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1 DATA PROCESSING PIPELINE
Our data collection pipeline contains in four distinct stages, utilizing
the datasets VoxCeleb [9], HDTF [24], and VFHQ [21]:

(1) Re-downloading Original Datasets: To ensure uniform
processing, given the different data handling methods across
datasets, we downloaded the original videos. For VoxCeleb
and HDTF, changes in the original sources meant we could
only secure about 60-70% of the initial datasets. The VFHQ
authors provided the complete set of videos, obviating the
need for re-downloading.

(2) Face Detection: This step involves detecting faces in videos.
In contrast to previous studies, we chose not to align the
faces to allow for positional shifts within the frame, aiming
to preserve natural head movements.

(3) Applying Filtering Rules: Our filtering process involved
two main criteria. We first excluded faces with resolutions
lower than 256 × 256. Then, we conducted blur detection
using the Laplacian operator and angle detection, excluding
faces with a yaw angle greater than 60 degrees.

(4) Selecting Video Clips Based on Identity ID Tags: To
ensure a diversity of identities for the robust training of the
identity encoder, we randomly selected 2-3 video clips per
ID.

(5) Resize to 256 × 256: All our images, whether for training
or testing, are originally based on the resolution of 256 ×
256. Therefore, the purpose of this step is to resize all images
to 256 × 256.

Finally, our efforts yielded a dataset containing 4,242 unique
speaker IDs, encompassing a total of 17,108 video clips with a
cumulative duration of 55 hours. Additionally, since the VFHQ
dataset lacks an audio track, it was used exclusively during the
motion representation training phase.

Table 1 provides comparative metrics of our dataset against those
of EMO [16] and GAIA [5]. As outlined in the table, our dataset
contains roughly a quarter of the unique human identifiers found in
GAIA and about one-fifth of the training hours compared to EMO.
Furthermore, our algorithm can be trained from scratch and does
not rely on parameter initialization.

2 TRAINING DETAILS
2.1 Data Augmentation
For source and target images, no data augmentation strategies can
be applied. The objective of this constraint is to ensure the con-
sistency of the background, allowing the motion latent space to
capture human motion without background movement. However,
when training the identity encoder using metric learning, it be-
comes necessary to introduce some negative candidates. At this
point, we can employ standard augmentation techniques, which

Table 1: Comparison of training dataset statistics. "#IDs":
Number of unique human identifiers. "#Clips": Total num-
ber of video segments. "Hours": Total training hours. "TFS":
Training from scratch. "-" indicates that this information is
not provided.

Method #IDs #Clips Hours TFS

GAIA [5] 15,969 - 1,169 ✓
EMO [16] - - 250 ×

AniTalker 4,242 17,108 55 ✓

include horizontal flipping, color jitter, Gaussian blur, shifting, scal-
ing, and rotation. The specific implementations of these techniques
are facilitated by the tools available at this URL 1.

2.2 Training Configuration
2.2.1 Training Loss. Metric Learning Loss For the Triplet Loss [2],
we set the margin to 0.01 and use the L2 distance metric. For the
angular additive margin softmax (AAMSoftmax [17]), we set the
margin 𝑚 to 0.2 and the scaling factor 𝑠 to 30, utilizing cosine
distance.

Mutual Information Decoupling LossWe use the Contrastive
Log-ratio Upper Bound (CLUB) [1] for mutual information (MI)
minimization in high-dimensional spaces where only samples are
available, not distribution forms. CLUB uses contrastive learning
to estimate MI by contrasting conditional probabilities between
positive and negative sample pairs. A variational form of CLUB
(vCLUB) is developed for scenarios where the conditional distribu-
tion 𝑝 (𝑦 |𝑥) is unknown, using a neural network to approximate
𝑝 (𝑦 |𝑥). CLUB is further accelerated using a negative sampling strat-
egy, enhancing computational efficiency while maintaining reliable
MI estimation capabilities. Details can be found in this repo 2. Here,
we use the CLUB estimator to measure the differences between
identity and motion distributions and minimize them.

Loss for Training Motion Representation This is also our
primary loss function for training the motion encoder during the
first phase. We utilize various types of losses, mainly comprising
losses related to reconstruction (reconstruction loss 𝐿𝑟𝑒𝑐𝑜𝑛 , percep-
tual loss 𝐿𝑝𝑒𝑟𝑐𝑒𝑝 ), adversarial loss (𝐿𝑎𝑑𝑣 ), mutual information loss
(𝐿𝑀𝐼 ), and identity metric learning loss (𝐿𝑀𝐿). The specific forms of
the reconstruction, perceptual, and adversarial losses are consistent
with those used in LIA [20]. The overall loss is a weighted sum of
these individual losses, as shown below:

𝐿𝑚𝑜𝑡𝑖𝑜𝑛 = 𝐿𝑟𝑒𝑐𝑜𝑛 + 𝜆1𝐿𝑝𝑒𝑟𝑐𝑒𝑝 + 𝜆2𝐿𝑎𝑑𝑣 + 𝜆3𝐿𝑀𝐼 + 𝜆4𝐿𝑀𝐿
where the values of 𝜆1, 𝜆2, 𝜆3, and 𝜆4 are 0.1, 1, 0.1, and 0.1

respectively, in our experiment.

1https://github.com/albumentations-team/albumentations
2https://github.com/Linear95/CLUB/
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Loss for Training Motion Generator In our model, the gener-
ation loss

𝐿gen = 𝐿diff + 𝜆
𝐾∑︁
𝑘=1

𝐿var𝑘

is structured around two sets of attributes (i.e., 𝐾 = 2). The first
set pertains to camera parameters, including the position of the
face within the frame and the scale of the face. The second set is
related to pose attributes, consistent with methods [3, 5]. Specifi-
cally, the 𝐿var𝑘 losses are L2 losses between the predicted values
and the ground truth values. Details regarding the feature extrac-
tion and representation for camera parameters and pose will be
discussed in the upcoming sections. Additionally, we set 𝜆 to 1 in
this formulation.

For the training of diffusion models, we employed the simplified
loss objective described in [6] for the training of DDPMs. During
the training phase, we used 1000 timesteps, while in the inference
stage, we utilized DDIM [14] acceleration with 50 timesteps. We
did not employ additional performance-enhancing methods such
as class-free guidance (CFG).

2.2.2 Training and Inference Hardware. For training, we utilized
four A100 (40G) GPUs, training each phase until the loss converged.
Besides computing the perceptual loss, we did not incorporate
any pre-trained parameters. The first phase, focusing on motion
representation training, converged relatively quickly, requiring ap-
proximately 50 hours. The second phase, where we employed an
exponential moving average (EMA) to stabilize training, converged
more slowly, taking about 120 hours. For inference, we utilized a
GeForce RTX 3060 Ti (8G) GPU. The process begins by generating
a motion sequence from audio, followed by frame-by-frame render-
ing, which can support up to several minutes of inference without
triggering memory overflow errors. Specifically, the GPU with 8G
VRAM can generate up to 3 minutes of video in one inference.

(a) Head Pose (b) Camera Parameter

Scale

Location Indicator

Figure 1: Controllable Attribute Features: Head Pose and
Camera Parameter

2.2.3 Controllable Attribute Features. We utlize two types of fea-
tures for controlling talking face generation. The first is the head
pose, which includes yaw, pitch, and roll information, utilizing
these three degrees of freedom to control the head’s orientation,
consistent with approaches found in [5, 11]. We use a pretrained
extraction network3 to derive these three-dimensional features. Ad-
ditionally, to further capture the facial variations within the frame,
we considered two parameters: the face’s position in the frame
and its size, which indicates the distance from the camera. These
3https://github.com/cleardusk/3DDFA_V2

parameters are defined as camera parameters. Specifically, for the
face’s position, we use the x-coordinate of the nose landmark, as
we observed that the face mostly moves horizontally rather than
vertically. For the face’s scale, we measure the distance from the
eyebrows to the chin. These two attributes form a two-dimensional
camera parameter feature. The visualization is illustrated in Fig-
ure 1.

Overall, during the training phase, we utilize several pre-trained
models as attribute extractors for three attributes: head pose, head
location, and head scale. In actual inference, since these features
are explicit and interpretable, we can directly input specific values
to control aspects such as the pitch angle, which can range from -90
to 90 degrees, to simulate head movements like nodding or looking
up.

3 MODEL DETAILS
3.1 Identity and Motion Encoder

HAL

F
C

Image

…

Image Encoder
Inputs For

Metric Learning

Projector

F
C

F
C

F
C

F
C

MI
encoder

Motion Latent

Motion Encoder

Identity Encoder

Inputs For 
Mutual Information

Estimator

Figure 2: Detailed structure of the motion latent extraction

This section details the structures of the motion and identity
encoders used during the first phase of training motion representa-
tions, as illustrated in Figure 2. The identity encoder is designed
to learn identity information, with its outputs directed through a
series of fully connected layers to a metric learning loss. Conversely,
the motion encoder focuses on learning motion encoding, with its
outputs routed to a loss function that calculates mutual information.
This output later serves as an input for rendering and for generating
results in the second phase. To reduce the dimensionality of the
motion encoding and ensure a more compact representation, an
additional projector is used, as indicated in the diagram. We tested
two types of projectors: (1) Direct Reduction, which uses an FC
layer to reduce the dimensionality of the hidden layer from 512
to a target dimension of 20, as depicted in the figure. (2) Linear
Motion Decomposition [20], a method that represents motion
in latent space by learning a set of orthogonal bases, each vector
representing a fundamental visual transformation. The term "20
dimensions" refers to the number of distinct axes or directions in
this space, which can be manipulated to encode different types of
motion or transformations. In our experiments, we opted for the
LMD approach. Comparative analysis and further discussion are
presented in Section 3.4.2.
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Table 2: Model Configuration on Speech Encoder (SE) and
Diffusion Motion Generator (DMG)

Config. SE DMG

attention_dim 512 1024
attention_heads 2 2
# layers 4 2
dropout_rate 20% 20%

# params (M) 13 25

3.2 Rendering Block

Layer i

Wrap ToRGB

Flow Fields × NMask

Figure 3: Rendering Block

In our Rendering Block, we utilize the design of the G block from
LIA [20], a wrap-based rendering module responsible for handling
motion and features from different layers of the image encoder (de-
rived from a portrait). This module samples the features, as depicted
in the simplified structure in Figure 3. Here, the motion features
generate a flow field that performs a wrap operation, creating de-
formed features based on features from layer i. These deformed
features are then combined with a mask through dot product oper-
ations to restrict specific regions, followed by a toRGB conversion
to produce the image. This module is executed N times, where N
corresponds to the number of layers in the image encoder. In our
experiments, we used N=8, with the width and height of the feature
map from layer 1 to layer 8 being 256 × 256, 128 × 128, 64 × 64,
32 × 32, 16 × 16, 8 × 8, 4 × 4, and 1 × 1 respectively.

3.3 Motion Generator
The motion generator aims to convert an audio input and a portrait
into a motion sequence, which is then rendered by the image de-
coder. The main trainable modules involved are the speech encoder,
variance adapter, and diffusion motion generator, which together
create the motion latent. Both the speech encoder and the diffu-
sion motion generator use the Conformer [4]4, with configuration
details presented in Table 2.

The speech encoder processes downsampled audio features with
dimensions 𝑇 × 𝐶1, where 𝐶1 is 512. Additionally, the input to
the Diffusion Motion Generator consists of multiple components,
formed by concatenating outputs from the speech encoder, the start
motion latent and feature of the portrait, noisy latent, and time
embedding. The start motion latent and feature of the portrait refer
4https://github.com/espnet/espnet/blob/master/espnet2/asr/encoder/conformer_encoder.py

Table 3: Comparison on the Capabilities of the Human Face
Renderer

Method Renderer # params (M) PSNR ↑ SSIM↑
GAIA [5] VAE5 50 30.497 0.924
EMO [16] VAE6 84 33.114 0.960
AniTalker Wrap-based 50 35.634 0.979

Table 4: Parameter search on the projector of the motion
encoder

Method FC LMD Dim. PNSR ↑ SSIM ↑ LPIPS ↓ CSIM↑

AniTalker

✓ 32 28.653 0.899 0.081 0.924
✓ 32 29.204 0.905 0.079 0.927

✓ 20 28.387 0.895 0.083 0.922
✓ 20 29.071 0.905 0.079 0.927

✓ 10 27.685 0.879 0.089 0.914
✓ 10 27.999 0.892 0.086 0.920

to the results of the portrait image encoder and the motion latent,
respectively, with dimensions 𝑇 ×𝐶2 and 𝑇 ×𝐶3, where 𝐶2 and 𝐶3
are 512 and 20 in our experiments. The noisy latent is the noise-
augmented motion latent with dimensions 𝑇 × 𝐶3, and the time
embedding is the diffusion time condition with dimensions 𝑇 × 1.
These dimensions, except for the speech encoder, are unified to
𝑇 ×128 when input into the model. Ultimately, the Diffusion Motion
Generator’s input includes a 1024-dimensional vector comprising
the speech encoder’s input (512 dimensions), the start motion latent
(128 dimensions), the start feature (128 dimensions), noisy latent
(128 dimensions), and time embedding (128 dimensions).

The model parameters for the speech encoder, variance adapter,
and diffusion motion generator are 13M, 2M, and 25M respectively,
totaling 40M parameters for the motion generator stage.

3.4 Experiments
3.4.1 Analysis on Image Renderer. To compare rendering capabil-
ities across different methods, we conducted a comparison with
GAIA [5] and EMO [16], both employing a VAE [7]-based ren-
derer. We randomly selected 100 images from the Celeb-A [8] face
dataset to test reconstruction capabilities on human faces by ex-
tracting latent representations and then reconstructing based on
these representations. For GAIA, since it is not open-sourced and
to ensure a fair comparison, we used a structure similar to the
one described in their paper and trained it with a model param-
eter size and dataset identical to our rendering module. Results
in the table show that our method outperforms GAIA in facial re-
construction. Additionally, we compared our renderer with EMO’s,
which adopts the architecture of Stable Diffusion [12]. Despite its
larger parameter size, our results also demonstrate improvement in
reconstruction. We attribute these outcomes to two main factors:
firstly, the VAE-based perceptual compression [12] process tends to
lose information, particularly high-frequency details such as hair

5Our reproduced result
6https://huggingface.co/runwayml/stable-diffusion-v1-5
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strands. Secondly, VAEs are generally designed for generic static
image generation tasks in Stable Diffusion and are not specifically
tailored for representing human faces.

3.4.2 Analysis on the motion projector. To evaluate the structure
of the motion projector and the impact of varying dimensions, we
conducted a parameter search, as detailed in Table 4. First, to verify
the effectiveness of Fully Connected (FC) and Linear Motion De-
composition (LMD) [20], we performed comparative experiments.
From the table, LMD generally showed more favorable outcomes
under any dimensions, which we attribute to its orthogonality. This
orthogonality acts as a regularization method, implicitly enforcing
separation between different features and thus enhancing perfor-
mance.

Furthermore, to assess the impact of dimensionality on themodel,
we conducted experiments with three sets of dimensions: 10, 20, and
32. As the dimensions increased, the overall performance showed
improvement. However, from 20 to 32, there was no significant
enhancement, especially for metrics like SSIM, LPIPS, and CSIM,
which showed no change. Therefore, all our experiments were
based on a dimensionality of 20 combined with the Linear Motion
Decomposition strategy.

Portrait
(Source) BaselinePortrait

(Target) Triplet AAM-Softmax + CLUB

Figure 4: Visual ablation study of identity and motion disen-
tanglement using different methods.

3.4.3 Visual Ablation Study on Disentanglement. As a supplement
to Section 4.4.1 of the main paper, we have randomly visualized
several sets of disentanglement results, as illustrated in Figure 4.
The objective is to drive the source portrait using the motion of
the target portrait. In the absence of any metric learning or mutual
information loss constraints, the baseline results exhibit issues of
identity leakage, as shown in the third column of the figure. Imple-
menting Euclidean distance metric learning or angle-based metric
learning can mitigate the leakage to some extent, but problems
still persist, as depicted in columns four and five. Furthermore,
by incorporating mutual information loss on top of angle-based
metric learning, the leakage issues are significantly alleviated, as
demonstrated in the last column of the figure.

4 DEMO SETUP
To further illustrate the effectiveness of our experiments, we have
prepared an extensive set of demonstrations available at AniTalker
Project Page 7. Below, we provide a detailed explanation of the
demo page setup:

(1) Audio-driven Talking Face Generation (Realism): The
input consists of audio plus random noise. The variance
adapter does not receive any control signals, aiming to test
the model’s capability to generate realistic human faces.

(2) Audio-drivenTalking FaceGeneration (Statue/Cartoon):
Similar to the realism setup, this demo tests the model with
statues, reliefs, and cartoon characters. The results demon-
strate our method’s strong generalization capabilities.

(3) Video-drivenTalking FaceGeneration (Cross/Self Reen-
actment): To test the reconstruction effectiveness of motion
representations, both identity-consistent and cross-identity
tests are conducted. Motions from another/same person are
used to drive a particular portrait without involving audio.

(4) Diversity: To test the impact of diffusion noise on the results,
we initially used two different random seeds, followed by
nine different random seeds. The results demonstrate that
while maintaining the consistency of the generated effects,
noise can produce diverse outcomes.

(5) Controllability: Testing the controllability of the variance
adapter, we examined the results of combined control over
pose, head location, and audio.

(6) Long Video Generation: For long video generation, two
cases are considered. We first generate text with ChatGPT 8,
then use Text-to-speech (TTS) 9 to convert them to audio.
The reading audio drives the portrait, testing the capability to
generate long-duration videos. These videos, lasting several
minutes, are generated on a GPU with only 8GB of VRAM
(3060Ti), confirming that our algorithm does not rely on
extensive computing resources.

(7) Method Comparison (Audio-driven): Comparisons are
made with baseline methods [18, 23, 25, 26] driven by audio.

(8) Method Comparison (Video-driven): Comparisons are
made with baseline methods [10, 13, 15, 19, 20, 22] driven by
video, specifically comparing face reenactment techniques.

(9) Ablation Study: To validate the impact of different modules
on the outcomes, we tested four scenarios: mutual infor-
mation decoupling, comparison with traditional representa-
tions, the variance adapter module, and the HAL module.

5 ETHICAL CONSIDERATION
The potential misuse of lifelike digital human face generation, such
as for creating fraudulent identities or disseminating misinforma-
tion, necessitates preemptive ethical measures. Before utilizing
these models, it is crucial for organizations to integrate ethical
guidelines into their policies, ensuring the application of this tech-
nology emphasizes consent, transparency, and accountability. Fur-
thermore, it is recommended to embed visible or invisible digital
watermarks in any generated content.

7https://anitalker.github.io/
8https://chat.openai.com/
9https://azure.microsoft.com/
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