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ABSTRACT

This work investigates the selection of high-quality pre-training data from mas-
sive corpora to enhance LMs’ capabilities for downstream usage. We formulate
data selection as a generalized Optimal Control problem, which can be solved
theoretically by Pontryagin’s Maximum Principle (PMP), yielding a set of neces-
sary conditions that characterize the relationship between optimal data selection
and LM training dynamics. Based on these theoretical results, we introduce
PMP-based Data Selection (PDS), a framework that approximates optimal data
selection by solving the PMP conditions. In our experiments, we adopt PDS to
select data from CommmonCrawl and show that the PDS-selected corpus accel-
erates the learning of LMs and constantly boosts their performance on a wide
range of downstream tasks across various model sizes. Moreover, the benefits
of PDS extend to ~400B models trained on ~10T tokens, as evidenced by the
extrapolation of the test loss curves according to the Scaling Laws. PDS also
improves data utilization when the pre-training data is limited, by reducing the
data demand by 1.8 times, which helps mitigate the quick exhaustion of avail-
able web-crawled corpora. Our code, model, and data can be found at https:
//github.com/microsoft/LMOps/tree/main/data_selection.
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Figure 1: Scaling curves of average accuracy on 9 widely-used downstream tasks with respect to
computation (a) and model sizes (b). We select pre-training corpora from the CommonCrawl and pre-
train LMs on the selected data. PDS is compared with the Redpajama data cleaning pipeline (Together,
2023). The computation curves are calculated based on the training of a 1.7B LM.

1 INTRODUCTION

With the thriving of language models (LMs; Han et al., 2021; Bommasani et al., 2021), the role of
data selection for pre-training becomes increasingly important, which aims at identifying valuable
pre-training instances to accelerate model learning or improve downstream performance (Albalak
et al., 2024). This focus enables researchers to explore the limit of LMs in the face of increasing
training data demands (Brown et al., 2020; OpenAI, 2023; Team et al., 2023). It also helps to
reduce the computational costs during pre-training (Sorscher et al., 2022), and addresses the potential
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limitations caused by available Internet data (Villalobos et al., 2022; Muennighoff et al., 2023).
Without doubt, pre-training data selection is highly valuable for both research and industry sectors.

Unlike previous works relying primarily on manually crafted heuristics (Tirumala et al., 2023; Xie
et al., 2023), we connect data selection with classical Optimal Control theory (Lewis et al., 2012),
where control variables in a dynamic system are optimized to achieve desired objectives. This
mathematical formulation allows fine-grained white-box analysis of how the control variables drive
a dynamic system from one state to another. In particular, by treating data selection as the control
variables (i.e., whether a data point is included in pre-training), the LM pre-training process as the
dynamic system, and the LM’s downstream performance as the objective, we leverage Pontryagin’s
Maximum Principle (PMP; Pontryagin, 2018) to derive the necessary conditions for optimal data
selection in theory. These results offer a rigorous, theory-driven alternative to the ad-hoc trial-and-
error practices that currently dominate LM pre-training.

Based on our theoretical results, we introduce PMP-based Data Selection (PDS), a framework that
selects high-quality pre-training data at scale, by solving the equation system induced by the PMP
conditions. Balancing effectiveness and efficiency, PDS first solves the equation system for the
optimal data selection on a proxy dataset (e.g., 0.2B tokens), assigning a quality score to each instance
based on its impact on downstream tasks. After that, a data scorer (e.g., 125M parameters) is trained
to predict the quality scores and then infers scores on the target corpus (e.g., 50B tokens). Finally, the
predicted scores guide data selection for pre-training LMs with various sizes (e.g., 1.7B parameters).

Unlike previous pre-training data selection methods based on deduplication (Tirumala et al., 2023;
Abbas et al., 2023), pattern matching (Xie et al., 2023), or single checkpoint performance (Engstrom
et al., 2024), which are agnostic to the pre-training process of LMs, PDS exploits the highly
dynamic nature of LM pre-training through the theoretical optimal control perspective. On the other
hand, compared to methods that incorporate signals from the LM training process online (Yu et al.,
2024; Wang et al., 2024), PDS operates offline, before the training begins, which avoids additional
training-time computation overhead and allows for training LMs with arbitrary configurations while
performing PDS only once. Furthermore, PDS only filters the training corpus, leaving highly
optimized pre-training pipelines largely intact. Most importantly, PDS enjoys a strong theoretical
basis, opening up the black box of understanding of individual data point impact on LM pre-training.

In our experiments, we select data from the CommonCrawl with PDS using LIMA (Zhou et al.,
2024) as the guide for downstream performance and pre-train LMs with 160M, 470M, 1B, and 1.7B
parameters from scratch. Then, we test the LM’s zero-shot performance on tasks other than LIMA
to examine the generalization of PDS. We observe around 2 times speed-up in pre-training on the
1.7B LM and constant improvement in downstream tasks and language modeling performance across
all model sizes compared to state-of-the-art baselines. Extrapolating these results using the Scaling
Law (Kaplan et al., 2020; Hoffmann et al., 2022), we show that the benefits remain consistent for
~400B LMs trained on ~15T tokens. Besides, PDS enhances data utilization in a data-constrained
setting, reducing the pre-training data demand by 1.8 times, which is a critical advantage as the LM
community is running out of data (Villalobos et al., 2022). We also conduct extensive analysis and
ablation studies on the key factors of PDS to facilitate further research on data selection.

2 METHOD

2.1 PROBLEM FORMULATION

We study an LM parameterized with θ ∈ RN , pre-trained from scratch on a dataset D = {xn}|D|
n=1,

over T training steps. Data selection (Albalak et al., 2024) aims at identifying a subset D′ from D,
such that LMs trained on D′ achieve better performance, measured by a lower downstream loss J(θ).

The pre-training process renders J(θ) as a function of D′, which can be fully characterized by a
data quality score vector γ =

[
γ1, γ2, · · · , γ|D|

]⊤
in a |D|-dimensional simplex U , where U ={

[γ1, γ2, · · · , γ|D|]
⊤
∣∣∑|D|

n=1 γn = 1 and γn ≥ 0 for 1 ≤ n ≤ |D|
}

1. A higher quality score in γ

indicates the corresponding instance is more helpful to reduce J(θ), and thus the LM should learn

1Only the relative data quality is meaningful for data selection. Therefore, we ensure the sum of the quality
scores to 1 to avoid the impact of their individual scales.
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more from the instance. Here, we focus on the independent importance of each example and provide
a discussion on the dependence between each data point in Appendix E. This results in the following
general pre-training loss, defined as the weighted sum of the per-instance loss by γ:

L(θ,γ) =

|D|∑
n=1

γnl(xn,θ), (1)

where l(xn,θ) = − log pθ(xn). The goal of data selection is thus to find γ that reduces the
downstream loss J(θ), and then select instances with the highest scores in γ. For simplicity, we
assume that the LM is trained using Gradient Decent (GD) for 0 ≤ t < T , with the derivation under
the Adam optimizer (Kingma & Ba, 2015) provided in Appendix C:

θt+1 = θt − η∇L(θt,γ), (2)

where θt represents the model parameters at the time step t during GD and η is the learning rate.

Optimization Problem. Motivated by the literature on learned optimizers (Metz et al., 2020), we
optimize γ by minimizing the area under the curve (AUC; Cortes & Mohri, 2003) of J(θt), which is
approximated by the cumulative sum of J(θt) over the pre-training process:

min
γ

T∑
t=1

J(θt),

s.t. θt+1 = θt − η∇L(θt,γ), γ ∈ U.

(3)

Intuitively, a lower AUC corresponds to faster convergence of the loss and improved final downstream
performance. Unlike evaluating J(θt) at individual time steps, the AUC captures the overall LM
training dynamics. As shown in Appendix A, minimizing the AUC essentially enhances the constants
in the LM’s Scaling Laws (Kaplan et al., 2020), leading to substantial improvements in LM learning.

2.2 DATA SELECTION AS OPTIMAL CONTROL

We recognize the optimization problem in Eq. (3) is analogous to a discrete optimal control prob-
lem (Lewis et al., 2012), where J(·) is the cost function, the model parameters θ are the state variables
evolving according to Eq. (2), and the data quality scores γ are the control variables to be optimized
within U . This perspective makes it convenient for theoretically solving the data selection problem.

Theoretically Optimal Solution for Data Selection. Optimal control problems can be solved
by a powerful tool known as Pontryagin’s Maximum Principle (PMP; Pontryagin, 2018), which
provides a set of necessary conditions for the optimal control variables and their corresponding state
variables (See Appendix B for its formal expression). However, standard PMP conditions allow the
optimal control to vary over time, whereas in Eq. (3), the control variables γ are constrained to be
time-invariant due to the offline nature of data selection in our setting. This typically makes the
optimization problem more challenging due to the shrinking of feasible region. In the following, we
present the PMP conditions for data selection under this constraint:
Theorem 2.1 (PMP Conditions for Data Selection). Let γ∗ solve the problem in Eq. (3), and θ∗

t

denote the LM parameters trained with γ∗. For 0 ≤ t < T , there exists a vector λ∗
t ∈ RN such that

θ∗
t+1 = θ∗

t − η∇L(θ∗
t ,γ

∗), θ∗
0 = θ0, (4)

λ∗
t = λ∗

t+1 +∇J(θ∗
t )− η∇2L(θ∗

t ,γ
∗)λ∗

t+1, λ∗
T = ∇J(θ∗

T ), (5)

γ∗ = argmax
γ

|D|∑
n=1

γn

[
T−1∑
t=0

λ∗
t+1

⊤∇l(xn,θ
∗
t )

]
, γ ∈ U, (6)

where∇2L(θ∗
t ,γ

∗) denotes the Hessian matrix of L(θ,γ∗) with respect to θ evaluated at θ = θ∗
t .

We prove Theorem 2.1 in Appendix B using the standard PMP conditions and the Lagrange multiplier
method, and provide an illustration for this theorem in Figure 2. Since standard PMP conditions and
the Lagrange multiplier method are necessary conditions for the optimality, Theorem 2.1 is also a
necessary condition for optimal data selection. By inspecting the PMP conditions for data selection,
we can see that Eq. (4) ensures the LM parameters, trained with the optimal data quality scores,
continue to evolve via GD. As illustrated in Figure 2 (Left), Eq. (5) defines λ∗

t , a “target vector”

3



Published as a conference paper at ICLR 2025

Conventional Data Selection
Optimal Data Selection

𝑡0
D

ow
ns

tre
am

 L
os

s
Training Steps Data Quality Scores:

Figure 2: An illustration of Theorem 2.1. Left: λ∗
t+1 ∈ RN defines a “target vector” aligning with

the optimization direction towards optimal data selection, as in Eq. (5). Right: data quality scores are
positively correlated with how close the gradient direction of each instance is to the target direction,
calculated as the dot-product between λ∗

t+1 and ∇li,t = ∇l(xi,θ
∗
t ) for i = n,m, k, as in Eq. (6).

suggesting the ideal gradient direction formed only by high-quality data points. In particular, λ∗
t

aggregates information about the downstream loss∇J(θt) with respect to current training step and
the LM’s training dynamics∇2L(θ∗

t ,γ
∗), from T to t. As a result, λ∗

t summarizes the dynamics of
LM pre-training (i.e., from future to the current). Since γ ∈ U , Eq. (6) essentially suggests that xn

with a higher
∑

t λ
∗
t+1

⊤∇l(xn,θ
∗
t ) value should obtain a larger score in γ∗, as shown in Figure 2

(Right). This indicates that the instances whose gradients align closely with the target vector λ∗
t

should be selected. Note that the PMP conditions for data selection form a complete equation system,
where θ∗

t , λ∗
t , and γ∗ are the solutions. In principle, by solving Eqs. (4)-(6) simultaneously, we can

derive the optimal data quality scores, forming the foundation of our data selection framework PDS.

2.3 PDS: DATA SELECTION BASED ON PMP

PDS selects pre-training data by solving the PMP conditions defined in Eqs. (4)-(6), and consists
of three key components, as illustrated in Figure 3. To balance effectiveness and efficiency, PDS
first uniformly samples a proxy dataset Dprx from the pre-training corpus D. Algorithm 1, derived
from the PMP conditions, is then applied to Dprx to compute data quality scores for each instance
(Section 2.3.1). Then, a data scorer, typically a small LM, is fine-tuned to predict the quality scores
based on the instances in Dprx. The learnt data scorer is subsequently applied to infer quality scores
on the entire pre-training corpusD (Section 2.3.2). Finally, the instances with large scores are selected
to form a high-quality corpus D′, which is used to pre-train LMs with any size (Section 2.3.3).

2.3.1 DATA QUALITY SCORES FROM PMP

Algorithm 1 PMP-Solver
Input: LM learning rate η. Outer loop learning rate α. Outer loop

epochs To. Training data before selection D. Downstream loss
J(θ). Training steps T . Proj[·] that projects a point in R|D| to
U . Model initialization θ0.

Output: Data quality scores γ∗.
γ =

[
γ1, γ2, · · · , γ|D|

]
←

[
1

|D| ,
1

|D| , · · · ,
1

|D|

]
;

repeat To times ▷ Outer loop
for t = 0, 1, · · · , T − 1 do ▷ Forward inner loop

θt+1 ← θt − η∇L(θt,γ) ▷ Eq. (4)
end for
λT ← ∇J(θT )
for t = T − 1, T − 2, · · · , 1 do ▷ Reverse inner loop

λt ← λt+1 +∇J(θt)− η∇2L(θt,γ)λt+1 ▷ Eq. (5)
end for
for n = 1, 2, · · · , |D| do

γn ← γn + α
∑T−1

t=0 λ⊤
t+1∇l(xn,θt) ▷ Eq. (6)

end for
γ ← Proj [γ]

end and return γ

Algorithm 1 solves the PMP condi-
tions for data selection iteratively and
returns the data quality scores γ∗.

Overview: Algorithm 1 solves a bi-
level optimization problem, consist-
ing of an outer loop to compute γ∗

and two inner loops to compute θ∗
t

and λ∗
t based on the current γ∗. γ∗ is

first uniformly initialized and then up-
dated for To epochs, based on θ∗

t and
λ∗
t obtained in the outer iterations.

Inner loops: In each iteration of the
outer loop, we run the forward in-
ner loop to compute θ∗

t according to
Eq. (4) from t = 0 to t = T − 1,
equivalent to training the LM with GD
using the current data quality scores
to re-weight the per-instance losses.
After that, λ∗

t is computed from t =
T − 1 to t = 0 with Eq. (5) in the
reverse inner loop, based on θ∗

t obtained from the forward inner loop.
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Figure 3: The PDS framework. We compute data quality scores γ∗ on a proxy dataset Dprx

using Algorithm 1, which is derived from the Pontryagin’s Maximum Principle (Pontryagin, 2018)
(Section 2.3.1). After that, the data scorer learns to predict quality scores from instances, which then
infers scores for a large corpus D (Section 2.3.2). Finally, a high-quality corpus D′ is selected based
on the inferred scores to pre-train an LM (Section 2.3.3).

Update of γ∗: γ∗ is supposed to be updated according to Eq. (6) with θ∗
t and λ∗

t computed in the
inner loops. Eq. (6) indicates that the new γ∗ should be set as a one-hot vector, where the element
corresponding to the highest

∑T−1
t=0 λ∗

t+1
⊤∇l(xn,θ

∗
t ) value is set to 1 and the others are set to 0.

However, this “hard” update is unstable, as it causes training the LM with only one example in the
upcoming outer loop iteration 2. Therefore, Algorithm 1 adopts a “soft” update, which increases γ∗

by a value proportional to
∑T−1

t=0 λ⊤
t+1∇l(xn,θt) and projects the updated γ∗ back into U .

Efficient Implementation. Running Algorithm 1 on Dprx based on the learning of a large LM
remains computationally intensive, as the inner loops involve training the LM for all T steps with
GD and computing the Hessian matrix. Therefore, we limit the outer loop to just one epoch and
employ stochastic gradient descent (SGD) with a small batch size in the inner loops, which is based
on a small proxy LM with Nprx parameters (Nprx ≪ N ) to be trained for T prx steps (T prx ≪ T ).
To recover any lost long-range training dynamics, we run Algorithm 1 multiple times by setting θ0
to the checkpoints at different large-scale pre-training stages of the proxy LM and then average the
obtained data quality scores on Dprx. Specifically, we first train the proxy LM for T steps and save
M checkpoints

[
θ
(1)
0 ,θ

(2)
0 , · · · ,θ(M)

0

]
in every ⌊ T

M ⌋ steps. Then, the quality scores are given by

γ∗ =
1

M

M∑
m=1

PMP-Solver
(
D = Dprx, T = T prx,θ0 = θ

(m)
0 , To = 1

)
, (7)

where PMP-Solver refers to Algorithm 1. We also incorporate several practical optimization
techniques to further reduce the computational overhead, as described in Appendix G.1.

2.3.2 DATA SCORER

We fine-tune a small LM as the data scorer to fit the data quality scores γ∗ on Dprx. Specifically,
each instance in Dprx is encoded by averaging the output hidden states of the data scorer. The
representation of each instance is then passed through a linear head, outputting a scalar. The linear
head and the LM are trained together to fit γ∗ on Dprx with the Mean Square Error loss:

ϕ∗,w∗, b∗ = arg min
ϕ,w,b

|Dprx|∑
n=1

(w⊤h(xprx
n ,ϕ) + b− γ∗

n)
2, (8)

where ϕ is the parameters of the data scorer and h(·, ·) ∈ Rd is the average output hidden states of
an LM along the sequence length, with d representing the hidden state size. w ∈ Rd, b ∈ R are the
parameters of the linear head. After fine-tuning, we infer the data quality scores of the instances in D
with the data scorer, where the quality score for xn is given by γ(xn) = w∗⊤h(xn,ϕ

∗) + b∗.

2This does not imply that one single example is optimal for data selection due to the necessity but not
sufficiency of Theorem 2.1. See Appendix F for a detailed discussion
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2.3.3 DATA SELECTION

We use the output scores from the data scorer to estimate the value of the instances in D to select the
final pre-training corpus D′ for the large LM. Given the importance of data diversity in pre-training
LMs, we adopt Gumbel-Top-K to introduce randomness into the selection process:

D′ = Top-K {γ(xn)− τ log(− log(un)) | xn ∈ D, 1 ≤ n ≤ |D|}, (9)

where u1, u2, · · · , u|D| are independently sampled from Uniform(0, 1) and τ is a hyper-parameter
to control the strength of the Gumbel noise. The size of the selected data is managed by a data
selection ratio r, with K = r|D| in our experiments.

2.4 DISCUSSION

Effectiveness of PDS. Compared to existing offline data selection methods that curate the pre-
training corpus before the LM training starts using pattern information (Xie et al., 2023), deduplica-
tion (Tirumala et al., 2023; Abbas et al., 2023), or single-step checkpoints (Engstrom et al., 2024),
PDS incorporates long-range training dynamics into data selection, as reflected by the “target vector”
λ∗
t in Eq. (5). This can be critical for selecting high-quality instances, given the highly dynamic

nature of LM pre-training. Although we run Algorithm 1 in a proxy environment and transfer the
quality scores to the large-scale setting via the data scorer, many previous works (Xie et al., 2024;
Yu et al., 2024) have shown that data quality information is learnable and transferable across model
sizes. Different LMs also share many common training dynamics (Tirumala et al., 2022).

Efficiency and Flexibility of PDS. Unlike recent online data selection approaches to incorporate
LM training dynamics (Yu et al., 2024; Wang et al., 2024), PDS selects the pre-training corpus offline.
This allows PDS to be run only once and used for pre-training multiple LMs of any sizes, without
incurring additional computational overhead. The FLOPs needed by PDS in a proxy environment
are also negligible compared to the demands of large-scale pre-training, as shown in a complexity
analysis in Section 3.3. Besides, the offline nature of PDS makes it flexible to be integrated into
optimized pre-training pipelines (Chowdhery et al., 2023) by simply replacing the data sources.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

Data. We use the CommonCrawl split from Redpajama (Together, 2023) as D to exclude the
influence of domain weights (Xie et al., 2024). For the downstream loss J(θ), we compute the LM’s
loss on the training split of LIMA (Zhou et al., 2024), a high-quality dataset consisting of 1,030
diverse instruction-response pairs that cover a wide range of downstream scenarios. The results on
more choices of J(θ) are shown in Appendix I.5. Our evaluation is conducted on various downstream
datasets other than LIMA to avoid over-fitting.

Model. We adopt the same model architecture as Mistral (Jiang et al., 2023) and pre-train LMs
with 160M, 470M, 1B, and 1.7B parameters. Model configurations are detailed in Table 6.

PDS. To compute the data quality scores from PMP, we adopt a 160M proxy LM. Dprx consists
of 160K instances uniformly sampled from D. We first pre-train the proxy LM on D for 50K steps
and then select checkpoints at [10K, 20K, 30K, 40K, 50K] steps. Initialized from these checkpoints,
the proxy LM undergoes inner loops with η = 0.008 over T prx = 100 steps with a mini-batch size of
256. γ∗ is updated for one outer loop epoch with α = 1. For the data scorer, we fine-tune a 125M
Fairseq-Dense model (Artetxe et al., 2022) along with the linear head, using the objective in Eq. (8).
The training details for the data scorer can be found in Appendix G.2. For Data Selection, we set
δ = 0.1, r = 0.4, with further hyper-parameter exploration provided in Appendix I.5.

Pre-Training. We pre-train all LMs for 100k steps, using a batch size of 512 and a max input
length of 1,024, resulting in roughly 50B tokens. In Section 3.2, we select a 50B-token dataset from
a CC corpus containing 125B tokens to assess how different data selection methods improve LM
learning given a sufficiently large D. In Section 3.3 (Data-Constrained Setting), we also analyze the
effectiveness of PDS when D is limited in size. See Appendix G.3 for more pre-training details.
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HS LAMB Wino. OBQA ARC-e ARC-c PIQA SciQ BoolQ Avg.

Model Size = 470M

Conventional 36.7 41.4 52.4 30.4 44.8 25.2 61.0 70.6 60.4 47.0
RHO-Loss 36.6 42.4 53.0 29.4 43.7 25.2 60.4 72.8 59.8 47.0
DSIR 36.4 42.6 51.7 29.8 46.0 24.7 61.0 72.0 55.8 46.7
IF-Score 36.6 41.8 53.4 29.6 44.7 25.1 60.8 68.8 58.7 46.6
PDS 37.9 44.6 52.3 29.8 46.5 25.8 61.8 73.8 61.4 48.2

Model Size = 1B

Conventional 39.9 47.6 52.4 30.6 49.3 26.4 63.1 73.7 60.9 49.3
RHO-Loss 39.8 47.0 53.0 30.8 48.0 26.4 62.9 71.1 61.0 48.9
DSIR 40.8 47.8 53.0 31.2 49.8 26.8 62.7 76.6 58.0 49.6
IF-Score 39.4 47.0 52.6 28.6 49.4 26.4 63.5 74.0 60.5 49.0
PDS 42.1 48.8 54.0 33.4 51.3 28.0 64.1 78.5 58.7 51.0

Table 1: Results on the downstream evaluation datasets in OLMo (Groeneveld et al., 2024). We
report the accuracy scores and the average scores across the datasets. The best scores of each model
size are boldfaced. PDS achieves the best performance in most cases compared to the baselines.

Evaluation. We evaluate the LMs’ 0-shot accuracy on the downstream test datasets used in
OLMo (Groeneveld et al., 2024) and their 0-shot performance on MMLU (Hendrycks et al., 2021).
We also report the LM’s language modeling loss on a subset of DCLM (Li et al., 2024), a high-quality
corpus curated with complex pipelines and human heuristics, to verify that models trained on D′

retain diversity and long-tail knowledge coverage. Further evaluation details are in Appendix G.4.

Baselines. We compare PDS with conventional pre-training and 3 offline data selection methods:
• Conventional: conventionally pre-training LM on 50B tokens uniformly sampled from D, also

refering to “Redpajama” in Figure 1.
• RHO-Loss (Mindermann et al., 2022): selecting data with high reducible losses, as in Eq. (55).
• DSIR (Xie et al., 2023): selecting data with high n-gram overlap with instances in LIMA.
• IF-Score (Koh & Liang, 2017): selecting data with high influence scores, as in Eq. (56).

3.2 MAIN RESULTS

N Method 0-shot PPL

470M

Conventional 27.6 34.8
RHO-Loss 28.4 33.0
DSIR 28.0 34.0
IF-Score 28.4 31.1
PDS 28.9 27.1

1B

Conventional 29.7 26.1
RHO-Loss 30.2 24.9
DSIR 30.0 25.3
IF-Score 30.7 23.6
PDS 31.4 20.5

Table 2: MMLU results. We report the 0-
shot accuracy and the perplexity (PPL) on
the ground truth answers. The best scores
of each model size are boldfaced.

PDS Improves Downstream Performance. We
present the evaluation results of the pre-trained LMs
on the OLMo evaluation datasets and MMLU in Table 1
and Table 2, respectively. As shown, PDS outperforms
the baselines on most datasets, achieving the best overall
performance across models with 470M and 1B param-
eters. See Appendix I.1 for results on 160M LMs. Fig-
ure 1(b) shows the scaling curves of average accuracy
on the OLMo evaluation sets with respect to the model
sizes, ranging from 160M to 1.7B, demonstrating that
the performance improvement remains consistent as the
LM scales up. These results indicate that the data qual-
ity scores obtained in a proxy environment generalize
well to various model sizes and downstream tasks.

PDS Enhances Language Modeling. Besides down-
stream tasks, we show that PDS also enhances language
modeling on a high-quality pre-training corpus. Fig-
ure 4 shows the test losses on the DCLM subset for
conventionally pre-trained LMs and PDS-trained LMs
with 160M, 470M, 1B, and 1.7B parameters. We can
see that PDS-trained LMs constantly achieve better performance across various model sizes. In
Table 3, we extrapolate the test losses using the Scaling Law (Hoffmann et al., 2022), showing that

7
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Figure 4: Test losses on the DCLM corpus (Li et al., 2024) for 160M, 470M, 1B and 1.7B LMs.

N D Conventional PDS

GPT-3 (Brown et al., 2020) 175B 300B 2.882 2.872
Llama (Touvron et al., 2023a) 6.7B 1.0T 2.942 2.896
Llama 2 (Touvron et al., 2023b) 70B 2.0T 2.877 2.855
Llama 3.1 (Dubey et al., 2024) 405B 15T 2.851 2.838

Table 3: Test loss extrapolation using the Scaling Law (Hoffmann et al., 2022). We predict the test
loss when the LM size N and the trained tokens D meet that of GPT-3 175B, Llama 6.7B, Llama 2
70B, and Llama 3.1 405B. The improvements of PDS remain consistent for these LMs.

the improvements with PDS persist in pre-training recent large LMs, such as GPT-3 (Brown et al.,
2020) and Llama family (Touvron et al., 2023a;b; Dubey et al., 2024). Details of the extrapolation
are provided in Appendix I.4. The DCLM corpus is curated using a complex pipeline based on
human heuristics and is verified to be diverse and comprehensive in its coverage of human knowledge.
Algorithm 1 offers a principled alternative to the complex pipeline for curating pre-training corpus.

PDS Accelerates LM Learning. In Figure 1(a), we plot the average accuracy scores on the OLMo
evaluation datasets with respect to the training FLOPs of the 1.7B model. PDS achieves 2.0 times
acceleration in terms of training-time computation compared to conventional pre-training. Similar
trends are observed for other model sizes (Figure 8) and DCLM losses (Figure 4).

3.3 ANALYSIS

Data-Constrained Setting. In Section 3.2, we assume the original pre-training data is unlimited to
ensure that the PDS-selected corpus contains 50B tokens, the same as in conventional pre-training. In
practice, when the data before selection is limited, the LM has to be trained on the PDS-selected data
for multiple epochs. In Figure 5, we restrict D to contain 50B tokens and apply PDS with selection
ratios r ∈ [0.125, 0.25, 0.5], corresponding to training the LM on the selected data for [8, 4, 2] epochs,
respectively. We can see that selecting 1/4 data with PDS and training for 4 epochs achieves the
lowest test losses, consistent with the findings of Muennighoff et al. (2023). This suggests that
PDS improves data utilization as the high-quality web-crawled corpora run out (Villalobos et al.,
2022). We extrapolate the loss curve of conventional pre-training with the Scaling Law suggested
by (Muennighoff et al., 2023), and find that it requires another 42B tokens to achieve the performance
of PDS (r = 0.25, 4 Eps), which means PDS reduces the pre-training data requirement by 1.8 times.
See Appendix I.4 for details of this extrapolation.

Efficient Implementation for Solving Data Quality Scores. In Section 2.3.1, we introduce
efficient implementations to solve the data quality scores by running Algorithm 1 for a single
outer epoch, leveraging a small proxy LM trained for a limited number of steps. In Figure 6, we
use a simulated setting where γ∗ can be obtained exactly from Algorithm 1 within an affordable
computational budget and compare its performance (measured by J(θt)) and overhead (measured
in FLOPs) with our efficient implementation. Details of this simulated setting can be found in
Appendix G.6. The results show that the efficient implementation significantly reduces computational
overhead while preserving most of the performance of the exact solution.
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Figure 5: Test losses on DCLM corpus (Li et al.,
2024) in the data-constrained setting. We select
data with PDS for different selection ratios r and
train the model for multiple epochs to reach the
same token number budgets.
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Figure 6: Comparison between exact and effi-
cient implementation to solve the data quality
scores in a simulated setting. The effectiveness
is measured by J(θt). The efficient implemen-
tation saves computation and preserves most of
the performance of the exact solution.

Complexity FLOPs (×1020) Actual Time

PDS
Proxy γ-solver O(NprxD + 4MNprxDprx) 0.49 15.2 Hours
Data Scorer O(3N scoreDprx +N scoreD) 0.063 1.50 Hours
Data Selection O(D) 0.0 10.2 Minutes

Pre-Training O(ND) 5.1 144 Hours

Table 4: Asymptotic complexity, GPU FLOPs, and actually spent time of different PDS steps and
1.7B model pre-training. Nprx and Dprx are the sizes of the proxy LM and proxy data. N score is the
size of the data scorer. We elaborate on the details of how the complexity and FLOPs are computed
in Appendix H. PDS costs little computational overhead compared to pre-training large LMs.

Complexity Analysis. We compare the computational complexity of PDS with pre-training in
Table 4. The overhead of running PDS to select data is only about 1/9 of that of pre-training a 1.7B
model. More importantly, since PDS is an offline method, the selected corpus can be used to pre-train
any number of LMs without additional computational cost. In addition, the offline nature of PDS
allows it to seamlessly integrate into recent highly optimized pre-training pipelines (Chowdhery et al.,
2023), requiring only a replacement of the data source without altering the pre-training process.

3.4 ABLATION STUDIES ON PMP-SOLVER

Training Dynamics Information. Incorporating the LMs’ training dynamics into data selection is
a key distinction between PDS and other offline data selection approaches. While IF-Score also uses
the gradient information of well-trained LMs to estimate data importance, we find that the long-range
training dynamics in early training stages are more valuable. Table 5 shows the results when different
types of learning information are considered. PDS (50K) refers to using the LM checkpoint at 50K
as θ(m)

0 in Eq. (7). PDS (T prx = 1) means running the inner loops as in Eq. (4) and Eq. (5) for only
one step, excluding long-range information. PDS (50K-100K) refers to setting θ

(m)
0 to checkpoints

at later training stages. Comparing our choice with IF-Score, PDS (50K), and PDS (T prx = 1), we
conclude that the long-range training dynamics is more valuable than single-step gradient, although
it may be slightly harder for the data scorer to fit. Our choice also outperforms PDS (50K-100K),
indicating that the early-stage training dynamics are more beneficial than those from later stages. An
explanation is that LMs conduct large-range parameter searching during early training and converge
to local optimums in the late stages. Therefore, early-stage information helps the LM choose better
local optimums, which can always be achieved by later annealing.

Proxy Model and Proxy Data. In Figure 7, we explore how the sizes of the proxy LM and the
proxy dataset affect the performance of the data scorer and the pre-trained LM. As the size of the
proxy LM increases, the LM’s downstream performance increases, but the data scorer’s performance
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Corr. Acc.

Conventional - 43.2
IF-Score 0.32 43.0
PDS (50K) 0.51 44.0
PDS (T prx=1) 0.54 44.6
PDS (50K-100K) 0.48 43.4

PDS (10K-50K, ours) 0.52 45.0

Table 5: Data selection based on different
kinds of learning information. We report the
LM’s zero-shot accuracy on the OLMo evalua-
tion tasks (Acc.) and the Spearman Correlation
of the data scorer (Corr.).

Accuracy
Correlation
𝒟!"# = 160𝐾 
𝒟!"# = 320𝐾 

Figure 7: LM performance on the OLMo evalu-
ation tasks (Average Accuracy) and data scorer
performance (Spearman Correlation) when differ-
ent proxy model and proxy data sizes are adopted.

decreases. We notice that when using the 8.7M model, the LM’s performance (44.0) is close to that
of DSIR (43.8), which selects data based on n-gram matching. This implies that small LMs estimate
data quality primarily through shallow patterns that are easy to learn. More complex LM learning
information is encoded in the data quality scores computed based on larger proxy LMs, making it
harder for the data scorer to fit, but this can be mitigated by increasing the size of Dprx.

4 RELATED WORK

Data Selection for Language Models. Many works have explored data selection approaches to
accelerate LM learning or improve downstream performance (Albalak et al., 2024). Some curate data
prior to LM training, which we refer to offline methods, including domain-mixing (Xie et al., 2024;
Fan et al., 2023; Gao et al., 2020), data pruning (Marion et al., 2023; Tirumala et al., 2023; Abbas
et al., 2023), sample-wise data selection (Xia et al., 2024b; Du et al., 2023; Xie et al., 2023; Gu et al.,
2023), and data programming (Ratner et al., 2016; Gu et al., 2022a;b). Other works dynamically
select data during LM training by adjusting domain-mixing weights (Xia et al., 2024a; Chen et al.,
2024; Albalak et al., 2023) or more fine-grained reweighting strategies (Fan & Jaggi, 2023; Grangier
et al., 2023; Gu et al., 2024; Thakkar et al., 2023). This work studies data selection from its general
principles, theoretically deriving optimal selection and designing scalable algorithms to implement it.

Optimal Control in Deep Learning. The principles of optimal control (Lewis et al., 2012) have
been shown to be effective in deep learning (Benning et al., 2019; Liu & Theodorou, 2019), by
treating the forward pass of a multi-layer neural network as a control process where the hidden
vectors are state parameters and the model parameters are control variables to optimize. With
the help of Pontryagin’s Maximum Principle (Pontryagin, 2018), some works design optimization
algorithms with better convergence rates (Li et al., 2017; Zhang et al., 2019) or broader application
scenarios (Li & Hao, 2018), and others provide theoretical foundations of neural networks for better
interpretation (Han et al., 2019; Geshkovski & Zuazua, 2022). Unlike these works, we adopt Optimal
Control in a novel and “orthogonal” way, by treating the model’s learning pass as the control process.

5 CONCLUSION

In this work, we investigate selecting pre-training data of LMs from both theoretical and practical
perspectives. We first formulate data selection as an Optimal Control problem to derive a set of
necessary conditions for optimal data selection using Pontryagin’s Maximum Principle (PMP), which
establishes theoretical principles for LM pre-training. Then, building on these theoretical results, we
introduce PDS, a practical framework that solves the PMP conditions in practice based on long-range
LM training dynamics. Extensive experiments show that PDS selects high-quality pre-training
corpora that accelerate LM learning and boost LM performance across various model sizes and
downstream tasks. We find that PDS also improves data utilization in data-constrained settings,
which mitigates the pre-training data exhaustion problem.
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A CONNECTION BETWEEN AUC AND SCALING LAW CONSTANTS

We show that the area under the loss curve (AUC) is directly connected to the scaling law (Kaplan
et al., 2020) constants, and minimizing AUC essentially improves the scaling properties of LMs. As
suggested by existing literature (Kaplan et al., 2020; Hoffmann et al., 2022), the test losses of LMs
follow a power-law with respect to the training steps t after a warmup stage:

L(t) =
C

tc
+ Lirre, t > T0, (10)

where C and c are scaling law constants, Lirre is the irreducible loss related to the noise in the test
set, and T0 is the end steps of the warmup stage. Lirre is invariant to optimizing pre-training data
selection strategies. Therefore, we care about the reducible loss, whose constants depend on the data
quality scores γ:

Lre(t) = L(t)− Lirre =
C(γ)

tc(γ)
, t > T0. (11)

We then consider the AUC of the reducible loss for sufficiently large T :

AUC(γ) =
∫ T

t=T0

C(γ)

tc(γ)
dt =

C(γ)

1− c(γ)
(T 1−c(γ) − T

1−c(γ)
0 ). (12)

For c(γ) < 1, when T is sufficiently large, AUC(γ) ≈ C(γ)
1−c(γ)T

1−c(γ). Minimizing AUC causes
C(γ) to decrease and c(γ) to increase3, improving the scaling properties of LMs. For c(γ) > 1,
AUC(γ) ≈ C(γ)

c(γ)−1
1

T
c(γ)−1
0

, which also exhibit a trend of decreasing C(γ) and increasing c(γ) when

AUC is minimized.

B PROOF OF THEOREM 2.1

To prove Theorem 2.1, we first describe the standard discrete-time Pontryagin’s Maximum Principle
(PMP; Pontryagin, 2018) in Optimal Control (Lewis et al., 2012) for time-variant control variables:
Theorem B.1 (PMP). Consider the following optimization problem in a discrete dynamical system:

min
γt

T−1∑
t=0

J (θt,γt) + J(θT ),

s.t. θt+1 = f(θt,γt), γt ∈ U,

(13)

where the state variable θt ∈ RN , the control variable γt ∈ RD, and J : RN×D 7→ R, f :
RN×D 7→ RN are continuous in RN×D. Let γ∗

t be the solution to this problem, and θ∗
t denote the

corresponding state variable. For 0 ≤ t < T , there exists a co-state vector λ∗
t ∈ RN such that

θ∗
t+1 = ∇λH(θ∗

t ,λ
∗
t+1,γ

∗
t ), θ∗

0 = θ0, (14)
λ∗
t = ∇θH(θ∗

t ,λ
∗
t+1,γ

∗
t ), λ∗

T = ∇J(θT ), (15)
γ∗
t = argmin

γt

H(θ∗
t ,λ

∗
t+1,γt), γt ∈ U, (16)

where H : RN × RN × RD 7→ R is the Hamiltonian function defined by

H(θ,λ,γ) = J (θ,γ) + λ⊤f(θ,γ). (17)

Proof of Theorem B.1 can be found in various textbooks in Optimal Control (Lewis et al., 2012;
Evans, 2005). In our context, we interpret θt as the model parameters, J(·) as the downstream loss
function, U as the |D|-dimensional simplex as defined in Section 2.1 and f as the GD operation
where the data weights γt changes with respect to the training steps t:

θt+1 = θt − η∇
|D|∑
n=1

γn,tl(xn,θt)

= θt − η∇L(θt,γt).

(18)

3f(c) = 1
1−c

T 1−c is increasing with respect to c when 1− c < lnT , which is easily satisfied for sufficiently
large T .
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In this way, the Hamilton function is

H(θ,λ,γ) = J (θ,γ) + λ⊤ [θ − η∇L(θ,γ)] . (19)

The key challenge to prove Theorem 2.1 is that the control variables are constrained to be invariant
of the training step t in data selection, as discussed in Section 2.1 and 2.2, and introducing more
constraint usually makes an optimization problem more complex. Formally, the requirement of
invariant data weights can be expressed by T − 1 equations:

γ1 = γ0, γ2 = γ0, · · · ,γT−1 = γ0. (20)

Therefore, the optimization of data selection, as in Eq. (3), is equivalent to the following problem:

min
γt

T∑
t=1

J(θt),

s.t. θt+1 = θt − η∇L(θt,γt), γt ∈ U,

γ0 = γ1 = · · · = γT−1.

(21)

We adopt the method of Lagrange multipliers to solve Eq. (21) by considering the following opti-
mization problem:

min
γt

T−1∑
t=0

J(θt) +

T−1∑
t=1

|D|∑
n=1

µn,t(γn,t − γn,0) + J(θT ),

s.t. θt+1 = θt − η∇L(θt,γt), γt ∈ U,

(22)

where (µn,t)1≤n≤D,0≤t≤T−1 are Lagrange multipliers. Note that we split J(θT ) out and add J(θ0)
to the sum of J(θt), which does not affect the minimization. In this way, when J (θt,γt) takes the
following form:

J (θt,γt) =


J(θ0)−

T−1∑
t′=1

|D|∑
n=1

µn,t′γn,0, if t = 0

J(θt) +

|D|∑
n=1

µn,tγn,t, if 1 ≤ t ≤ T − 1

, (23)

we can apply Theorem B.1 to Eq. (21). By substituting Eq. (19), Eq. (20), and Eq. (23) into Eq. (14)
and Eq. (15), we have:

θ∗
t = θ∗

t − η∇L(θ∗
t ,γ

∗
0 ), θ∗

0 = θ0, (24)

λ∗
t = λ∗

t+1 +∇J(θ∗
t )− η∇2L(θ∗

t ,γ
∗
0 )λ

∗
t+1, λ∗

T = ∇J(θT ), (25)

which prove Eq. (4) and Eq. (5) in Theorem 2.1 when we set γ∗
0 = γ∗. By substituting Eq. (19) and

Eq. (23) into Eq. (16), we have

γ∗
t =


argmax

γ0

|D|∑
n=1

γn,0

[
λ∗
1
⊤∇l(xn,θ

∗
0) +

T−1∑
t′=1

µn,t′

]
, if t = 0

argmax
γt

|D|∑
n=1

γn,t

[
λ∗
t+1

⊤∇l(xn,θ
∗
t )− µn,t

]
, if 1 ≤ t ≤ T − 1

(26)

Considering the time-invariant constraint in Eq. (20), we set γ∗
0 = γ∗

1 = · · · = γ∗
T−1 = γ∗ and get

γ∗ = argmax
γ

|D|∑
n=1

γn

[
ηλ∗

1
⊤∇l(xn,θ

∗
0) +

T−1∑
t′=1

µn,t′

]
, if t = 0

γ∗ = argmax
γ

|D|∑
n=1

γn

[
ηλ∗

t+1
⊤∇l(xn,θ

∗
t )− µn,t

]
, if 1 ≤ t ≤ T − 1

, (27)
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which forms a complete equation system containing T equations and T unknown variables (T − 1
number of µt =

[
µ1,t, µ2,t, · · · , µ|D|,t

]
plus one γ∗), which has the solution:

µn,t = ηλ∗
t+1

⊤∇l(xn,θ
∗
t )− η

Sn

T
, 1 ≤ n ≤ |D|, 0 ≤ t ≤ T − 1, (28)

γ∗ = argmax
γ

|D|∑
n=1

γnη
Sn

T
, (29)

where Sn =
∑T−1

t=0 λ∗
t+1

⊤∇l(xn,θ
∗
t ). Note that Eq. (29) is equivalent to Eq. (6). So far, Theorem 2.1

is proved by combining Eq. (24), Eq. (25), and Eq. (29).

C DERIVATION FOR ADAM

We provide our formulation and derivation for Adam (Kingma & Ba, 2015) in this section. For
0 ≤ t ≤ T − 1, the parameter update rules of Adam is given by

mt+1 = β1mt + (1− β1)gt,

vt+1 = β2vt + (1− β2)g
2
t ,

m̂t+1 = mt+1/(1− βt+1
1 ),

v̂t+1 = vt+1/(1− βt+1
2 ),

θt+1 = θt − ηm̂t+1/(
√
v̂t+1 + ϵ),

(30)

where β1, β2, ϵ, η are hyper-parameters and gt = ∇L(θt,γt,D). We set m0 = 0 and v0 = 0. To
formulate the LM training with Adam as an Optimal Control (Lewis et al., 2012) problem, we treat
the vector Θt = [θt,mt,vt]

⊤ ∈ R3N as the state variable. Let F denote the state-transition function
from Θt to Θt+1:

θt+1 = F (Θt,γ), (31)

and thus F represents the following relations:

θt+1 =θt −
η

1− βt+1
1

β1mt + (1− β1)gt√
(β2vt + (1− β2)g2

t )/(1− βt+1
2 ) + ϵ

, (32)

mt+1 =
β1mt + (1− β1)gt

1− βt+1
1

, (33)

vt+1 =
β2vt + (1− β2)g

2
t

1− βt+1
2

. (34)

Similar to GD, we can still define the Hamiltonian function of the problem and obtain the following
theorem with Pontryagin’s Maximum Principle (PMP; Pontryagin, 2018):

Theorem C.1 (PMP Data Selection for Adam). Let γ∗ solve the problem in Eq. (3), and Θ∗
t denote

the state variable corresponding to γ∗. Then, there exists a co-state vector Λ∗
t ∈ R3N such that

Θ∗
t+1 = ∇ΛH(Θ∗

t ,Λ
∗
t+1,γ

∗), Θ∗
0 = [θ0,0,0]

⊤
, (35)

Λ∗
t = ∇ΘH(Θ∗

t ,Λ
∗
t+1,γ

∗), Λ∗
T = [∇J(θT ),0,0]⊤ , (36)

γ∗ = argmin
γ

T−1∑
t=0

H(Θ∗
t ,Λ

∗
t+1,γ), γ ∈ U, (37)

whereH : R3N × R3N × RD 7→ R is the Hamiltonian function defined by

H(Θ,λ,γ) = J(θ) +Λ⊤F (Θ,γ). (38)

Similar to the derivation for GD, Eq. (35) controls the state transition, equivalent to Eq. (31). To
simplify the further derivation of Eq. (36) and Eq. (37), we assume ∂vt+1

∂gt
≈ 0, which is reasonable
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Algorithm 2 PMP Solver for Adam
Input: LM learning rate η. Outer loop learning rate α. Outer loop epochs To Training data D.

Downstream loss function J(·). Training steps T . Function Proj[·] that projects a point in RD to
the D-simplex.

Output: Data quality score γ∗

γ =
[
γ1, γ2, · · · , γ|D|

]
←

[
1

|D| ,
1

|D| , · · · ,
1

|D|

]
; Θ0 ←

[
θ
(k)
0 ,0,0

]⊤
repeat To times ▷ Outer loop

for t = 0, 1, · · · , T − 1 do ▷ Forward inner loop
Θt+1 ← ∇ΛH(Θt,Λt+1,γ) ▷ Eq. (35), expanded to Eq. (32-33)

end for
ΛT = [∇J(θT ),0,0]⊤
for t = T − 1, T − 2, · · · , 1 do ▷ Reverse inner loop

Λt ← ∇ΘH(Θt,Λt+1,γ) ▷ Eq. (36), expanded to Eq. (39-42)
end for
for n = 1, 2, · · · , |D| do

γn ← γn + α∇γn
H(Θt,Λt+1,γ) ▷ Eq. (37), expanded to Eq. (43)

end for
γ ← Proj [γ]

end and return γ

because vt+1 is an exponential moving average of g2
t and the weight 1− β2 is usually much smaller

than 1 in practice. Therefore, we have ∂vt+1

∂θt
≈ 0, ∂vt+1

∂γt
≈ 0 and thus Eq. (36) can be written to

Λ∗
t =

[
Λ

(1)
t ,Λ

(2)
t ,Λ

(3)
t

]⊤
, (39)

Λ
(1)
t ≈∇J(θ∗

t ) +Λ
(1)
t+1 −

(1− β1)η

1− βt+1
1

∇2(θ∗
t ,γ

∗)
Λ

(1)
t+1√

v̂t+1 + ϵ

+
(1− β1)

1− βt+1
1

∇2(θ∗
t ,γ

∗)Λ
(2)
t+1, (40)

Λ
(2)
t =− ηβ1

1− βt+1
1

Λ
(1)
t+1√

v̂t+1 + ϵ
+

β1

1− βt+1
1

Λ
(2)
t+1, (41)

Λ
(3)
t =

ηβ2

1− βt+1
2

m̂t+1Λ
(1)
t+1√

v̂t+1

(√
v̂t+1 + ϵ

)2 +
β2

1− βt+1
2

Λ
(3)
t+1. (42)

To achieve the minimum in Eq. (37), we need to compute the gradient ofH with respect to γt:

∇γnH(Θ∗
t ,Λ

∗
t+1,γ) =

η(1− β1)

1− βt+1
1

Λ
(1)
t+1

⊤∇l(xn,θt)√
v̂t+1 + ϵ

+
1− β1

1− βt+1
1

Λ
(2)
t+1

⊤
∇l(xn,θt) (43)

In this way, we can use Algorithm 2 to solve for the data quality scores on the proxy dataset Dprx,
just like Algorithm 1 in Section 2.3.1. Then, we train a data scorer with the solved data weights γ∗ as
in Section 2.3.2 and conduct data selection based on the scores inferred by the data scorer on D as in
Section 2.3.3. In pilot experiments, we find that computing data quality scores based on Adam does
not show substantial improvement over that based on GD. Given that Algorithm 2 requires twice as
much computation and 3 times as much GPU memory as Algorithm 1, we adopt PMP condition for
data selection based on GD (Theorem 2.1) to build PDS in our main paper.
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D ALGORITHM 1 AS PROXIMAL GRADIENT DECENT

We provide another view of Algorithm 1 as using Proximal Gradient Decent method (Bauschke &
Combettes, 2011). Specifically, we can optimize Eq. (3) with the following rules:

A(γ) =

T∑
t′=1

J(θt′), (44)

γ ← Proj [γ − α′∇γA] , (45)

where A(γ) denotes the cost function in Eq. (3), α′ is the learning rate and Proj[·] projects a point in
RD to the D-simplex. ∇γA =

[
∂A
∂γ1

, ∂A
dγ2

, · · · , ∂A
∂γD

]
is the gradient of A(γ) with respect to the data

weights γ. Now, we compute each element of∇γA with the chain rule:

∂A

∂γn
=

T∑
t′=1

∂J(θt′)

∂γn

=

T∑
t′=1

∇J(θt′)⊤
∂θt′

∂γn

=

T∑
t′=1

∇J(θt′)⊤
t′∑

t=1

∂θt′

∂θt

∂θt
∂γn

= −η
T∑

t′=1

∇J(θt′)⊤
t′∑

t=1

∂θt′

∂θt
∇l(xn,θt−1)

= −η
T∑

t′=1

t′−1∑
t=0

∇J(θt′)⊤
∂θt′

∂θt+1
∇l(xn,θt)

= −η
T−1∑
t=0

[
T∑

t′=t+1

∇J(θt′)⊤
∂θt′

∂θt+1

]
∇l(xn,θt),

(46)

where ∂θt′
∂θt+1

satisfies

∂θt′

∂θt
=

∂θt+1

∂θt

∂θt′

∂θt+1
=

[
I − η∇2L(θt,γt)

] ∂θt′

∂θt+1
, (47)

according to Eq. (2). In the following, we show that:

λt+1 =

T∑
t′=t+1

∂θt′

∂θt+1
∇J(θt′), (48)

where λt+1 is the co-state vector in Algorithm 1. Let λ′
t+1 =

∑T
t′=t+1

∂θt′
∂θt+1

∇J(θt′), we then have
λ′
T = ∇J(θT ) and the following difference equation for λ′

t:

λ′
t =

T∑
t′=t

∂θt′

∂θt
∇J(θt′)

=∇J(θt′) +
T∑

t′=t+1

∂θt′

∂θt
∇J(θt′)

=∇J(θt′) +
T∑

t′=t+1

[
I − η∇2L(θt,γ)

] ∂θt′

∂θt+1
∇J(θt′)

=∇J(θt′) + λ′
t+1 − η∇2L(θt,γ)λ

′
t+1.

(49)
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Given that λ′
t+1 satisfies the same difference equation as λt+1 in Algorithm 1 and has the same value

at t = T , we have λ′
t+1 = λt+1. Therefore, the gradient in Eq. (46) can be written as

∂J

∂γn
= −ηλ⊤

t+1∇l(xn,θt). (50)

Combining Eq. (45) and Eq. (50), we recover the update rules of γn,t in Algorithm 1 by setting
α′ = α/η.

E EXTENSION TO CONSIDERING DATA DEPENDENCE

In Section 2.1, we formulate our problem by focusing on the individual importance of each data point
to the downstream loss. This potentially affects the performance of PDS when the original corpus to
select from contain too much duplication. The reason is that, similar examples tend to have similar
distances to λ, which means that if one example individually get high γ, the others will also get
high γ and be selected, affecting the diversity of the selected corpus. In this section, we provide a
discussion on how the dependence between the selection data points can be considered to improve
the diversity of the selected data, as an extension to our theoretical framework. Specifically, we can
improve the pair-wise difference between the examples to promote the diversity of the selected data
by considering the following pair-wise similarity:

sim(xn, xm) =
h⊤
nhm

||hn||||hm||
, (51)

where hn and hm are the representations of each example generated by a model like RoBERTa (Liu
et al., 2019). Then, we have the following loss to minimize, which encourages the difference between
examples:

Ldiversity =
∑
n,m

sim(xn, xm)γnγm = γ⊤Sγ, (52)

where S = [sim(xn, xm)]1≤n≤|D|,1≤m≤|D|. We can add this loss to the optimization problem in Eq.
(3), using a hyper-parameter w to control its weight. Additionally, is it also useful to add an l0-norm
constraint on γ to constrain the number of non-zero elements to the selected data number K. This is
because when pairwise interactions between examples are considered, adding or removing one data
point would affect the contribution of the others. Therefore, the optimization problem becomes:

min
γ

T∑
t=1

J(θt) + w · γSγ

s.t. θt+1 = θt − η∇L(θt,γ), γ ∈ U,

N∑
n=1

1[γn > 0] = K.

(53)

However, the problem with the l0-norm constraint is computationally intractable to solve because
computing the l0-norm involves determining the exact sparsity pattern, which is equivalent to solving
a combinatorial optimization problem. For high-dimensional γ, this becomes computationally
prohibitive as the complexity grows exponentially with the size of the problem. Furthermore, it is
unclear how the constraint would affect the physical property of the dynamics and resulting in the
optimization problem. For example, whether it will introduce any singularity during the dynamic
process or the inaccuracy from the approximated optimization procedure (given l0-norm is not
differentiable) would lead to any unexpected outcome. We leave the design of effective and efficient
methods to solve the problem in Eq. (53) to future work.

F DISCUSSION ON EQ. (6) OF THEOREM 2.1

The Optimality. In Theorem 2.1, Eq. (6) takes a maximum operation to get γ∗, which in-
creases the γ scores with the highest

∑T
t=0 λ

⊤
t+1∇l(xn, θ

∗) values and reduce those γ with lower∑T
t=0 λ

⊤
t+1∇l(xn, θ

∗) values to 0. However, this does not imply that a single training example is
the optimal for data selection for the following reasons:
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• First, there could exist several samples having the same largest
∑T

t=0 λ
⊤
t+1∇l(xn, θ

∗) values when
the model’s parameter θ∗ is trained under the optimal γ scores, i.e. ∃S = {n1, n2, · · · , n|S|} such
that for any m /∈ S.

T∑
t=0

λ⊤
t+1∇l(xn1

, θ∗) = · · · =
T∑

t=0

λ⊤
t+1∇l(xn|S| , θ

∗) >

T∑
t=0

λ⊤
t+1∇l(xm, θ∗) (54)

Therefore, multiple samples in S can have non-zero γ∗ scores to satisfy Eq. (6), as long as those
samples not in S get zero γ∗ scores. Accordingly, although “a single training sample” is a solution
to Eq. (6), there also exist many more “equally qualified” solutions (such as assigning uniform
γ values to the data points in S) that satisfy Eq. (6).

• Second, Theorem 2.1 is a necessary condition of the γ‘s optimality. This is because the two
techniques we used to prove Theorem 2.1 in Appendix B, i.e., (1) time-variant PMP for discrete
dynamical system (Theorem B.1) and (2) The Lagrange Multiplier method, are all necessary
conditions. Therefore, the unreasonable “a single training sample” is not necessarily the optimal
solution to the problem.

Many empirical results (Geering, 2007; Seierstad & Sydsaeter, 1986) have shown that solving this
necessary condition can successfully lead to fairly good solutions, which is much like using gradient
descent in deep learning even if it does not guarantee the optimality of the solution.

Intuition Behind γ Updates. During the update of γ in Algorithm 1, since θ has not reached
its optimum yet, the sample set S having the same largest

∑T
t=0 λ

⊤
t+1∇l(xn, θ) values has not

emerged, making the max operation unstable in practice. Therefore, we increase γ by a value
proportional to

∑T
t=0 λ

⊤
t+1∇l(xn, θ) in each iteration of the outer loop as in Algorithm 1. This

updating strategy still satisfies our theory because it guarantees that the sample set having the largest∑T
t=0 λ

⊤
t+1∇l(xn, θ) values gets the highest γ values. It also ensures that the samples with the

same
∑T

t=0 λ
⊤
t+1∇l(xn, θ) values receive the same γ scores, which avoids the “single training

sample” solution.

G IMPLEMENTATION DETAILS

G.1 SOLVING DATA QUALITY SCORES

Algorithm 1 needs to compute the Hessian matrix, as in Eq. (5), and per-instance vector-gradient
product, as in Eq. (6). We adopt the Jacobian-Vector-Product4 in PyTorch (Paszke et al., 2019) to
efficiently implement these operations. There is still a large room for this implementation, such
as adopting other deep learning frameworks (Dagréou et al., 2024; Bradbury et al., 2018) or using
lower-complexity algorithms (Wang et al., 2024). Algorithm 1 requires storing all the LM checkpoints
θt from t = 0 to t = T − 1 in the forward inner loop for computing λt in the reverse inner loop. To
reduce the single-device GPU memory use, we implement an activation partition algorithm inspired
by ZeRO-2 (Rajbhandari et al., 2020), where θt in one inner-loop pass are stored in different GPU
devices. We also adopt a strategy inspired by activation checkpointing (Chen et al., 2016).

G.2 TRAINING DATA SCORER

We fine-tune the Fairseq-Dense-125M model (Artetxe et al., 2022) on the solved data weights γ∗

to obtain the data scorer. as in Eq. (8), we adopt a linear transformation on the mean pooling of
the instance’s representations along the sequence length. The size of the hidden state is 768. We
optimize Eq. (8) with the AdamW (Loshchilov & Hutter, 2019) optimizer for 5 epochs, using a
learning rate 1 × 10−4 and a batch size 512. We split 10% samples from Dprx for validation and
select the checkpoint achieving the highest Spearman correlation score on the validation set to infer
data quality scores in D.

4https://pytorch.org/docs/stable/func.api.html

23

https://pytorch.org/docs/stable/func.api.html


Published as a conference paper at ICLR 2025

Model Size dmodel dFFN nlayers nhead dhead learning rate

160M 768 3,072 12 12 64 6× 10−4

470M 1,024 4,096 24 16 64 3× 10−4

1B 1,536 6,144 24 16 96 2.5× 10−4

1.7B 2,048 8,192 24 16 128 2× 10−4

Table 6: Model configurations and corresponding learning rates.

G.3 PRE-TRAINING

We pre-train all our models for about 50B tokens with a batch size of 512 and a max input length of
1,024. We use the AdamW (Loshchilov & Hutter, 2019) optimizer and cosine learning rate scheduler,
which warmups the learning rates for 2K steps and then decays it to 10% of the maximal value. We
follow (Brown et al., 2020) to set the maximal learning rates as listed in Table 6, together with the
model configurations.

G.4 EVALUATION

We evaluate our trained models on MMLU (Hendrycks et al., 2021) and the evaluation sets used
in OLMo (Groeneveld et al., 2024), including Hellaswag (HS; Zellers et al., 2019), Winograde
(Wino.; Levesque et al., 2012), LAMBADA (LAMB; Paperno et al., 2016), OpenbookQA (OBQA; Mi-
haylov et al., 2018), ARC-easy/challenge (ARC-e/c; Clark et al., 2018), PIQA (Bisk et al., 2020),
SciQ (Welbl et al., 2017), and BoolQ (Clark et al., 2019). We adopt the LM-evaluation-harness
library (Gao et al., 2024)5 to conduct the zero-shot evaluation, which formulates the tasks as the
multiple-choice problems and chooses the answer by comparing the answer-length-normed loss
across candidates (acc_norm). We also compute the test loss of our trained models on the DCLM
corpus (Li et al., 2024), a 10K subset uniformly sampled from the high-quality pre-training corpus
in Li et al. (2024).

G.5 BASELINES

Reducible Holdout Loss Selection (RHO-Loss; Mindermann et al., 2022; Lin et al., 2024).
RHO-Loss selects data with high “reducible holdout loss” defined as follows:

RHO-Lossn = l(xn,θT )− l(xn,θ
down), (55)

where θdown is the model parameters trained on the downstream tasks, which is LIMA (Zhou et al.,
2024) in our experiments. We first split 10% of LIMA for validation and choose θdown with the
lowest validation loss. Then, we train θt using xn with the top α × 100% RHO-Lossn. We tried
α ∈ {0.1, 0.3, 0.5, 0.7} and find that α = 0.5 performs the best.

Data Selection via Importance Resampling (DSIR; Xie et al., 2023). DSIR selects pre-
training data based on the n-gram feature overlap between the instances in the downstream dataset
(LIMA (Zhou et al., 2024) in our experiments) and the large-scale corpus. Pre-training instances
whose features have high probabilities under the feature distribution of the downstream dataset will
obtain higher sampling weights. We use the official implementation of DSIR6.

Influence Score (IF-Score Koh & Liang, 2017; Grosse et al., 2023). We adopt the influence
function (Koh & Liang, 2017; Grosse et al., 2023) to measure the quality of x using the downstream
loss J(θ) as the target:

IF-Score(x) = ∇l(x,θT )⊤
[
∇2L(θT )

]−1∇J(θT ), (56)

where θT is the LM parameters trained for T steps and L(θT ) =
1

|D|
∑

x∈D l(x,θT ). We adopt a
linear-time iterative algorithm to compute the inverse-Hessian-vector-product (Agarwal et al., 2017).

5https://github.com/t1101675/lm-harness/
6https://github.com/p-lambda/dsir
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HS LAMB Wino. OBQA ARC-e ARC-c PIQA SciQ BoolQ Avg.

Conventional 32.2 34.9 51.4 25.6 40.9 22.5 58.3 65.5 57.6 43.2
RHO-Loss 32.2 35.3 53.2 28.1 40.5 24.1 58.5 63.1 53.0 43.1
DSIR 32.8 35.7 52.5 26.6 41.2 23.8 57.8 68.7 54.7 43.8
IF-Score 32.2 35.7 51.1 27.4 40.8 22.6 57.6 64.1 55.8 43.0
PDS 33.5 38.2 51.4 28.4 42.3 24.1 59.2 68.8 58.7 45.0

Table 7: Downstream evaluation results on 160M models. We report the accuracy scores and the
average scores across the datasets. The best scores of each model size are boldfaced. PDS achieves
the best performance in most cases compared to the baselines.

To reduce the computational cost, we adopt a similar efficient implementation as PDS by computing
the IF-Scores on a small proxy data based on a small proxy LM and then transferring these scores to
a large pre-training corpus with a fine-tuned data scorer. We select examples with the top 40% scores
inferred by the data scorer on the large pre-training corpus.

G.6 SIMULATED SETTING FOR EXPERIMENTS IN TABLE 6

To exactly run Algorithm 1 with a feasible computational overhead, we adopt a 12M LM from the
Mistral (Jiang et al., 2023) family, with a small vocabulary. We uniformly sample 4,096 instances as
D, with a max sequence length of 256, and construct a 16K vocabulary from D and LIMA. We run
the inner loops for 5K steps and the outer loop for 5 epochs to get the PDS (exact) line in Figure 6.
For PDS (Efficient), we adopt an 8.7M model as the proxy LM and set M = 5, T prx = 100. We run
the inner loop using SGD with a batch size of 128. The outer loop epoch number is set to 1.

H COMPLEXITY ANALYSIS

Following Hoffmann et al. (2022), for an LM with N parameters to be trained on D tokens, we
assume the computational FLOPs of a forward and a backward pass are 2ND and 4ND, respectively.
We compute the FLOPs and asymptotic complexities of different stages in PDS as follows:

• Solving Data Quality Scores: According to Section 2.3.1, we first pre-train a proxy LM on D
which consumes 6NprxD FLOPs. Then, we perform Algorithm 1 M times on Dprx based on the
proxy LM. The forward inner loop in Algorithm 1 consumes 6NprxDprx FLOPs. The reverse
inner loop can be treated as the “backward” propagation of the forward inner loop as discussed in
Appendix D, which consumes 2× 6NprxDprx FLOPs. The update of γ results in one forward
and backward pass of the proxy LM on Dprx, which consumes 6NprxDprx FLOPs. In summary,
the asymptotic complexity of solving data quality scores is O(NprxD + 4MNprxDprx).

• Data Scorer: The data scorer with N score is trained onDprx and used to infer data quality scores on
D. Therefore, the computation overhead is 6N scoreDprx+2N scoreD and the asymptotic complexity
is O(3N scoreDprx +N scoreD).

• Data Selection: Selecting pre-training corpus requires iterating over D, whose asymptotic com-
plexity is O(D). This process can be done on CPUs and does not require GPU FLOPs.

• Pre-Training: Pre-training an LM with N parameters requires 6ND FLOPs, whose asymptotic
complexity is O(ND).

I MORE RESULTS

I.1 RESULTS ON 160M MODELS

We present the results on the OLMo (Groeneveld et al., 2024) evaluation sets based on the 160M
models in Table 7. PDS achieves the best performance in most cases compared to the baselines.
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Figure 8: Scaling curves of average accuracy on the OLMo (Groeneveld et al., 2024) evaluation
datasets with respect to computation for 160M, 470M, and 1B sizes.

Method PPL (160M) PPL (470M)

Conventional 44.7 34.8
RHO-Loss 42.1 33.0
DSIR 40.5 34.0
IF-Score 41.5 31.1

PDS 36.6 27.1

Table 8: The LMs’ perplexity (PPL) on the ground truth for zero-shot evaluation on
MMLU (Hendrycks et al., 2021). The best scores of each model size are boldfaced.

I.2 SCALING CURVES OF COMPUTATION FOR OTHER MODEL SIZES

We plot scaling curves of computation for 160M, 470M, and 1B models in Figure 8. PDS-selected
data accelerates the model learning across model sizes.

I.3 RESULTS ON MMLU MEASURED BY PERPLEXITY ON GROUND TRUTH

As suggest by Schaeffer et al. (2023), using more smooth and continuous metrics like the LM’s
perplexity on the ground truth better reveals the gap between different base models. Therefore, we
include this results in Table 8 as a supplement to Table 2, which shows substantial improvement of
PDS over the baselines.

I.4 TEST LOSS EXTRAPOLATION WITH THE SCALING LAW

We extrapolate the test losses on the DCLM corpus (Li et al., 2024) of the conventionally trained and
PDS-trained LMs with the Scaling Law (Hoffmann et al., 2022; Kaplan et al., 2020). Following Hoff-
mann et al. (2022), we consider the scaling law with the following form:

L(N,D) = E +
A

Nα
+

B

Dβ
, (57)

where N is the model parameters, D is the trained tokens, and A, B, E, α, β are constants. We
obtain these constants by minimizing the Huber loss (Huber, 1992):

min
a,b,e,α,β

∑
(Ni,Di,Li)

Huberδ(LSE(a− α logNi, b− β logDi, e)− logLi), (58)

where LSE(·) is the log-sum-exp operation. The loss is summed over all (Ni, Di, Li), which is
obtained by the test losses of 160M, 470M, 1B, and 1.7B LM during training from 0B to 50B
tokens. We record the losses every 2.5B tokens, resulting in a total 4 × 50B/2.5B = 80 tuples
like (Ni, Di, Li). After solving a, b, and e from Eq. (58) , we have A = exp(a), B = exp(b), and
E = exp(e).
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A B α β E

Conventional 8.09× 102 7.50× 105 0.397 0.651 2.829
PDS 6.21× 103 1.76× 105 0.518 0.585 2.829

Figure 9: Scaling law constants by fitting the test losses on the DCLM corpus.

N =160M N =470M N =1B N =1.7B D = 50× 109

Conventional 0.990 0.998 0.993 0.996 0.999
PDS 0.992 0.995 0.997 0.993 0.998

Table 9: Correlations (R2) of fitting the scaling curves.

Hoffmann et al. (2022) optimizes Eq. (58) using the LBFGS algorithm (Liu & Nocedal, 1989).
However, we find this algorithm sensitive to the initialization of the parameters to be opti-
mized. Therefore, we apply a two-stage optimization. Specifically, we first fit the following
data scaling curves for N =160M, 470M, 1B, and 1.7B with non-linear least squares from
scipy.optimize.curve_fit7, which is much more robust to the initialization:

L(D) = E′(N) +
B0(N)

Dβ0(N)
, (59)

where E′(N), B0(N) and β0(N) are the fitted parameters. Then, we fit the following model size
scaling curve:

E′ = E0 +
A0

Nα0
. (60)

We use the constants from Eq. (60) and the average constants from Eq. (59) to compute the initializa-
tion for the LBFGS algorithm:

a0 = logA0,

b0 = log
B0(160M) +B0(470M) +B0(1B) +B0(1.7B)

4
,

α0 = α0,

β0 =
β0(160M) + β0(470M) + β0(1B) + β0(1.7B)

4
,

e0 = logE0,

(61)

where a0, b0, α0, β0, e0 are the parameter initialization for the LFBGS algorithm to optimize Eq. (58).
We set δ = 1 × 10−3 and learning rate to 0.05 when running LFBGS and obtain the constants in
Table 9. We use these constants and Eq. (57) to compute the predicted loss in Table 3.

In Section 3.3 (Data-Constrained Setting), to compute the expected token demand of conventional
pre-training to match the performance of PDS (r = 0.25, 4 Eps.), we solve for D using the constants
in Table 3 and use D

4 as the token demand, indicating the LM can be trained for 4 epochs as suggested
by Muennighoff et al. (2023).

Goodness of Fit. We evaluate the goodness of fit of the scaling curves with respect to the training
token size D and model size N respectively, by computing the correlation coefficient R2 = 1 −∑

i(yi−ŷi)
2∑

i(yi−y)2 , where yi is the ground truth value and ŷi is the prediction.

Regarding the training token size, to make the original problem a linear regression problem, we
convert Eq. (57) into

log

(
L(N,D)− E − A

Nα

)
= logB − β logD. (62)

7https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.
curve_fit.html
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Conventional 
Pre-Training

Figure 10: Effect of the data selection ra-
tio α. We report the average accuracy
on the OLMo evaluation datasets for α ∈
[0.3, 0.4, 0.5, 0.6, 1.0].
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Figure 11: Effect of the strength τ in Gumble-
Top-K. We report the average accuracy
on the OLMo evaluation datasets for τ ∈
[0.0, 0.1, 0.3, 0.5].

Then, we consider log
(
li − E − A

Nα

)
as the ground truth value for regression, where li is the

observed loss, and logB − β logDi as the prediction. For each N ∈ [160M, 470M, 1B, 1.7B] we
compute an R2 respectively. Similarly, regarding the model size, we convert Eq. (57) into

log

(
L(N,D)− E − B

Dβ

)
= logA− α logN, (63)

to compute the corresponding R2 that measures its goodness of fit. For simplicity, we only consider
the models at the end of training, where D = 50 × 109. The results in Table I.4 show that the
correlations are sufficiently high, suggesting the scaling curve fits the impact from both the data and
model sizes very well.

I.5 ABLATION STUDIES

Data Selection Ratio. In Figure 10, we investigate how the data selection ratio affects the perfor-
mance of PDS when the original training corpus is sufficiently large (in Section 3.3, we explore the
data selection ratio in the data-constrained setting.). A lower data selection ratio results in better final
model performance. However, to ensure that the selected data contains enough training tokens, a
larger original corpus is needed for lower α. Therefore, we keep α = 0.4 in our main experiments to
balance effectiveness and data demand.

Gumbel Noise in Data Selection In Figure 11, we explore the effect of the strength τ in Gumble-
Top-K used for data selection in Eq. (9). We can see that τ = 0.1 achieves the best performance,
verifying the benefits of increasing the diversity of the pre-training corpus. Too large a τ value makes
PDS degenerate to random selection, causing the performance to decrease.

J(θ) Acc.

Conventional - 43.2

PDS

LAMB. 43.7
CC 43.0

OWT 44.1

LIMA 45.0

Table 10: Effect of using differ-
ent downstream datasets to compute
J(θ). We report average accuracy
on the OLMo evaluation datasets.

Choice of J(θ). The desired data plays an important role in
determining the quality of the selected data. We test different
downstream datasets to compute J(θ) in PDS and report the
model performance in Table 10. The comparison between
the results of using LAMBADA and LIMA shows the impor-
tance of the downstream data diversity. Instances in LAM-
BADA mostly come from stories, while LIMA is composed
of instruction-response pairs that cover various tasks, which
yields better overall performance. When comparing LIMA,
OpenWebText Gokaslan et al. (2019), and CC, we conclude
that data quality is another major concern. Although Open-
WebText has been shown to have better scaling factors (Bi
et al., 2024) and used as the target set (Brown et al., 2020),
replacing it with higher quality LIMA further improves perfor-
mance. Compared to diversity and quality, large sizes of downstream datasets seem less important,
because LIMA performs the best with the least instance number.
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