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1 IMPLEMENTATION DETAILS
The foreground items in our experiment are extracted from COCO
datasets[4], which is a large-scale object detection, segmentation,
and captioning dataset. COCO has 80 object categories, 1.5 million
object instances, we use the pycocotools library to fetch content
and mask from this dataset. The background images are randomly
selected from LAION[9] (acronym for Large-scale Artificial Intel-
ligence Open Network) which is a number of large datasets of
image-caption pairs. Now the dataset contain more than 5 billion
image-text pairs of various artistic styles. For all the baselines, we
download the code from their their official gitHub repositories.

For our FreePIH project, we utilize the pre-trained Latent Diffu-
sion Model(LDM) developed by Stability AI [8]. The LDM consists
of several key components: an Image Encoder, a Text Encoder, an
Image Decoder, and a DGMmodule. The Image Encoder transforms
the original image into a latent feature representation, significantly
reducing memory usage during subsequent calculations. The Text
Encoder directly utilizes the pre-trained CLIP text encoder. The
DGM module follows a U-Net architecture, incorporating ResNet-
Blocks, Spatial Transformers (Cross Attention), and DownSam-
ple/UpSample convolution layers.

Prior to inputting the latent feature into the DGM, the LDM
employs a time embedding module to encode the noise level (t),
which is then concatenated with the input latent feature. These
augmented features are progressively processed through the DGM
modules until the noise level (t) reaches 0. Subsequently, the Image
Decoder receives the final denoised latent feature and decodes it
into the original image space.

In our modified version of the LDM, we have introduced several
additional loss terms to optimize the latent feature, with the goal
of transferring its style. It is worth noting that the only learnable
part in our pipeline is the latent feature of the foreground items.
During the inference process, we freeze all the modules including
the Image Encoder, Text Encoder, DGM, and Image Decoder. This
approach allows us to avoid heavy training costs and enables quick
utilization for painterly image harmonization sourced from the
internet.

We implement FreePIH and test all the baselines on ubuntu 18.04
LTS operation system, with 64GB memory, a 12900K Intel CPU
@3.20GHz and an NVIDIA RTX 4090 GPU. The pytorch version is
2.0.0. And the output image size is 512 × 512.

1.1 Details of questionnaire
Our questionnaire are as shown in Figure 1. Users were asked to
vote for the top-1 harmonious image by question "Which of the
following images works best for the fusion of the two iamges" and
give their score at the same time by question "Give your rating for
the fusion of each graph, with 1 (Bad) to 5(Excellent)."

• A red bus on the beach of an oil painting.

• A sunflower on the upper right of a sunflower oil painting
with Leonid Afremov style.

• A painting of a pyramid in the countryside. The pyramid is
near a lake. One boat is on the lake.

• A bus in the bottle left of an oil painting. There are many
people and trees on the road.

• A yellow boat is on the river. The sun is going down.
• A painting of a Sphinx in the countryside. The Sphinx is near
a house and river.

• Amoai statue in an oil painting with various colors, the moai
statue is near a tree and a street light.

• A snow scene, a bench against a wall, a man walking in the
middle.

1.2 Details of Baselines
The details about these baselines are as follows:

• PIE[7]: Poisson image editing is the most classical paper
about image editing which uses generic interpolation ma-
chinery based on solving Poisson equations for seamless
editing of image regions.

• DIB[10]: Deep Image Blending is an updated version of
Poisson image editing with the combination of several other
loss terms.

• SD-Text[8]: Given a new text description about the compo-
sition image, use pretrain stable diffusion weight to generate
a new image correspond to the text input.

• SDEdit[6]: Given the composition images and text input as
guidance, Stochastic Differential Editing use pretrain stable
diffusion model to iteratively refine the mask range.

• PHDNet[2]: A novel painterly harmonization network con-
sisting of a dual-domain generator and a dual-domain dis-
criminator, which harmonizes the composite image in both
spatial domain and frequency domain.

• BlendDM[1]: A novel DM-based text driven image editing
methods. Given an input image and a mask, BlendDM mod-
ifies the masked area according to a guiding text prompt,
without affecting the unmasked regions.

• CDC[3]: CDC incorporates high-frequency background de-
tails and low-frequency foreground style for DM image gen-
eration.

• InST[11]: It uses CLIP image encoder to translate a style im-
age into the text domain embedding, then use the embedding
to guide the DM generation process.

• PHDiff[5]: It uses the trained lightweight adaptive encoder
and dual encoder fusion to guide the DM denoising process
of diffusion.

2 ADDITIONAL VISUAL RESULTS
We add more evalution result in the Figure 2 and Figure 3. For
DM-based methods in Figure 3, we input the text prompt [Pyramid,



117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ACM MM, 2024, Melbourne, Australia Anonymous Authors

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Which of the following images works best for the fusion of 

the two images?

A B C D E

F G H I J

Give your rating for the fusion of each graph, with 

1 (Bad) 2(Poor) 3(Fair) 4(Good) 5(Excellent)?

Score: Score: Score: Score: Score:

Score: Score: Score: Score: Score:

Figure 1: 𝐿𝑒 𝑓 𝑡 Questionnaire for top-1 vote. 𝑅𝑖𝑔ℎ𝑡 Questionnaire for score rating.

Bus, Boat, Sphinx, Moai, Bench, Red fire hydrant, Television, Apple,
Tree, Aircraft, Croissant] for SDEdit, SD-text, FreePIH from the
first row to the last row. For SD-Text, we input the follow prompt
to guide the diffusion to generate the images:

• A yellow boat is on the river. The sun is going down.
• A painting of a Sphinx in the countryside. The Sphinx is near
a house and river.

• Amoai statue in an oil painting with various colors, the moai
statue is near a tree and a street light.

• A snow scene, a bench against a wall, a man walking in the
middle.

• Three people are talking in the house. A TV is in the lower
right corner.

• A table with a vase, five apples and a wine glass on it.
• A snow scene. There are a lot of trees on the left and a house
on the right.

• A yellow plane is flying in the sky. There are a lot of people
grazing on the ground, village view.

• An oil painting showing a fruit bowl with oranges and crois-
sants.
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Figure 2: Evaluation results compared with non-DM based methods.
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Figure 3: Evaluation results compared with DM based methods.
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