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1. Introduction
Accurate polymer-property prediction supports

material design, optimization, and high-throughput
screening, yet probabilistic copolymerization of
diverse monomers produces complex structures
whose descriptions vary widely across literature and
experiments, hindering reproducible analysis.
Large-scale MD databases such as RadonPy[1]

provide controlled property data, but integrating
them with experimental records is difficult because
representation formats differ; surrogatemodels that
ingest heterogeneous inputs—text, graphs, and nu-
meric descriptors—are therefore required for reli-
able, transferable predictions.
String notations like BigSMILES[2] enable lan-

guagemodels[3] to embed domain knowledge, while
graph neural networks (GNNs) capture local topol-
ogy; however, their cost escalates for chains with
large repeating units and high molecular weight.
Stochastic edge schemes have been proposed to en-
code polymer connectivity more compactly[4].
We address these issues with a hybrid architec-

ture that couples MatSciBERT[5] with a GNN aug-
mented by probabilistic edges. A cross-attention
layer unifies textual and structural embeddings, al-
lowing thenetwork to learn fromboth simulated and
experimental datasets (Fig. 1). The resulting model
is robust to representational diversity and scales to
realistic polymer sizes.

2. Methods
2.1 Model architecture
The language model component uses MatSciB-

ERT, a domain-specific pretrained BERT model op-
timized for materials science. The textual input is
a single sequence obtained by concatenating (i) the
SMILES string of the polymer repeating unit, (ii) MD
simulation conditions, and (iii) quantum-chemical
descriptors (QM values) of the monomers.
The graph component is built from the same

repeating-unit SMILES as follows.

• Nodes — All heavy atoms in one repeating unit
are included, and two additional methyl-carbon
nodes are appended to represent the start and
end termini of the chain.

• Node feature (4dim) — ⟨atomic number, de-
gree, formal charge, aromaticity⟩, zero-padded
when necessary.

• Edge feature (5dim) — the first four dimen-
sions are a one-hot encoding of SINGLE, DOU-

Fig. 1: The illustration of our model architecture as
the fusion of language model and graph model.

BLE, TRIPLE, or AROMATIC bonds; the fifth di-
mension stores a continuous probability for vir-
tual (inter-unit or terminal) connections.

The repeating-unit SMILES contains two “*”
dummy atoms that indicate the connection sites.
Their neighboring atoms are designated as head and
tail. Given a target average chain length n (provided
by the MD dataset), we encode the stochastic chain-
length distribution as

pterminal =
1

n
, prepeat =

n− 1

n
.

1. The virtual edge between the start-methyl car-
bon and the first head atom, and that between
the last tail atom and the end-methyl carbon, re-
ceive pterminal in their fifth feature dimension.

2. Every virtual edge that bridges the tail of unit i
and the head of unit i + 1 receives prepeat in the
same slot.

This scheme embeds the expected chain-length
distribution directly into the graph, allowing the net-
work to learn polymer-specific stochastic connectiv-
ity without enlarging the node or edge set.
In the fusionblock, token embeddings from thefi-

nal layer of MatSciBERT and node embeddings from
the final graph layer are combined through a cross-
attention mechanism. The resulting [CLS] vector is
fed to a linear head to predict the target properties.

2.2 Dataset
We used the publicly available RadonPy

PI1070.csv dataset, derived from large-scale MD
simulations of polymers. The target properties are
density, heat capacity at constant pressure (Cp), and
refractive index. As each property has a different
dynamic range, we apply standard scaler based
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on the training set’s distribution prior to model
training.
Input formats comprise English textwith SMILES,

MD condition and QM values and a molecular graph
constructed from the repeating unit SMILES. The
dataset was split into 80 percent training and 20 per-
cent test sets, with the following four-stage training
protocol:

1. Fine-tuning MatSciBERT alone (10 epochs)

2. Pre-training the graph model alone (10 epochs)

3. Freezing the language model part, training the
graph and cross-attention layers (20 epochs)

4. Unfreezing the language model part and then
jointly training the entire network (200 epochs)

3. Results and Discussion
Table 1 presents the final predictive performance

for density, Cp, and refractive index (R2). Figure
2 shows prediction vs observation plots of the test.
The fused model achieves R2 > 0.96 across all prop-
erties, withminimal difference between the training
and test results, indicating a strong generalization.
For comparison, we trained single-modal mod-

els with the same protocol using only fine-tuned
MatSciBERT (200 epochs). Our cross-attention fu-
sion model outperformed the baseline for all prop-
erties. This highlights the strength of using both
domain-specific language and molecular structure
representations.
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Table 1: R2 results for our model and only BERT
model for training and test data

R2 BERT Ours

Train Test Train Test

Density 0.990 0.957 0.991 0.974
Cp 0.985 0.952 0.996 0.972
Refractive
index

0.983 0.903 0.995 0.961

Fig. 2: Prediction versus observation plots for the
test dataset.
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