£2.6) 22.7 (£0.8) 16.0 (£0.6) 20.6 (£0.7)
STSN 12.3 (£0.1) 12.9 (£1.0) 12.0 (£0.8) 12.4 (£1.8) 11.9 (£0.2) 11.9 (£0.7) 12.2 (£0.6) 12.3 (£0.6)
WReN 14.1 (+£0.2) 14.3 (£0.5) 15.2 (£0.8) 14.7 (£0.4) 14.0 (£0.8) 14.7 (£0.5) 12.1 (£0.4) 13.6 (£0.7)
PoNG (ours)|32.1 (+£2.1) 34.6 (+£3.3) 42.4 (£0.7) 39.9 (+2.8) 28.8 (£1.8) 28.4 (+£1.9) 22.1 (+4.4) 28.6 (£2.4)

Table 32: A/Color-Progression. The table presents results from Table [10| extended to each
matrix configuration.

‘ Mean Center 2x2-Grid 3x3-Grid L-R U-D 0-IC 0-1IG
ALANS 24.8 (£18.8) 24.9 (£21.3) 24.5 (£13.8) 24.3 (£16.4) 26.3 (£23.3) 29.3 (£26.3) 24.5 (£20.1) 19.7 (£10.1)
CPCNet 50.5 (£0.6) 51.9 (£0.3) 37.6 (£2.6) 33.9(x1.5) 59.0 (£0.6) 58.9 (£1.5) 67.7(£2.4) 44.8 (£0.8)
CNN-LSTM | 17.2 (£1.5) 20.3 (£2.2) 17.7(£1.4) 16.9(£2.4) 16.0(£1.3) 15.6 (£1.4) 18.0 (£1.0) 15.7(£1.9)
CoPINet 35.8 (£0.6) 37.3 (0.9 29.8 (£1.8) 28.0(£0.3) 35.8(£0.5) 35.8(£0.9) 44.2 (+0.8) 40.1 (+2.5)
PrAE 62.3 (£0.9) 73.3 (£2.0) 75.0 (£3.3) 41.4(£5.9) 83.0 (£0.7) 829 (£1.2) 47.1 (£4.7) 33.0(+1.7)
PredRNet 62.3 (£2.2) 64.2(£1.2) 61.6 (£5.8) 52.0(£5.2) 64.3(£1.5) 64.1(£0.8) 75.3(£0.9) 54.8(£6.1)
RelBase 73.0 (£1.8) 73.8(£4.0) 72.4(+0.6) 65.1 (+£0.2) 69.7 (£2.9) 73.0(£5.1) 83.1(£2.7) 73.8 (£2.5)
SCL 75.6 (£10.1) 84.0 (£6.3) 74.8 (£10.3) 66.4 (£14.7) 73.2 (£13.1) 71.6 (£12.4) 81.1(£7.5) 77.6 (£8.8)
SRAN 42.1 (£2.3) 47.7(£4.3) 35.5(+0.9) 31.4(£0.7) 41.8(+4.4) 42.2(+4.1) 51.3(x£1.9) 44.6 (£1.2)
STSN 39.9 (+14.7) 47.1 (£9.6) 35.8 (+11.4) 32.3 (£10.5) 38.5 (+£14.2) 39.5 (+14.2) 49.1 (+26.5) 38.1 (£ 18.6)
WReN 18.0 (+£0.4) 20.7 (+1.0) 18.8(£0.3) 174 (+0.7) 15.8(£0.6) 15.1(+0.5) 19.3 (£0.7) 18.8 (+0.4)
PoNG (ours)| 81.4 (+3.1) 88.3 (+6.2) 86.5 (+£5.0) 79.8 (+3.3) 73.4(+3.0) 71.1(£2.1) 87.2(+2.8) 83.5(+1.0)
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Table 33: A/Color—-Arithmetic. The table presents results from Table [10| extended to each
matrix configuration.

|  Mean Center 2x2-Grid 3x3-Grid L-R U-D o-IC 0-1IG
ALANS 18.3 (£6.6) 18.6 (£6.4) 18.2(£55) 17.0(£5.00 20.0 (£8.2) 18.8(£7.6) 18.1 (£8.0) 17.4 (£5.7)
CPCNet 45.9 (£2.7) 41.2 (£3.3) 39.2 (£5.7) 35.6 (£5.2) 50.5(£1.0) 47.7(£0.8) 62.2 (+1.7) 45.5 (£2.7)
CNN-LSTM| 17.1 (£3.7) 188 (£5.9) 17.3(£4.2) 17.3 (£3.4) 15.8(£3.2) 15.6 (£2.4) 17.2(£3.9) 17.8 (£3.6)
CoPINet 35.2 (£0.5) 35.9(+0.5) 31.4(+£0.5) 27.7(£0.7) 34.1(£1.2) 33.5(£1.6) 43.4(+0.7) 40.3 (£0.5)

PrAE 43.0 (£26.5) 47.2 (£30.6) 52.5 (£34.9) 32.0 (£16.5) 54.6 (£36.0) 53.4 (£35.3) 34.4 (£ 18.8) 26.8 (+13.8)
PredRNet 56.9 (£1.4) 50.8 (£2.2) 62.5 (£1.8) 54.5(£1.9) 553 (£0.4) 53.7T(£1.5) 68.8(£0.2) 53.4 (£6.0)
RelBase 66.2 (£1.0) 60.4 (£1.6) 69.4 (£0.4) 61.9(£3.0) 63.1(+1.1) 624 (+0.4) 74.4(+1.9) 72.0(+1.8)

)
( ) (
SCL 60.0 (£4.1) 62.8 (£5.4) 58.5(£2.9) 54.0 (£2.2) 54.6 (£6.6) 52.3 (£5.8) 69.1 (£5.2) 68.8 (£1.4)
SRAN 39.9 (£2.7) 39.8 (£6.0) 37.6 (£2.7) 32.0(£2.1) 39.8(£3.1) 38.6 (£4.0) 49.3 (£1.3) 42.6 (£1.3)
STSN 25.7 (£10.6) 28.5 (£7.2) 26.1(£8.9) 23.3 (£8.7) 22.7 (£11.0) 23.5 (£10.3) 30.4 (£17.4) 25.9 (£11.5)
WReN 17.1 (£0.2) 19.1 (£0.8) 16.6 (£0.6) 15.3 (+0.2) 16.1 (+0.8) 16.0 (+£0.4) 18.7 (+£0.7) 18.3 (£0.6)

PoNG (ours)| 70.0 (+4.1) 64.4 (£7.9) 74.4(£3.9) 69.8 (+£3.2) 63.4(+£3.3) 62.1(£5.1) 76.0 (£4.5) 80.1 (£2.1)

Table 34: A/Color-DistributeThree. The table presents results from Table [10|extended to
each matrix configuration.

‘ Mean Center 2x2-Grid 3x3-Grid L-R U-D O-IC 0-IG
ALANS 224 (£7.7) 20.6 (£7.3) 22.0 (£5.2) 23.2 (£8.1) 23.8 (£9.7) 24.2 (£9.8) 23.9 (£9.8) 19.0 (£4.3)
CPCNet 37.8 (£0.9) 31.0 (£1.8) 28.7 (£2.9) 28.6 (£2.4) 41.7 (£0.0) 41.0 (£1.3) 54.0 (£0.8) 39.9 (£0.3)
CNN-LSTM |20.6 (+6.7) 24.6 (+10.1) 20.1 (£4.9) 19.2 (£5.2) 18.7 (£5.3) 17.9 (£4.1) 22.5(£9.2) 21.7(£7.9)
CoPINet 26.9 (£0.5) 25.8 (£1.0) 24.1 (£0.1) 21.8 (£0.7) 22.9 (£1.6) 23.4 (£0.2) 34.4 (£1.2) 35.6 (£1.0)
PrAE 55.1 (£0.8) 61.9 (£1.4) 63.9 (£2.7) 41.8 (£1.5) 69.6 (£0.9) 69.5 (£0.9) 45.7 (£2.1) 33.5 (£3.9)
PredRNet  [48.5 (+0.9) 38.7 (£0.5) 51.2 (£3.8) 43.7 (£4.5) 46.2 (£0.3) 45.8 (£0.3) 61.0 (£0.8) 52.7 (£3.4)
RelBase 65.7 (£4.6) 60.8 (£6.2) 64.9 (£3.8) 57.9 (£5.5) 67.6 (£5.3) 66.1 (£4.8) 75.6 (£2.8) 67.2 (£4.8)
SCL 63.9 (£4.3) 70.8 (£4.5) 60.3 (£4.3) 54.5 (£3.7) 59.7 (£5.8) 57.8 (£6.4) 72.0 (£4.0) 71.8 (£2.2)
SRAN 34.6 (£3.6) 38.4 (£8.4) 32.5(£4.5) 30.1 (£2.8) 32.6 (£3.1) 31.5 (£3.1) 40.8 (£2.3) 36.6 (£2.2)
STSN 20.7 (£7.7) 20.8 (£6.4) 19.0 (£6.8) 19.1 (£7.7) 18.2 (£6.5) 16.1 (£4.7) 27.5 (£14.1) 25.0 (£10.6)
WReN 17.7 (£0.6) 21.0 (£0.8) 17.3 (£0.5) 16.4 (£0.4) 16.0 (£0.7) 16.3 (+1.1) 18.0 (£1.7) 19.1 (£2.1)
PoNG (ours) | 81.3 (-1.6) 84.1 (+4.9) 82.7 (£2.1) 77.6 (+1.4) 80.6 (+2.8) 80.9 (+3.5) 84.4 (+2.1) 79.1 (£3.5)
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F DATASHEETS FOR DATASETS

In what follows, we provide the description of the introduced datasets following the Datasheets for

Datasets template (Gebru et al., 2021).

Motivation |

For what purpose was the dataset created?
Was there a specific task in mind? Was there a
specific gap that needed to be filled? Please pro-
vide a description.

The datasets were created to study generalization
and knowledge transfer abilities of AVR models.

Who created this dataset (e.g., which team,
research group) and on behalf of which entity
(e.g., company, institution, organization)?

Hidden for blind review.

Who funded the creation of the dataset? If
there is an associated grant, please provide the
name of the grantor and the grant name and
number.

Hidden for blind review.

Any other comments?

None.

Composition

What do the instances that comprise the
dataset represent (e.g., documents, photos,
people, countries)? Are there multiple types of
instances (e.g., movies, users, and ratings; peo-
ple and interactions between them; nodes and
edges)? Please provide a description.

Each dataset instance represents a single Raven’s
Progressive Matrix, which is a typical task used
in human IQ tests.

How many instances are there in total (of each
type, if appropriate)?

Each regime in Attributeless-I-RAVEN as well
as the I-RAVEN-Mesh dataset contains 70 000
instances. The training, validation, and test splits
contain 42000, 14000, and 14000 matrices,
resp. All together there are 770 000 (11 x 70 000)
instances.

Does the dataset contain all possible in-
stances or is it a sample (not necessarily ran-
dom) of instances from a larger set? If

the dataset is a sample, then what is the larger
set? Is the sample representative of the larger
set (e.g., geographic coverage)? If so, please
describe how this representativeness was vali-
dated/verified. If it is not representative of the
larger set, please describe why not (e.g., to cover
a more diverse range of instances, because in-
stances were withheld or unavailable).

The datasets contain a fixed number of instances
generated with the data generator. Using a fixed
seed ensures reproducibility of the generation
process. The data generator allows to configure
the number of generated samples.

What data does each instance consist of?
“Raw” data (e.g., unprocessed text or images)
or features? In either case, please provide a de-
scription.

Each RPM instance comprises 16 images that
represent the RPM panels, a corresponding in-
dex of the correct answer and a representation of
rules that govern the matrix. Section[3]of the pa-
per provides additional details. Each instance is
packaged as a separate file in the NPZ format,
which is a widely-used binary format to store
compressed NumPy arrays.

Is there a label or target associated with each
instance? If so, please provide a description.

See above.

Is any information missing from individual in-
stances? If so, please provide a description, ex-
plaining why this information is missing (e.g., be-
cause it was unavailable). This does not include
intentionally removed information, but might in-
clude, e.g., redacted text.

There’s no missing data.

Are relationships between individual in-
stances made explicit (e.g., users’ movie rat-
ings, social network links)? If so, please de-
scribe how these relationships are made explicit.

There are no relationships between individual in-
stances.

Are there recommended data splits (e.g.,
training, development/validation, testing)? If
so, please provide a description of these splits,
explaining the rationale behind them.
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The datasets are split into training, validation
and test splits. Each generated instance con-
tains the split name in its filename, e.g., the
RAVEN_1_train.npz file belongs to the train
split.

Are there any errors, sources of noise, or re-
dundancies in the dataset? If so, please pro-
vide a description.

To the best of our knowledge there are no er-
rors, sources of noise, nor redundancies in the
datasets.

Is the dataset self-contained, or does it link to
or otherwise rely on external resources (e.g.,
websites, tweets, other datasets)? If it links to
or relies on external resources, a) are there guar-
antees that they will exist, and remain constant,
over time; b) are there official archival versions
of the complete dataset (i.e., including the ex-
ternal resources as they existed at the time the
dataset was created); c) are there any restric-
tions (e.g., licenses, fees) associated with any of
the external resources that might apply to a fu-
ture user? Please provide descriptions of all ex-
ternal resources and any restrictions associated
with them, as well as links or other access points,
as appropriate.

Both datasets are self-contained.

Does the dataset contain data that might be
considered confidential (e.g., data that is pro-
tected by legal privilege or by doctor-patient
confidentiality, data that includes the content
of individuals non-public communications)?
If so, please provide a description.

No.

Does the dataset contain data that, if viewed
directly, might be offensive, insulting, threat-
ening, or might otherwise cause anxiety? If
so, please describe why.

No.

Does the dataset relate to people? If not, you
may skip the remaining questions in this section.

No.

Does the dataset identify any subpopulations
(e.g., by age, gender)? If so, please describe
how these subpopulations are identified and pro-
vide a description of their respective distributions
within the dataset.

N/A.

Is it possible to identify individuals (i.e., one
or more natural persons), either directly or in-
directly (i.e., in combination with other data)
from the dataset? If so, please describe how.

N/A.

Does the dataset contain data that might be
considered sensitive in any way (e.g., data
that reveals racial or ethnic origins, sexual
orientations, religious beliefs, political opin-
ions or union memberships, or locations;
financial or health data; biometric or ge-
netic data; forms of government identifica-
tion, such as social security numbers; crimi-
nal history)? If so, please provide a description.

N/A.

Any other comments?

None.

\ Collection Process

How was the data associated with each in-
stance acquired? Was the data directly observ-
able (e.g., raw text, movie ratings), reported by
subjects (e.g., survey responses), or indirectly
inferred/derived from other data (e.g., part-of-
speech tags, model-based guesses for age or
language)? If data was reported by subjects or
indirectly inferred/derived from other data, was
the data validated/verified? If so, please describe
how.

The data was generated with a computer pro-
gram.

What mechanisms or procedures were used
to collect the data (e.g., hardware appara-
tus or sensor, manual human curation, soft-
ware program, software API)? How were these
mechanisms or procedures validated?

We extended the data generation code used to
create I-RAVEN: |https://github.com/
hushengl2345/SRAN. A subset of the
dataset was reviewed manually to ensure correct-
ness of the generated matrices.

If the dataset is a sample from a larger set,
what was the sampling strategy (e.g., deter-
ministic, probabilistic with specific sampling
probabilities)?

The dataset is produced by a generator that cre-
ates new RPM instances subject to specified con-
straints through a pseudo-random process. We
use a fixed seed to ensure reproducibility of the
generation process.
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Who was involved in the data collection pro-
cess (e.g., students, crowdworkers, contrac-
tors) and how were they compensated (e.g.,
how much were crowdworkers paid)?

The data generator has been written by the au-
thors of this paper without delegating the work
to other individuals.

Over what timeframe was the data collected?
Does this timeframe match the creation time-
frame of the data associated with the in-
stances (e.g., recent crawl of old news arti-
cles)? If not, please describe the timeframe in
which the data associated with the instances was
created.

Development of the datasets lasted from January
2022 to September 2024.

Were any ethical review processes conducted
(e.g., by an institutional review board)? If so,
please provide a description of these review pro-
cesses, including the outcomes, as well as a link
or other access point to any supporting documen-
tation.

N/A.

Does the dataset relate to people? If not, you
may skip the remaining questions in this section.

No.

Did you collect the data from the individuals
in question directly, or obtain it via third par-
ties or other sources (e.g., websites)?

N/A.

Were the individuals in question notified
about the data collection? If so, please de-
scribe (or show with screenshots or other infor-
mation) how notice was provided, and provide a
link or other access point to, or otherwise repro-
duce, the exact language of the notification itself.

N/A.

Did the individuals in question consent to the
collection and use of their data? If so, please
describe (or show with screenshots or other in-
formation) how consent was requested and pro-
vided, and provide a link or other access point
to, or otherwise reproduce, the exact language to
which the individuals consented.

N/A.
If consent was obtained, were the consenting

individuals provided with a mechanism to re-
voke their consent in the future or for certain
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uses? If so, please provide a description, as well
as a link or other access point to the mechanism
(if appropriate).

N/A.

Has an analysis of the potential impact of the
dataset and its use on data subjects (e.g.,
a data protection impact analysis) been con-
ducted? If so, please provide a description of
this analysis, including the outcomes, as well as
a link or other access point to any supporting doc-
umentation.

N/A.

Any other comments?

We bear all responsibility in case of violation of
rights.

Preprocessing/cleaning/labeling

Was any preprocessing/cleaning/labeling of
the data done (e.g., discretization or buck-
eting, tokenization, part-of-speech tagging,
SIFT feature extraction, removal of instances,
processing of missing values)? If so, please
provide a description. If not, you may skip the
remainder of the questions in this section.

The data created by the generator is ready to be
used in a model. No preprocessing, cleaning, or
labeling is required.

Was the “raw” data saved in addition to the
preprocessed/cleaned/labeled data (e.g., to
support unanticipated future uses)? If so,
please provide a link or other access point to the
“raw” data.

N/A.

Is the software used to preprocess/clean/label
the instances available? If so, please provide a
link or other access point.

No specific software is required to preprocess,
clean, or label the instances. The released code
repository contains the code required to repro-
duce all experiments from the paper, which can
be used as a reference implementation for load-
ing the datasets.

Any other comments?

None.

Uses
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Has the dataset been used for any tasks al-
ready? If so, please provide a description.

The datasets have been used to conduct experi-
ments presented in the paper.

Is there a repository that links to any or all
papers or systems that use the dataset? If so,
please provide a link or other access point.

N/A.

What (other) tasks could the dataset be used
for?

The datasets could be used in a multi-task set-
ting to improve abstract reasoning capabilities of
computer vision models.

Is there anything about the composition of the
dataset or the way it was collected and pre-
processed/cleaned/labeled that might impact
future uses? For example, is there anything that
a future user might need to know to avoid uses
that could result in unfair treatment of individuals
or groups (e.g., stereotyping, quality of service is-
sues) or other undesirable harms (e.g., financial
harms, legal risks) If so, please provide a descrip-
tion. Is there anything a future user could do to
mitigate these undesirable harms?

We do not see any undesirable harms that could
apply to future users of the datasets.

Are there tasks for which the dataset should
not be used? If so, please provide a descrip-
tion.

The datasets should not be used in human IQ
tests, as they were explicitly designed to assess
generalization and knowledge transfer abilities
of deep learning models.

Any other comments?

None.

Distribution

Will the dataset be distributed to third par-
ties outside of the entity (e.g., company, in-
stitution, organization) on behalf of which the
dataset was created? |If so, please provide a
description.

The datasets will become publicly available after
paper acceptance. Additionally, as discussed in
Section 4] ("Reproducibility”), the attached code
allows for generation of all datasets from scratch,
eliminating the dependency on file-hosting ser-
vices required to distribute the data.

How will the dataset will be distributed (e.g.,
tarball on website, API, GitHub) Does the
dataset have a digital object identifier (DOI)?

The datasets will be shared on GitHub.

When will the dataset be distributed?

The datasets will become publicly available after
paper acceptance.

Will the dataset be distributed under a copy-
right or other intellectual property (IP) li-
cense, and/or under applicable terms of use
(ToU)? If so, please describe this license and/or
ToU, and provide a link or other access point
to, or otherwise reproduce, any relevant licens-
ing terms or ToU, as well as any fees associated
with these restrictions.

The code repository is released under the

GPL-3.0 license. This follows the li-
cense associated with the generators of
the base datasets — RAVEN (https:

//github.com/Wellyzhang/RAVEN)
and I-RAVEN (https://github.com/
hushengl2345/SRAN). The datasets intro-
duced in this paper are released under the CC
license.

Have any third parties imposed IP-based or
other restrictions on the data associated with
the instances? If so, please describe these re-
strictions, and provide a link or other access point
to, or otherwise reproduce, any relevant licensing
terms, as well as any fees associated with these
restrictions.

No.

Do any export controls or other regulatory re-
strictions apply to the dataset or to individual
instances? If so, please describe these restric-
tions, and provide a link or other access point
to, or otherwise reproduce, any supporting doc-
umentation.

No.

Any other comments?

None.

Maintenance

Who will be supporting/hosting/maintaining
the dataset?

Hidden for blind review.
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How can the owner/curator/manager of the
dataset be contacted (e.g., email address)?

Hidden for blind review.

Is there an erratum? If so, please provide a link
or other access point.

No.

Will the dataset be updated (e.g., to correct
labeling errors, add new instances, delete in-
stances)? If so, please describe how often, by
whom, and how updates will be communicated
to users (e.g., mailing list, GitHub)?

Future changes will be documented in release
notes in the code repository.

If the dataset relates to people, are there ap-
plicable limits on the retention of the data as-
sociated with the instances (e.g., were indi-
viduals in question told that their data would
be retained for a fixed period of time and then
deleted)? If so, please describe these limits and
explain how they will be enforced.

30

N/A.

Will older versions of the dataset continue
to be supported/hosted/maintained? If so,
please describe how. If not, please describe how
its obsolescence will be communicated to users.

Older versions of the dataset will be available in
the history of the code repository.

If others want to extend/augment/build
on/contribute to the dataset, is there a mech-
anism for them to do so? If so, please provide
a description. Will these contributions be vali-
dated/verified? If so, please describe how. If
not, why not? Is there a process for commu-
nicating/distributing these contributions to other
users? If so, please provide a description.

Contributions are welcome. GitHub Issues of the
code repository will be used to communicate be-
tween contributors and project maintainers.

Any other comments?

None.
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