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ABSTRACT

Devising a fair classifier that does not discriminate against different groups is
an important problem in machine learning. Although researchers have proposed
various ways of defining group fairness, most of them only focused on the immedi-
ate fairness, ignoring the long-term impact of a fair classifier under the dynamic
scenario where each individual can improve its feature over time. Such dynamic
scenarios happen in real world, e.g., college admission and credit loaning, where
each rejected sample makes effort to change its features to get accepted afterwards.
In this dynamic setting, the long-term fairness should equalize the samples’ feature
distribution across different groups after the rejected samples make some effort
to improve. In order to promote long-term fairness, we propose a new fairness
notion called Equal Improvability (EI), which equalizes the potential acceptance
rate of the rejected samples across different groups assuming a bounded level of
effort will be spent by each rejected sample. We analyze the properties of EI and
its connections with existing fairness notions. To find a classifier that satisfies the
EI requirement, we propose and study three different approaches that solve EI-
regularized optimization problems. Through experiments on both synthetic and real
datasets, we demonstrate that the proposed EI-regularized algorithms encourage us
to find a fair classifier in terms of EI. Finally, we provide experimental results on
dynamic scenarios which highlight the advantages of our EI metric in achieving
the long-term fairness. Codes are available in anonymous GitHub repository 1.

1 INTRODUCTION

Over the past decade, machine learning has been used in a wide variety of applications. However,
these machine learning approaches are observed to be unfair to individuals having different ethnicity,
race, and gender. As the implicit bias in artificial intelligence tools raised concerns over potential
discrimination and equity issues, various researchers suggested defining fairness notions and develop-
ing classifiers that achieve fairness. One popular fairness notion is demographic parity (DP), which
requires the decision-making system to provide output such that the groups are equally likely to
be assigned to the desired prediction classes, e.g., acceptance in the admission procedure. DP and
related fairness notions are largely employed to mitigate the bias in many realistic problems such as
recruitment, credit lending, and university admissions (Zafar et al., 2017b; Hardt et al., 2016; Dwork
et al., 2012; Zafar et al., 2017a).

However, most of the existing fairness notions are zero-order, i.e., they only focus on immediate
fairness, without taking potential follow-up inequity risk into consideration. In Fig. 1, we provide an
example scenario when using a conventional zero-order fairness notion (DP in this example) has a
long-term fairness issue, in a simple loan approval problem setting. Consider two groups (group 0 and
group 1) with different distributions, where each individual has one label (approve the loan or not)
and two features (credit score, income) that can be improved over time. Suppose each group consists
of two clusters (with three samples each), and the distance between the clusters is different for two
groups. Fig. 1 visualizes the distributions of two groups and the decision boundary of a classifier f
which achieves DP among the groups. We observe that the rejected samples (left-hand-side of the
decision boundary) in group 1 are located further away from the decision boundary than the rejected
samples in group 0. As a result, the rejected applicants in group 1 need to make more effort to cross
the decision boundary and get approval. This improvability gap between the two groups can make

1https://anonymous.4open.science/r/ei_fairness-23CA/
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the rejected applicants in group 1 less motivated to improve their features, which may increase the
gap between different groups in the future.
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Figure 1: Toy example showing the insufficiency
of zero-order fairness notion. We consider the
binary classification (accept/reject) on 12 samples
(dots), where x is the feature of the sample and the
color of the dot represents the group. The given clas-
sifier f is fair in terms of a popular zero-order notion
called demographic parity (DP), but does not have
equal improvability of rejected samples (f(x) < 0.5)
in two groups; the rejected samples in group 1 needs
more effort ∆x to be accepted, i.e., f(x+∆x) ≥ 0.5,
compared with the rejected samples in group 0.

This motivated the advent of first-order fair-
ness notions that consider the improvability
of the rejected samples and thus defining
the group fairness after such improvement is
made. There are a few first-order fairness no-
tions that have been proposed by Gupta et al.
(2019); Heidari et al. (2019); Von Kügelgen
et al. (2022). However, as shown in Table 1,
they have some limitations e.g., vulnerable to
imbalanced group negative rates or outliers.

In this paper, we introduce another first-order
fairness notion dubbed as Equal Improvabil-
ity (EI), which does not suffer from these
limitations. Let x be the feature of a sample
and f be a score-based classifier, e.g., predict-
ing a sample as accepted if f(x) ≥ 0.5 holds
and as rejected otherwise. We assume each
rejected individual wants to get accepted in
the future, thus improving its feature within a certain effort budget towards the direction that maxi-
mizes its score f(x). Under this setting, we define EI fairness as the equity of the potential acceptance
rate of the different rejected groups, once each individual makes the best effort within the predefined
budget. This prevents the risk of exacerbating the gap between different groups in the long run.

Our key contributions are as follows:

• We propose a new group fairness notion called Equal Improvability (EI), which aims to
equalize the probability of rejected samples being qualified after a certain amount of feature
improvement, for different groups. EI encourages rejected individuals in different groups to
have an equal amount of motivation to improve their feature to get accepted in the future. We
analyze the properties of EI and the connections of EI with other existing fairness notions.

• We provide three methods to find a classifier that is fair in terms of EI, each of which uses
a unique way of measuring the inequity in the improvability. Each method is solving a
min-max problem where the inner maximization problem is finding the best effort to measure
the EI unfairness, and the outer minimization problem is finding the classifier that has the
smallest fairness-regularized loss. Experiments on synthetic/real datasets demonstrate that
our algorithms find classifiers having low EI unfairness.

• We run experiments on dynamic scenarios where the data and the classifier evolve over
multiple rounds, and show that training a classifier with EI constraints is beneficial for
making the feature distributions of different groups identical in the long run, i.e., achieving
the long-term fairness.

2 EQUAL IMPROVABILITY

Before defining our new fairness notion called Equal Improvability (EI), we first introduce necessary
notations. For an integer n, let [n] = {0, . . . , n− 1}. We consider a binary classification setting
where each data sample has an input feature vector x ∈ X ⊆ Rd and a label y ∈ Y = {0, 1}. In
particular, we have a sensitive attribute z ∈ Z = [Z], where Z is the number of sensitive groups.
As suggested by Chen et al. (2021), we sort d features x ∈ Rd into three categories: improvable
features xI ∈ RdI , mutable features xM ∈ RdM , and immutable features xIM ∈ RdIM , where
dI+dM+dIM = d holds. Here, improvable features xI refer to the features that can be improved and
can directly affect the outcome, e.g., salary in the credit lending problem, and GPA in the school’s
admission problem. In contrast, mutable features xM can be altered, but are not directly related to
the outcome, e.g., marital status in the admission problem, and communication type in the credit
lending problem. Although individuals may manipulate these mutable features to get the desired
outcome, we do not consider it as a way to make efforts as it does not affect the individual’s true
qualification status. Immutable features xIM are features that cannot be altered, such as race, age,
or date of birth. Note that if sensitive attribute z is included in the feature vector, then it belongs to
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Figure 2: Visualization of EI fairness. For binary classification on 12 samples (dots) in two groups
(red/blue), we visualize fairness notion defined in this paper: (a) shows the original definition in
Def. 2.1, and (b) shows an alternative definition in Prop. 2.2. Here we assume two-dimensional
features (both are improvable) and L∞ norm for µ(x) = ∥x∥∞. The classifier fEI achieves equal
improvability (EI) since the same portion (1 out of 3) of unqualified samples in each group can be
improved to qualified samples.

immutable features. For ease of notation, we write x = (xI,xM,xIM). Let F = {f : X → [0, 1]}
be the set of classifiers, where each classifier is parameterized by w, i.e., f = fw. Given f ∈ F ,
we consider the following deterministic prediction: ŷ | x = 1{f(x) ≥ 0.5} where 1{A} = 1 if
condition A holds, and 1{A} = 0 otherwise. We now introduce our new fairness notion.
Definition 2.1 (Equal Improvability). Define a norm µ : RdI → [0,∞). For a given constant δ > 0,
a classifier f is said to achieve equal improvability with δ-effort if

P
(

max
µ(∆xI)≤δ

f(x+∆x)≥0.5 | f(x)<0.5, z = z

)
=P

(
max

µ(∆xI)≤δ
f(x+∆x)≥0.5 | f(x)<0.5

)
holds for all z ∈ Z , where ∆xI is the effort for improvable features and ∆x = (∆xI,0,0).

Note that the condition f(x) < 0.5 represents that an individual is unqualified, and f(x+∆x) ≥ 0.5
implies that the effort ∆x allows the individual to become qualified. The above definition of fairness
in equal improvability requires that unqualified individuals from different groups z ∈ [Z] are equally
likely to become qualified if appropriate effort is made. Note that µ can be defined on a case-by-case
basis. For example, we can use ∥xI∥ =

√
xI

⊤CxI, where C ∈ RdI×dI is a cost matrix that is
diagonal and positive definite. Here, the diagonal terms of C characterize how difficult to improve
each feature. For instance, consider the graduate school admission problem where xI contains features
“number of publications” and “GPA”. Since publishing more papers is harder than raising the GPA, the
corresponding diagonal term for the number of publications feature in C should be greater than that
for the GPA feature. The constant δ in Definition 2.1 can be selected depending on the classification
task and the features. Appendix B.1 contains the interpretation of each term in Def. 2.1.

We introduce an alternative equivalent definition of EI fairness below.
Proposition 2.2. The EI fairness notion defined in Def. 2.1 has an equivalent format: a classifier f
achieves equal improvability with δ-effort if and only if

P(x ∈ X imp
− | x ∈ X−, z = z) = P(x ∈ X imp

− | x ∈ X−)

holds for all z ∈ Z where X− = {x : f(x) < 0.5} is the set of features x for unqualified samples,
and X imp

− = {x : f(x) < 0.5,maxµ(∆xI)≤δ f(x + ∆x) ≥ 0.5} is the set of features x for
unqualified samples that can be improved to qualified samples by adding ∆x satisfying µ(∆xI) ≤ δ.

The proof of this proposition is trivial from the definition of X− and X imp
− . Note that P(x ∈ X imp

− |
x ∈ X−) in the above equation indicates the probability that unqualified samples can be improved to
qualified samples by changing the features within budget δ. This is how we define the “improvability”
of unqualified samples, and the EI fairness notion is equalizing this improvability for all groups.

Visualization of EI. Fig. 2 shows the geometric interpretation of EI fairness notion in Def. 2.1 and
Prop. 2.2, for a simple two-dimensional dataset having 12 samples in two groups z ∈ {red, blue}.
Consider a linear classifier fEI shown in the figure, where the samples at the right-hand-side of the
decision boundary is classified as qualified samples (fEI(x) ≥ 0.5). In Fig. 2a, we have L∞ ball at
each unqualified sample, representing that these samples have a chance to improve their feature in a
way that the improved feature x+∆x allows the sample to be classified as qualified, i.e., fEI(x+
∆x) ≥ 0.5. One can confirm that P

(
maxµ(∆xI)≤δ f(x+∆x) ≥ 0.5 | f(x) < 0.5, z = z

)
= 1

3
holds for each group z ∈ {red, blue}, thus satisfying equal improvability according to Def. 2.1. In
Fig. 2b, we check this in an alternative way by using the EI fairness definition in Prop. 2.2. Here,
instead of making a set of improved features at each sample, we partition the feature domain X into

3



Under review as a conference paper at ICLR 2023

Table 1: Comparison of our EI fairness with existing fairness notions.
Name of fairness Definition First

order? Limitations

Equal Improvability (Ours) P
(

max
µ(∆xI)≤δ

f(x+∆x)≥0.5 | f(x)<0.5, z = z

)
=P

(
max

µ(∆xI)≤δ
f(x+∆x)≥0.5 | f(x)<0.5

)
Yes -

Demographic Parity P (f(x) ≥ 0.5 | z = z) = P (f(x) ≥ 0.5) No -
Equal Opportunity (Hardt et al., 2016) P (f(x) ≥ 0.5 | y = 1, z = z) = P (f(x) ≥ 0.5 | y = 1) No -
Equalized Odds (Hardt et al., 2016) P (f(x) ≥ 0.5 | y = y, z = z) = P (f(x) ≥ 0.5 | y = y) No -

Bounded Effort (Heidari et al., 2019) P
(

max
µ(∆xI)≤δ

f(x+∆x) ≥ 0.5, f(x) < 0.5 | z = z

)
= P

(
max

µ(∆xI)≤δ
f(x+∆x) ≥ 0.5, f(x) < 0.5

)
Yes Cannot handle

imbalanced group
negative rates

Equal Recourse (Gupta et al., 2019) E
[

min
f(x+∆x)≥0.5

µ(∆x) | f(x) < 0.5, z = z

]
= E

[
min

f(x+∆x)≥0.5
µ(∆x) | f(x) < 0.5

]
Yes Vulnerable to out-

liers
Individual-level ER (Von Kügelgen et al., 2022) min

x′:f(x′)≥0.5
µz(x

′,x) = min
x′:f(x′)≥0.5

µz′(x′,x), for all rejected individuals and z, z′ ∈ [Z] Yes Limitations of
counterfactual
fairness

three parts: (i) the features for qualified samples X+ = {x : fEI(x) ≥ 0.5} , (ii) the features for
unqualified samples that can be improved X imp

− = {x : fEI(x) < 0.5,maxµ(∆xI)≤δ f(x+∆x) ≥
0.5} and (iii) the features for unqualified samples that cannot be improved X imp

− = {x : fEI(x) <
0.5,maxµ(∆xI)≤δ f(x+∆x) < 0.5}. In the figure, (ii) is represented as the green region and (iii)
is shown as the yellow region. From Prop. 2.2, EI fairness means that # samples in (ii)

# samples in (ii) + # samples in (iii) is
identical at each group z ∈ {red, blue}, which is true for the example in Fig. 2b.

Comparison of EI with other fairness notions. The suggested fairness notion equal improvability
(EI) is in stark difference with existing popular zero-order fairness notions, e.g., demographic parity,
which can be “myopic” and focus only on achieving classification fairness in the current status. Our
notion instead, uses classification fairness as a tool to equalize the true qualification status of different
groups in the long run, thereby promoting social fairness. We here also note that EI has differences
with existing first-order fairness notions that capture the dynamics of samples (Heidari et al., 2019;
Huang et al., 2019; Gupta et al., 2019). Table 1 compares our fairness notion with the related existing
notions. In particular, Bounded Effort (BE) fairness proposed by Heidari et al. (2019) equalizes
‘the available reward after each individual making a bounded effort’ for different groups, which is
very similar to EI when we set a proper reward function. To be more specific, the BE fairness can
be represented as in the Table 1. Comparing this BE expression with EI in Definition 2.1, one can
confirm the difference: the inequality f(x) < 0.5 is located at the conditional part for EI, which is
not true for BE. EI and BE are identical if the negative prediction rates are equal across the groups,
but in general they are different. The condition f(x) < 0.5 here is very important since only looking
into the unqualified members makes more sense when we consider improvability. More importantly,
the BE definition is based on reward functions and we are presenting BE in a form that is closest to
our EI fairness expression. Besides, Equal Recourse (ER) fairness proposed by Gupta et al. (2019)
suggests to equalize the average effort of different groups without limiting the amount of effort
that each sample can make. Note that ER is vulnerable to outliers. For example, when we have an
unqualified outlier sample that is located far way from the decision boundary, ER disparity will be
dominated by this outlier and fail to reflect the overall unfairness. Huang et al. (2019) proposed a
causal-based fairness notion to equalize the minimum level of effort such that the expected prediction
score of the groups is equal to each other. Note that, their definition is specific to causal settings and
it considers the sensitive groups not the rejected samples of the sensitive groups. The comparison
with (Von Kügelgen et al., 2022) is given in Section B.4 of Appendix. In addition to fairness notions,
we also discuss other related works such as fairness-aware algorithms in Sec. 5.
Compatibility of EI with other fairness notions. Here we prove the compatibility of three fairness
notions (EI, DP, and BE), under two mild assumptions. Assumption 2.3 ensures that EI is well-defined,
while Assumption 2.4 implies that the norm µ and the effort budget δ are chosen such that we have
nonzero probability that unqualified individuals can become qualified after making efforts.

Assumption 2.3. For any classifier f , the probability of unqualified samples for each demographic
group is not equal to 0, i.e., P (f(x) < 0.5, z = z) ̸= 0 for all z ∈ Z .

Assumption 2.4. For any classifier f , the probability of being qualified after the effort for unqualified
samples is not equal to 0, i.e., P

(
maxµ(∆xI)≤δ f(x+∆x) ≥ 0.5, f(x) < 0.5

)
̸= 0.

Under these assumptions, the following theorem reveals the relationship between DP, EI and BE.

Theorem 2.5. If a classifier f achieves two of the following three fairness notions, DP, EI, and BE;
then it has to achieve the remaining fairness notion as well.

The proof of the Theorem 2.5 is provided in Appendix A. This theorem immediately implies the
following corollary, which provides a condition such that EI and BE conflict with each other.

Corollary 2.6. The above theorem says that if a classifier f achieves EI and BE, it has to achieve DP.
Thus, by contraposition, if f does not achieve DP, then it cannot achieve EI and BE simultaneously.
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3 ACHIEVING EQUAL IMPROVABILITY

In this section, we discuss methods for finding a classifier that achieves EI fairness. Following existing
in-processing techniques (Zafar et al., 2017c; Donini et al., 2018; Zafar et al., 2017a; Cho et al.,
2020), we focus on finding a fair classifier by solving a fairness-regularized optimization problem.
To be specific, we first derive a differentiable penalty term Uδ that approximates the unfairness with
respect to EI, and then solve a regularized empirical minimization problem having the unfairness as
the regularization term. This optimization problem can be represented as

min
f∈F

{
(1− λ)

N

N∑
i=1

ℓ(yi, f(xi)) + λUδ

}
, (1)

where {(xi, yi)}Ni=1 is the given dataset, ℓ : {0, 1} × [0, 1] → R is the loss function, F is the set
of classifiers we are searching over, and λ ∈ [0, 1) is a hyperparameter that balances fairness and
prediction loss. Here we consider three different ways of defining the penalty term Uδ , which are (a)
covariance-based, (b) kernel density estimator (KDE)-based, and (c) loss-based methods. We first
introduce how we define Uδ in each method, and then discuss how we solve (1).

Covariance-based EI Penalty. Our first method is inspired by Zafar et al. (2017c), which measures
the unfairness of a score-based classifier f by the covariance of the sensitive attribute z and the score
f(x), when the demographic parity (DP) fairness condition (P(f(x) > 0.5|z = z) = P(f(x) > 0.5)
holds for all z) is considered. The intuition behind this idea of measuring the covariance is that
a perfect fair DP classifier should have zero correlation between z and f(x). By applying similar
approach to our fairness notion in Def. 2.1, the EI unfairness is measured by the covariance between
the sensitive attribute z and the maximally improved score of rejected samples within the effort budget.
In other words, (Cov(z,max∥∆xI∥≤δ f(x + ∆x) | f(x) < 0.5))2 represents the EI unfairness of
a classifier f where we took the square to penalize negative correlation case as well. Let I− =
{i : f(xi) < 0.5} be the set of indices of unqualified samples, and z̄ =

∑
i∈I−

zi/|I−|. Then, EI
unfairness can be approximated by the square of the empirical covariance, i.e.,

Uδ ≜

 1

|I−|
∑
i∈I−

(zi − z̄)

 max
∥∆xIi∥≤δ

f(xi +∆xi)−
∑
j∈I−

max
∥∆xIj∥≤δ

f(xj +∆xj)/|I−|

2

.

Since
∑

i∈I−
(zi − z̄)

(∑
j∈I−

max∥∆xIj∥≤δ f(xj +∆xj)/|I−|
)
= 0 from

∑
i∈I−

(zi − z̄) = 0,

we have Uδ =
(

1
|I−|

∑
i∈I−

(zi − z̄)max∥∆xIi∥≤δ f(xi +∆xi)
)2

.

KDE-based EI Penalty. The second method is inspired by Cho et al. (2020), which suggests to
first approximate the probability density function of the score f(x) via kernel density estimator
(KDE) and then put the estimated density formula into the probability term in the unfairness penalty.
Recall that given m samples y1, . . . , ym, the true density gy on y is estimated by KDE as ĝy(ŷ) ≜
1

mh

∑m
i=1 gk

(
ŷ−yi
h

)
, where gk is a kernel function and h is a smoothing parameter.

Here we apply this KDE-based method for estimating the EI penalty term in Def. 2.1. Let ymax
i =

max∥∆xIi∥≤δ f(xi +∆xi) be the maximum score achievable by improving feature xi within budget
δ, and I−,z = {i : f(xi) < 0.5, zi = z} be the set of indices of unqualified samples of group z. Then,
the density of ymax

i for the unqualified samples in group z can be approximated as2

ĝymax|f(x)<0.5,z(ŷ
max) ≜

1

|I−,z|h
∑

i∈I−,z

gk

(
ŷmax − ymax

i

h

)
.

Then, the estimate on the left-hand-side (LHS) probability term in Def. 2.1 is represented as
P̂
(
maxµ(∆xI)≤δ f(x+∆x) ≥ 0.5 | f(x) < 0.5, z = z

)
=

∫∞
0.5
ĝymax|f(x)<0.5,z(ŷ

max)dŷmax =
1

|I−,z|h
∑

i∈I−,z
Gk

(
0.5−ymax

i

h

)
where Gk(τ) ≜

∫∞
τ
gk(y)dy. Similarly, we can estimate the right-

hand-side (RHS) probability term in Def. 2.1, and the EI-penalty Uδ is computed as the summation
of the absolute difference of the two probability values (LHS and RHS) among all groups z.

2This term is differentiable with respect to model parameters, since gk is differentiable with respect to ymax
i ,

and ymax
i = max∥∆xIi∥≤δ f(xi +∆xi) is differentiable w.r.t. model parameters from (Danskin, 1967).
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Loss-based EI Penalty. Another common way of approximating the fairness violation as a dif-
ferentiable term is to compute the absolute difference of group-specific losses (Roh et al., 2021;
Shen et al., 2022). Following the spirit of EI notion in Def. 2.1, we define EI loss of group z as
L̃z ≜ 1

|I−,z|
∑

i∈I−,z
ℓ
(
1,max∥∆xIi∥≤δ f(xi +∆xi)

)
. Here, L̃z measures how far the rejected

samples in group z are away from being accepted after the feature improvement within budget δ.
Similarly, EI loss for all groups is written as L̃ ≜

∑
z∈Z

I−,z

I−
L̃z . Finally, the EI penalty term is

defined as Uδ ≜
∑

z∈Z

∣∣∣L̃z − L̃
∣∣∣.

Solving (1). For each approach defined above (covariance-based, KDE-based and loss-based), the
penalty term Uδ is defined uniquely. Note that in all cases, we need to solve a maximization problem
max∥∆xI∥≤δ f(x +∆x) in order to get Uδ. Since (1) is a minimization problem containing Uδ in
the cost function, it is essentially a minimax problem. We leverage adversarial training techniques
to solve (1). The inner maximization problem is solved using one of two methods: (i) derive the
closed-form solution for generalized linear models, (ii) use projected gradient descent for general
settings. The details can be found in Appendix B.2.

4 EXPERIMENTS

In this section, we provide empirical results on our EI fairness notion. To measure the fairness
violation, we use EI disparity= maxz∈[Z] |P(maxµ(∆xI)<δ f(x + ∆x) ≥ 0.5 | f(x) < 0.5, z =
z)−P(maxµ(∆xI)<δ f(x+∆x) ≥ 0.5 | f(x) < 0.5)|. First, we show that our methods suggested in
Sec. 3 achieve EI fairness in various real/synthetic datasets. Second, focusing on the dynamic scenario
where each individual can make effort to improve its outcome, we demonstrate that training an EI
classifier at each time step promotes achieving the long-term fairness, i.e., the feature distribution of
two groups become identical in the long run. Codes are available in anonymous GitHub repository 3.

4.1 SUGGESTED METHODS ACHIEVE EI FAIRNESS

Recall that Sec. 3 provided three approaches for achieving EI fairness. Here we check whether such
methods successfully find a classifier with small EI disparity, compared with ERM which does not
have fairness constraints. Due to the space limitation, the main body contains the results for logistic
regression (LR) only, and in Appendix C contains the performance for multi-layer perceptron (MLP)
as well as the effect of over-parameterization.

Experiment setting. For all experiments, we use the Adam optimizer and cross entropy loss. We
perform cross-validation on the training set to find the best hyperparameter. We provide statistics for
five trials having different random seeds. For KDE-based approach, we use Gaussian kernel.

Datasets. We perform the experiments on one synthetic dataset, and two real datasets: German
Statlog Credit (Dua & Graff, 2017), and ACSIncome-CA (Ding et al., 2021). The synthetic dataset
has two non-sensitive attributes x = (x1, x2), one binary sensitive attribute z, and a binary label y.
Both features x1 and x2 are assumed to be improvable. We generate 20,000 samples where (x, y, z)
pair of each sample is generated independently as below. We define z and (y|z = z) as Bernoulli
random variables for all z ∈ {0, 1}, and define (x|y = y, z = z) as multivariate Gaussian random
variables for all y, z ∈ {0, 1}. The numerical details are in Appendix C.1 The maximum effort δ for
this dataset is set to 0.5. The ratio of the training versus test data is 4:1.

German Statlog Credit Data contains 1,000 samples and the ratio of the training versus test data is
4:1. The task is to predict the credit risk of an individual given its financial status. Following Jiang &
Nachum (2020), we divide the samples into two groups using the age of thirty as the boundary, i.e.,
z = 1 for samples with age above thirty. Four features x are considered as improvable: checking
account, saving account, housing and occupation, all of which are ordered categorical
features. For example, the occupation feature has four levels: (1) unemployed, (2) unskilled, (3)
skilled, and (4) highly qualified. We set the maximum effort δ = 1, meaning that an unskilled man
(with level 2) can become a skilled man, but cannot be a highly qualified man.

ACSIncome-CA dataset consists of data for 195,665 people and is split into training/test set in the
ratio of 4:1. The task is predicting whether a person’s income would exceed 50K USD per year. We
use sex as the sensitive attribute; we have two sensitive groups, male and female. We select education
level (ordered categorical feature) as the improvable feature. We set the maximum effort δ = 3.

3https://anonymous.4open.science/r/ei_fairness-23CA/
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Table 2: Error rate and EI disparities of ERM and three proposed EI-regularized methods
on logistic regression (LR). For each dataset, the lowest EI disparity (disp.) value is in boldface.
Classifiers obtained by our three methods have much smaller EI disparity values than the ERM
solution, without having much additional error.

METHODS
DATASET METRIC ERM COVARIANCE-BASED KDE-BASED LOSS-BASED

SYNTHETIC
ERROR RATE(↓)

EI DISP.(↓)
.221 ± .001
.117 ± .007

.253 ± .003

.003 ± .001
.250 ± .001
.005 ± .003

.246 ± .001
.002 ± .001

GERMAN STAT. ERROR RATE(↓)
EI DISP.(↓)

.220 ± .009

.041 ± .008
.262 ± .009
.021 ± .019

.243 ± .024

.035 ± .026
.237 ± .008
.015 ± .009

ACSINCOME-CA ERROR RATE(↓)
EI DISP.(↓)

.184 ± .000

.031 ± .001
.200 ± .000
.008 ± .001

.196 ± .000
.005 ± .001

.193 ± .000

.006 ± .001
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Figure 3: Tradeoff between EI disparity and error rate.
We run three EI-regularized methods suggested in Sec. 3
for different regularizer coefficient λ and plot the frontier
lines. For the synthetic dataset, the tradeoff curve for the
ideal classifier is located at the bottom left corner, which is
similar to the curves of proposed EI-regularized methods.
This shows that our methods successfully find classifiers
balancing EI disparity and error rate.

Results. Table 2 shows the test er-
ror rate and test EI disparity (disp.)
for ERM and our three EI-regularized
methods (covariance-based, KDE-
based and loss-based) suggested in
Sec. 3. For all three datasets, our EI-
regularized methods successfully re-
duce the EI disparity without increas-
ing the error rate too much, compared
with ERM. Figure 3 shows the trade-
off between error rate and EI disparity
of our EI-regularized methods. We
marked the dots after running each
method multiple times with different
penalty coefficient λ, and plotted the frontier line. For the synthetic dataset with Gaussian feature, we
numerically obtained the performance of the optimal EI classifier, which is added in the yellow line
at the bottom left corner of the first column plot. The details of finding the optimal EI classifier is in
Appendix B.3. One can confirm that our methods regularizing EI are having similar tradeoff curves
for the synthetic dataset. Especially, for synthetic dataset, the tradeoff curve of our methods nearly
achieves that of the optimal EI classifier. For German and ACSIncome-CA datasets, the loss-based
method is having a slightly better tradeoff curve than other methods.

4.2 EI PROMOTES LONG-TERM FAIRNESS IN DYNAMIC SCENARIOS

Recall that the motivation for proposing EI is to achieve long-term fairness, which is equalizing the
feature distribution of samples in different groups in the long run, under the dynamic scenario where
each individual can improve its feature. In this section, we provide simulation results on dynamic
setting, which show that training a classifier with EI constraint encourages the long-term fairness.

4.2.1 DYNAMIC SYSTEM DESCRIPTION

We consider a binary classification problem under the dynamic scenario with T rounds, where the
improvable feature xt ∈ R and the label yt ∈ {0, 1} of each sample as well as the classifier ft evolve
at each round t ∈ {0, · · · , T − 1}. We denote the sensitive attribute as z ∈ {0, 1}, and the estimated
label as ŷt. We assume z ∼ Bern(0.5) and (xt | z = z) ∼ P(z)

t = N (µ
(z)
t , {σ(z)

t }2). To mimic
the admission problem, we only accept a fraction α ∈ (0, 1) of the population, i.e., the true label is
modeled as yt = 1xt≥χ

(t)
α

, where χ(t)
α is the (1− α) percentile of the feature distribution at round

t. We consider z-aware linear classifier outputting ŷt = 1xt≥τ
(z)
t

, which is parameterized by the

thresholds (τ (0)t , τ
(1)
t ) for two groups. Note that this classification rule is equivalent to defining score

function ft(x, z) = 1/(exp(τ
(z)
t − x) + 1) and ŷt = 1f(xt,z)≥0.5.

Updating data parameters (µ(z)
t , σ

(z)
t ). At each round t, we allow each sample can improve its

feature from x to x + ϵ(x). Here we model ϵ(x) = ν(x; z) = 1

(τ
(z)
t −x+β)2

1
x<τ

(z)
t

for a constant

β > 0. In this model, the rejected samples with larger gap (τ
(z)
t − x) with the decision boundary

are making less effort ∆x, which is inspired by the intuition that a rejected sample is less motivated
to improve its feature if it needs to take a large amount of effort to get accepted in one scoop.
After such effort is made, we compute the mean and standard deviation of each group: µ(z)

t+1 =∫∞
−∞(x + ν(x; z))ϕ(x;µ

(z)
t , σ

(z)
t )dx and σ(z)

t+1 =
√∫∞

−∞(x+ ν(x; z)− µ
(z)
t+1)

2ϕ(x;µ
(z)
t , σ

(z)
t )dx,

7
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Figure 4: Long-term unfairness dTV(P(0)
t ,P(1)

t ) at each round t for various algorithms. Con-
sider the binary classification problem over two groups, under the dynamic scenario where the data
distribution and the classifier for each group evolves over multiple rounds. We plot how the long-term
unfairness (measured by the total variation distance between two groups) changes as round t increases.
Here, each column shows the result for different initial feature distribution, details of which are given
in Sec. 4.2.2. The long-term unfairness of EI classifier reduces faster than other existing fairness
notions, showing that EI proposed in this paper is helpful for achieving long-term fairness.

where ϕ(·;µ, σ) is the pdf of N (µ, σ2). We assume that the feature xt+1 in the next round follows a
Gaussian distribution parameterized by (µ

(z)
t+1, σ

(z)
t+1) for ease of simulation.

Updating classifier parameters (τ (0)t , τ
(1)
t ). At each round t, we update the classifier depending

on the current feature distribution xt. The EI classifier considered in this paper updates (τ (0)t , τ
(1)
t )

as below. Note that the maximized score max∥∆xI∥≤δ f(x + ∆x) in Def. 2.1 can be written as
ft(xt + δt, z), and the equation max∥∆xI∥≤δ f(x + ∆x) ≥ 0.5 is equivalent to xt + δt > τ

(z)
t .

Consequently, EI classifier obtains (τ (0)t , τ
(1)
t ) by solving

min
τ
(0)
t ,τ

(1)
t

∣∣∣P(xt+δt>τ (0)t | z = 0,xt<τ
(0)
t )−P(xt+δt>τ (1)t | z = 1,xt<τ

(1)
t )

∣∣∣ s.t. P(ŷt ̸= yt) ≤ c,

where c ∈ [0, 1) is the maximum classification error rate we allow, and δt is the effort level at
iteration t. In our experiments, δt is chosen as the mean efforts the population makes, i.e., δt =

0.5
∑1

z=0

∫∞
−∞ ν(x; z)ϕ(x;µ

(z)
t , σ

(z)
t )dx. We can similarly obtain the classifier for DP, BE and ER

constraints, details of which are in Appendix C.4. In the experiments, we numerically obtain the
solution of this optimization problem.

4.2.2 EXPERIMENTS ON LONG-TERM FAIRNESS

We first initialize the feature distribution in a way that both sensitive groups have either different mean
(i.e., µ(0)

0 ̸= µ
(1)
0 ) or different variance (i.e., σ(0)

0 ̸= σ
(1)
0 ). At each round t ∈ {1, · · · , T}, we update

the data parameter (µ(z)
t , σ

(z)
t ) for group z ∈ {0, 1} and the classifier parameter (τ (0)t , τ

(1)
t ), follow-

ing the rule described in Sec. 4.2.1. At each round t ∈ {1, · · · , T}, we measure the long-term unfair-
ness defined as the total variation distance between the two group distributions: dTV(P(0),P(1)) =
1
2

∫∞
−∞ |ϕ(x;µ(0)

t , σ
(0)
t )−ϕ(x;µ(1)

t , σ
(1)
t )|dx. We run experiments on four different initial feature dis-

tributions: (i) (µ(0)
0 , σ

(0)
0 , µ

(1)
0 , σ

(1)
0 ) = (0, 1, 1, 0.5), (ii) (µ(0)

0 , σ
(0)
0 , µ

(1)
0 , σ

(1)
0 ) = (0, 0.5, 1, 1), (iii)

(µ
(0)
0 , σ

(0)
0 , µ

(1)
0 , σ

(1)
0 ) = (0, 2, 0, 1), and (iv) (µ(0)

0 , σ
(0)
0 , µ

(1)
0 , σ

(1)
0 ) = (0, 0.5, 1, 0.5), respectively.

We set α = 0.2, c = 0.1, β = 0.25.

Baselines. We compare our EI classifier with multiple baselines, including the empirical risk
minimization (ERM) and algorithms with fairness constraints: demographic parity (DP), bounded
effort (BE) (Heidari et al., 2019), and equal recourse (ER) (Gupta et al., 2019).

Results. Fig. 4 shows how the long-term unfairness dTV(P(0)
t ,P(1)

t ) changes as a function of
round t, for cases (i) – (iv) having different initial feature distribution. Note that fairness-constrained
algorithms (DP, BE, ER and EI) enjoys lower long-term unfairness compared with ERM, for case
(i), (ii) and (iv). More importantly, EI accelerates the process of mitigating long-term unfairness,
compared to other fairness notions. This observation highlights the benefit of EI in promoting true
equity of groups in the long-term. Fig. 5 visualizes the initial distribution (at the leftmost column)
and the evolved distribution at round t = 3 for multiple algorithms (at the rest of the columns). Each
row represents different initial feature distribution, for cases (i) – (iv). One can confirm that EI brings
the distribution of the two groups closer, compared with ERM, DP, BE, and ER.

5 RELATED WORKS

Fairness metric. Group fairness is a class of fairness notions requiring the classifier to treat different
groups similarly. Most of the existing group fairness notions are myopic, measuring fairness by only
comparing the positive rate of certain groups or subgroups at the current snapshot (Hardt et al., 2016;
Zafar et al., 2017a). In contrast, EI suggested in this paper is more farsighted by taking improvability

8
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Figure 5: Evolution of the feature distribution, when we apply each algorithm for t = 3 rounds.
At each row, the leftmost column shows the initial distribution and the rest of the columns show the
evolved distribution for each algorithm, under the dynamic setting. Compared with existing fairness
notions (DP, BE, and ER), our EI fairness achieves smaller feature distribution gap between groups.

into consideration. There exist a few works that propose effort-based fairness notions (Heidari et al.,
2019; Huang et al., 2019; Gupta et al., 2019; Von Kügelgen et al., 2022) that capture the potential
follow-up impact. EI is closely related to, but also clearly distinct from these effort-based fairness
notions, particularly in terms of motivation. Note that Heidari et al. (2019) aims to propose fairness
notions that capture the dynamics, while Gupta et al. (2019) and Huang et al. (2019) aim to propose
reasonable fairness notions that take effort into consideration. Our work takes one-step further,
focusing on promoting the long-term fairness. Besides, Huang et al. (2019) only consider the causal
setting and are restricted to certain models. Without the restricted assumptions introduced by Huang
et al. (2019), our work applies to more general settings, and provides a fairness metric that is easy to
measure. We provide a more systematic comparison between EI and related work in Sec. 2.

Fairness-aware algorithms. Most of the existing fair learning techniques fall into three categories:
i) pre-processing approaches (Kamiran & Calders, 2012; 2010; Gordaliza et al., 2019; Jiang &
Nachum, 2020), which primarily involves massaging the dataset to remove the bias; ii) in-processing
approaches (Fukuchi et al., 2013; Kamishima et al., 2012; Calders & Verwer, 2010; Zafar et al.,
2017c;a; Zhang et al., 2018; Cho et al., 2020; Roh et al., 2020; 2021; Shen et al., 2022), adjusting
the model training for fairness; iii) post-processing approaches (Calders & Verwer, 2010; Alghamdi
et al., 2020; Wei et al., 2020; Hardt et al., 2016) which achieve fairness by modifying a given unfair
classifier. Prior work (Woodworth et al., 2017) showed that the in-processing approach generally
outperforms other approaches due to its flexibility. Hence, we focus on the in-processing approach
and propose three methods to achieve EI. These methods achieve EI by solving fairness-regularized
optimization problems. In particular, our proposed fairness regularization terms are inspired by Zafar
et al. (2017c); Cho et al. (2020); Roh et al. (2021); Shen et al. (2022).

Fairness dynamics. There are also a few attempts to study the long-term impact of different fairness
policies (Zhang et al., 2020; Heidari et al., 2019; Hashimoto et al., 2018). In particular, Hashimoto
et al. (2018) studies how ERM amplifies the unfairness of a classifier in the long run. The key idea
is that if the classifier of the previous iteration favors a certain candidate group, then the candidate
groups will be more unbalanced since fewer individuals from the unfavored group will apply for
this position. Thus, the negative feedback leads to a more unfair classifier. In contrast, Heidari et al.
(2019) and Zhang et al. (2020) focus more on long-term impact instead of classification fairness. To
be specific, Heidari et al. (2019) studies how fairness intervention affects the different groups in terms
of evenness, centralization, and clustering by simulating the population’s response through effort.
Zhang et al. (2020) investigates how different fairness policies affect the gap between the qualification
rates of different groups under a partially observed Markov decision process. Besides, there are a
few works which study how individuals may take strategic actions to improve their outcomes given a
classifier (Chen et al., 2021). However, Chen et al. (2021) aims to address this problem by designing
an optimization problem that is robust to strategic manipulation, which is orthogonal to our focus.

6 CONCLUSION

In this paper, we proposed a group fairness notion called Equal Improvability (EI), which equalizes
the potential acceptance of rejected samples in different groups, when appropriate effort is made by
the rejected samples. We analyzed the properties of EI fairness, and provided three approaches to
find a classifier that achieves EI. Experimental results showed that the proposed approaches reduce
the EI disparity. Lastly, we formulated a dynamic model to showcase the benefit of EI in promoting
the equity of feature distribution of different groups. Extending our work to settings with multiple
sensitive attributes and high-dimensional features is remained as a future direction.
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A THEORETICAL RESULTS

A.1 CONNECTIONS BETWEEN EI, DP, AND BE

In this section, we provide the proof of Theorem 2.5 and Corollary 2.6.

Proof of Theorem 2.5. All we need to prove are three statements:

1. Prove that EI and BE imply DP

2. Prove that DP and EI imply BE

3. Prove that BE and DP imply EI

Below we prove each statement.

1. EI, BE ⇒ DP Suppose a classifier f achieves EI and BE. Recall that a classifier achieves EI if

P
(

max
µ(∆xI)≤δ

f(x+∆x)≥0.5 | f(x)<0.5, z = z

)
=P

(
max

µ(∆xI)≤δ
f(x+∆x)≥0.5 | f(x)<0.5

)
(2)

and a classifier achieves BE if

P
(

max
µ(∆xI)≤δ

f(x+∆x)≥0.5, f(x)<0.5 | z = z

)
=P

(
max

µ(∆xI)≤δ
f(x+∆x)≥0.5, f(x)<0.5

)
(3)

By dividing both sides of 3 by the both sides of 2, we have

P
(

max
µ(∆xI)≤δ

f(x+∆x)≥0.5, f(x)<0.5 | z = z

)
P
(

max
µ(∆xI)≤δ

f(x+∆x) ≥ 0.5 | f(x) < 0.5, z = z

) =

P
(

max
µ(∆xI)≤δ

f(x+∆x)≥0.5, f(x)<0.5

)
P
(

max
µ(∆xI)≤δ

f(x+∆x) ≥ 0.5 | f(x) < 0.5

)
Then, it can be simplified as

P (f(x) < 0.5 | z = z) = P (f(x) < 0.5) ,

which implies that the classifier achieves demographic parity,

P (f(x) ≥ 0.5 | z = z) = P (f(x) ≥ 0.5)

2. DP, EI ⇒ BE Suppose a classifier f achieves DP and EI. Recall that a classifier achieves DP if

P (f(x) ≥ 0.5 | z = z) = P (f(x) ≥ 0.5) ,

which implies
P (f(x) < 0.5 | z = z) = P (f(x) < 0.5) . (4)

Recall that a classifier achieves EI if

P
(

max
µ(∆xI)≤δ

f(x+∆x)≥0.5 | f(x)<0.5, z = z

)
=P

(
max

µ(∆xI)≤δ
f(x+∆x)≥0.5 | f(x)<0.5

)
(5)

By multiplying both sides of 4 and 5, we have

P
(

max
µ(∆xI)≤δ

f(x+∆x) ≥ 0.5 | f(x) < 0.5, z = z

)
P (f(x) < 0.5 | z = z)

= P
(

max
µ(∆xI)≤δ

f(x+∆x) ≥ 0.5 | f(x) < 0.5

)
P (f(x) < 0.5)

Then, it can be simplified as

P
(

max
µ(∆xI)≤δ

f(x+∆x)≥0.5, f(x)<0.5 | z = z

)
=P

(
max

µ(∆xI)≤δ
f(x+∆x)≥0.5, f(x)<0.5

)
,

which implies that the classifier f achieves BE.
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3. BE, DP ⇒ EI Suppose a classifier f achieves BE and DP. Recall that a classifier achieves DP if

P (f(x) ≥ 0.5 | z = z) = P (f(x) ≥ 0.5) ,

which implies
P (f(x) < 0.5 | z = z) = P (f(x) < 0.5) (6)

Recall that a classifier achieves BE if

P
(

max
µ(∆xI)≤δ

f(x+∆x)≥0.5, f(x)<0.5 | z = z

)
=P

(
max

µ(∆xI)≤δ
f(x+∆x)≥0.5, f(x)<0.5

)
.

(7)
By dividing both sides of 7 by the both sides of 6, we have

P
(

max
µ(∆xI)≤δ

f(x+∆x)≥0.5, f(x)<0.5 | z = z

)
P (f(x) < 0.5 | z = z)

=

P
(

max
µ(∆xI)≤δ

f(x+∆x)≥0.5, f(x)<0.5

)
P (f(x) < 0.5)

Then, it can be simplified as

P
(

max
µ(∆xI)≤δ

f(x+∆x)≥0.5 | f(x)<0.5, z = z

)
=P

(
max

µ(∆xI)≤δ
f(x+∆x)≥0.5 | f(x)<0.5

)
,

which implies that the classifier f achieves EI.

Proof of Corollary 2.6. The Corollary 2.6 can be proved directly from Theorem 2.5.

A.2 CONNECTIONS BETWEEN EI AND ER

Lemma A.1. Consider x | z = z ∼ N (µz, σ
2) for z ∈ {0, 1}, µz, σ ∈ R, and classifiers

characterized by two accepting thresholds (τ0, τ1), where τ0, τ1 ∈ R. If a classifier satisfies EI, then
it satisfies ER.

Proof. Here we use Φ = 1−Q and ϕ to denote the CDF and PDF of standard Gaussian distribution,
respectively. We consider the cost function µ = | · |.
Recall the definition of EI disparity and ER disparity

EI Disparity =
∣∣∣P( max

µ(∆x)<δ
f(x +∆x) > 0.5︸ ︷︷ ︸

x>τ0−δ

| f(x) < 0.5︸ ︷︷ ︸
x≤τ0

, z = 0
)
,

− P
(

max
µ(∆x)<δ

f(x +∆x) > 0.5 | f(x) < 0.5, z = 1

) ∣∣∣
ER Disparity =

∣∣∣E[ min
f(x+∆x)≥0.5

µ(∆x)︸ ︷︷ ︸
τ0−x

| f(x) < 0.5︸ ︷︷ ︸
x≤τ0

, z = 0
]

− E
[

min
f(x+∆x)≥0.5

µ(∆x) | f(x) < 0.5, z = 1
]∣∣∣.

Consequently, the EI constraint and ER constraint can be written as

EI Disparity (τ0, τ1) =

∣∣∣∣Φ(
τ0 − δ − µ0

σ

)
/Φ

(
τ0 − µ0

σ

)
−

Φ

(
τ1 − δ − µ1

σ

)
/Φ

(
τ1 − µ1

σ

)∣∣∣∣ = 0, (8)

ER Disparity (τ0, τ1) =

∣∣∣∣ 1

Φ((τ0 − µ0)/σ)

∫ τ0

−∞
(τ0 − t)ϕ

(
t− µ0

σ

)
dt−

1

Φ((τ1 − µ1)/σ)

∫ τ1

−∞
(τ1 − t)ϕ

(
t− µ1

σ

)
dt
∣∣∣∣ = 0 (9)
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In this proof, we will first show that achieving EI is equivalent to τ0 − µ0 = τ1 − µ1, and then show
that the classifier with τ0 − µ0 = τ1 − µ1 satisfies the ER constraint.

1. EI constraint.

Let φ(x) = Φ(x−δ
σ )/Φ( xσ ). First, we show that φ is a strictly increasing function. Note that

φ′(x) =
1

σΦ
(
x
σ

)2 (
ϕ

(
x− δ

σ

)
Φ
(x
σ

)
− Φ

(
x− δ

σ

)
ϕ
(x
σ

))
.

Therefore, to show that φ is strictly increasing, it is sufficient to show that

ϕ

(
x− δ

σ

)
Φ
(x
σ

)
> Φ

(
x− δ

σ

)
ϕ
(x
σ

)
. (10)

We show that (10) is equivalent as the following inequality by dividing both the left-hand
side and right-hand side by ϕ(x−δ

σ )ϕ( xσ ):

Φ
(x
σ

)
/ϕ

(x
σ

)
> Φ

(
x− δ

σ

)
/ϕ

(
x− δ

σ

)
. (11)

Note that 1−Φ(·)
ϕ(·) is known in literatures as Mills’ ratio (Mitrinovic & Vasic, 1970), which is

strictly decreasing on R. Therefore, Φ(·)
ϕ(·) is strictly increasing on R. Since x

σ >
x−δ
σ , (11)

holds, thereby (10) holds and φ is strictly increasing.

Given that φ(x) = Φ(x−δ
σ )/Φ( xσ ) is a strictly increasing function on R,

(8) = |φ(τ0 − µ0)− φ(τ1 − µ1)| = 0

yields that

τ0 − µ0 = τ1 − µ1.

2. ER constraint.

We first note that∫ τ0

−∞
(τ0 − t)ϕ

(
t− µ0

σ

)
dt

t′=t−µ0
=======

∫ τ0−µ0

−∞
(τ0 − µ0 − t′)ϕ

(
t′

σ

)
dt′

Let ψ(x) = 1
Φ(x/σ)

∫ x

−∞(x− t)ϕ( t
σ )dt. It is clear that ER constraint is equivalent to

(9) = |ψ(τ0 − µ0)− ψ(τ1 − µ1)| .

Therefore, the classifier with τ0 − µ0 = τ1 − µ1 clearly satisfies the ER constraint.

Combining all the discussion above completes the proof.

B SUPPLEMENTARY MATERIALS ON THE EI FAIRNESS NOTION

Recall that in Sec. 2 and Sec. 3, this paper proposes a new fairness notion called equal improvability
(EI) and finds a classifier by solving a EI-constrained optimization which is formulated as a minimax
problem. In Sec. B.1, we first explain what each term in the definition of EI means. Then in Sec. B.2,
we provide how we solved the inner maximization problem in the EI-constrained optimization. Finally,
in Sec. B.3, we provide numerical methods for finding the optimal solution for the EI-constrained
problem, under simple synthetic dataset setting.
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B.1 MEANING OF EACH TERM IN THE DEFINITION OF EI

To help readers better understand our EI definition, here we explain what each term means in EI
definition means. Let the data sample (x, y, z) follows the distribution P(x,y,z). The meaning of each
term of EI defined in Def. 2.1 is detailed below.

Px, y, z ∼ Px,y,z︸ ︷︷ ︸
Randomness is over
the data distribution

(
max

µ(∆xI)≤δ
f(x+∆x)︸ ︷︷ ︸

Maximum score
after improvement

≥ 0.5

︸ ︷︷ ︸
Event in which the sample can
be accepted after improvement

∣∣∣∣ f(x) < 0.5, z = z︸ ︷︷ ︸
Event in which the sample

comes from group z
and gets rejected

)

= Px, y, z ∼ Px,y,z︸ ︷︷ ︸
Randomness is over
the data distribution

(
max

µ(∆xI)≤δ
f(x+∆x)︸ ︷︷ ︸

Maximum score
after improvement

≥ 0.5

︸ ︷︷ ︸
Event in which the sample can
be accepted after improvement

∣∣∣∣ f(x) < 0.5︸ ︷︷ ︸
Event in which the

sample gets rejected

)
,

B.2 SOLVING THE INNER MAXIMIZATION PROBLEM

As explained in Sec.3, finding a EI classifier can be formulated as a minimax problem (1), where
solving the inner maximization problem max∥∆xI∥≤δ f(x+∆x) is required to compute Uδ in the
regularization term, and the outer problem is the regularized-loss minimization finding the optimal
model parameter w for the classifier f = fw. In this section, we provide two ways of solving
the inner maximization problem. In particular, in Sec. B.2.1 we give the explicit expression of the
optimizer ∆xI when generalized linear model is considered. In Sec. B.2.2, we solve the problem
under a more general setting via adversarial training.

B.2.1 CLOSED-FORM SOLUTION FOR GENERALIZED LINEAR MODEL

Consider a Generalized Linear Model (GLM) written as f(x) = g−1(w⊤x), where g : [0, 1] → R is
a strictly increasing link function, and w is the model parameter. Denote the weights corresponding
to xI as wI. Then, the inner maximization problem can be written as:

max
∥∆xI∥≤δ

f(x+∆x) = max
∥∆xI∥≤δ

g−1(w⊤(x+∆x))

= max
∥∆xI∥≤δ

g−1(w⊤x+w⊤
I ∆xI) (∵ ∆x = (∆xI , 0, 0))

= g−1

(
w⊤x+ max

∥∆xI∥≤δ
w⊤

I ∆xI

)
(∵ g is strictly increasing)

When ∥·∥ = ∥·∥∞, the maximum is achieved by letting ∆xI = δ sign(wI),w
⊤∆xI = δ ∥wI∥1.

When ∥·∥ = ∥·∥2, the maximum can be achieved by letting ∆xI = δwI/ ∥wI∥2 ,w⊤∆xI = δ ∥wI∥2.

B.2.2 ADVERSARIAL TRAINING BASED APPROACH FOR GENERAL SETUP

Here we discuss how we solve the inner maximization problem under a more general setting.
Following popular adversarial training methods, we apply projected gradient descent (PGD) for
multiple times to update ∆xI, i.e., set

∆xI = P(∆xI + γ∇∆xIf(x+∆x)), (12)

where γ > 0 is the step size, and P is the projection onto the constrained space ∥∆xI∥ ≤ δ. For
instance, P is equivalent to the clipping process when we use ℓ∞ norm. Denote the maximizer of the
inner maximization problem as ∆x⋆ = (∆xI

⋆,0,0). Then, from Danskin’s theorem Danskin (1967),
we have ∇w max∥∆xI∥≤δ fw(x+∆x) = ∇wfw(x+∆x⋆). We can use this derivative to update
w in the outer loss minimization problem. The pseudocode of this adversarial training based method
is shown in Algorithm 1.
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Algorithm 1 Pseudocode for achieving EI
Input :Dataset D
Output :Model parameter w for the classifier f .
Initialize w;

for each iteration do
for each (xi, yi) ∈ D do

Initialize ∆x⋆
i ;

for each PGD iteration do
Update ∆x⋆

i according to (12);

Update w according to the regularized loss function defined in (1);

B.3 DERIVATION OF OPTIMAL EI CLASSIFIER FOR SYNTHETIC DATASET

This section shows how we obtain the optimal EI classifier (that minimizes the cost function in (1))
for a synthetic dataset having two features x = [x1, x2] sampled from a Gaussian distribution
N (µz,y,Σz,y) where the mean µz,y and the standard deviation Σz,y depends on the label y ∈ {0, 1}
and the group attribute z ∈ {0, 1}. Note that the performance curve of the optimal EI classifier
obtained in this section is provided in the yellow line in Fig. 3.

The optimal EI classifier is obtained in the following steps: (i) define mathematical notations used
for analysis (Sec. B.3.1), (ii) compute the error probability (Sec. B.3.2), (iii) compute EI disparity
(Sec. B.3.3), and (iv) solve the EI-regularized optimization problem and find the optimal EI classifier
(Sec. B.3.4).

B.3.1 NOTATIONS

We consider finding a z-aware linear classifier which predicts the label y from two features x1, x2
and one sensitive attribute z. In other words, given x and z, the output of a model is represented as
f(x) = w1x1 + w2x2 + w3z + b 4 where [w1, w2, w3] is the weight vector, b is the bias. For group
z = 0,

ŷ =

{
1 if w1x1 + w2x2 > −b
0 else

For group z = 1,

ŷ =

{
1 if w1x1 + w2x2 > −w3 − b

0 else

Without the loss of generality, let
√
w2

1 + w2
2 = 1, and parameterize them as w1 = sin θ, w2 = cos θ.

Then, for group z = 0,

ŷ =

{
1 if (sin θ)x1 + (cos θ)x2 > b0
0 else

and for group z = 1,

ŷ =

{
1 if (sin θ)x1 + (cos θ)x2 > b1
0 else

where b0 = −b and b1 = −w3 − b. Since the linear combination of multivariate Gaussian is a
univariate Gaussian, we have

w⊤
θ x ∼ N (w⊤

θ µz,y,w
⊤
θ Σz,ywθ) (13)

where wθ = [sin θ, cos θ]. The decision rules can be written in terms of the wθ. For group z = 0,

ŷ =

{
1 if w⊤

θ x > b0
0 else

For group z = 1,

ŷ =

{
1 if w⊤

θ x > b1
0 else

4In this case, the decision boundary is {x : f(x) = 0} instead of {x : f(x) = 0.5} used in the main paper.
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Now, the question is, what is the optimal parameters θ, b0, b1 that solve the optimization problem
in (1). In order to answer this question, we need to understand how the equal improvability condition
is represented in terms of the model parameters. Suppose we use 0-1 loss function l, and use l∞
norm µ(x) = ∥x∥∞. From the result in Appendix B.2, given the effort budget δ, the maximum score
improvement (maxµ(∆xI)≤δ f(x+∆x)− f(x)) = δ∥wI∥1 = δ(| sin θ|+ | cos θ|) where wI is the
weights for improvable features x1, x2. Thus, if we denote the ŷmax as the estimated label after the
improvement, we have

ŷmax =

{
1 if (sin θ)x1 + (cos θ)x2 > b0 − δ(| sin θ|+ | cos θ|) = b′0
0 else

for group z = 0 and

ŷmax =

{
1 if (sin θ)x1 + (cos θ)x2 > b1 − δ(| sin θ|+ | cos θ|) = b′1
0 else

for group z = 1.

B.3.2 COMPUTE ERROR PROBABILITY

The error probability can be written as,

Pr(ŷ ̸= y) =
1∑

i=0

Pr(z = i) Pr(ŷ ̸= y|z = i)

We can derive the term Pr(ŷ ̸= y|z = 0) as below:

Pr(ŷ ̸= y|z = 0) =Pr(y = 0|z = 0)Pr(ŷ = 1|y = 0, z = 0)

+ Pr(y = 1|z = 0)Pr(ŷ = 0|y = 1, z = 0)

We can look each term Pr(ŷ = 1|y = 0, z = 0),Pr(ŷ = 0|y = 1, z = 0) and write those terms in
terms of Q-functions because,

Pr(ŷ = 1|y = 0, z = 0) = Pr(w⊤
θ x > b0|y = 0, z = 0)

Pr(ŷ = 0|y = 1, z = 0) = Pr(w⊤
θ x < b0|y = 1, z = 0)

From (13), we have

Pr(ŷ = 1|y = 0, z = 0) = Pr(w⊤
θ x > b0|y = 0, z = 0) = Q

 b0 −w⊤
θ µ0,0√

w⊤
θ Σ0,0wθ


Pr(ŷ = 0|y = 1, z = 0) = Pr(w⊤

θ x < b0|y = 1, z = 0) = Q

 w⊤
θ µ1,0 − b0√
w⊤

θ Σ1,0wθ


One can derive the error rates for group z = 1 similarly. So, the total error rate can be written as

Pr(ŷ ̸= y) =Pr(z = 0)

Pr(y = 0|z = 0)Q

 b0 −w⊤
θ µ0,0√

w⊤
θ Σ0,0wθ


+Pr(y = 1|z = 0)Q

 w⊤
θ µ1,0 − b0√
w⊤

θ Σ1,0wθ


+ Pr(z = 1)

Pr(y = 0|z = 1)Q

 b1 −w⊤
θ µ1,0√

w⊤
θ Σ1,0wθ


+Pr(y = 1|z = 1)Q

 w⊤
θ µ1,1 − b1√
w⊤

θ Σ1,1wθ


We have three parameters to optimize the error rate θ, b0, b1. All the other terms are known.
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B.3.3 COMPUTE EI DISPARITY

To compute EI disparity, we start with computing

Pr(ŷmax = 1|ŷ = 0, z = 0) =
Pr(ŷmax = 1, ŷ = 0|z = 0)

Pr(ŷ = 0|z = 0)
(14)

The denominator of (14) can be expanded as

Pr(ŷ = 0|z = 0) =Pr(y = 0|z = 0)Pr(ŷ = 0|y = 0, z = 0)

+ Pr(y = 1|z = 0)Pr(ŷ = 0|y = 1, z = 0).

We can look each term Pr(ŷ = 0|y = 0, z = 0),Pr(ŷ = 0|y = 1, z = 0) and write those terms in
terms of Q-function because,

Pr(ŷ = 0|y = 0, z = 0) = Pr(w⊤
θ x < b0|y = 0, z = 0)

Pr(ŷ = 0|y = 1, z = 0) = Pr(w⊤
θ x < b0|y = 1, z = 0)

From (13), we have

Pr(ŷ = 0|y = 0, z = 0) = Pr(w⊤
θ x < b0|y = 0, z = 0) = Q

 w⊤
θ µ0,0 − b0√
w⊤

θ Σ0,0wθ



Pr(ŷ = 0|y = 1, z = 0) = Pr(w⊤
θ x > b0|y = 1, z = 0) = Q

 w⊤
θ µ1,0 − b0√
w⊤

θ Σ1,0wθ


Then,

Pr(ŷ = 0|z = 0) =Pr(y = 0|z = 0)Q

 w⊤
θ µ0,0 − b0√
w⊤

θ Σ0,0wθ


+ Pr(y = 1|z = 0)Q

 w⊤
θ µ1,0 − b0√
w⊤

θ Σ1,0wθ


The numerator of (14) can be expanded as

Pr(ŷmax = 1, ŷ = 0|z = 0) =Pr(y = 0|z = 0)Pr(ŷmax = 1, ŷ = 0|y = 0, z = 0)

+ Pr(y = 1|z = 0)Pr(ŷmax = 1, ŷ = 0|y = 1, z = 0).

We can look each term Pr(ŷmax = 1, ŷ = 0|y = 0, z = 0),Pr(ŷmax = 1, ŷ = 0|y = 1, z = 0) and
write those terms in terms of Q-function because,

Pr(ŷmax = 1, ŷ = 0|y = 0, z = 0) = Pr(b′0 < w⊤
θ x < b0|y = 0, z = 0)

Pr(ŷmax = 1, ŷ = 0|y = 1, z = 0) = Pr(b′0 < w⊤
θ x < b0|y = 1, z = 0)

From (13), we have

Pr(ŷmax = 1, ŷ = 0|y = 0, z = 0) = Pr(b′0 < w⊤
θ x < b0|y = 0, z = 0) =

Q

 w⊤
θ µ0,0 − b0√
w⊤

θ Σ0,0wθ

−Q

 w⊤
θ µ0,0 − b′0√
w⊤

θ Σ0,0wθ


Pr(ŷmax = 1, ŷ = 0|y = 1, z = 0) = Pr(b′0 < w⊤

θ x < b0|y = 1, z = 0) =

Q

 w⊤
θ µ1,0 − b0√
w⊤

θ Σ1,0wθ

−Q

 w⊤
θ µ1,0 − b′0√
w⊤

θ Σ1,0wθ
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Then,

Pr(ŷmax = 1, ŷ = 0|z = 0) = Pr(y = 0|z = 0)

Q
 w⊤

θ µ0,0 − b0√
w⊤

θ Σ0,0wθ

−Q

 w⊤
θ µ0,0 − b′0√
w⊤

θ Σ0,0wθ


+ Pr(y = 1|z = 0)

Q
 w⊤

θ µ1,0 − b0√
w⊤

θ Σ1,0wθ

−Q

 w⊤
θ µ1,0 − b′0√
w⊤

θ Σ1,0wθ


It can be derived for group z = 1 similarly. So, we derived EI disparity in terms of θ, b0, b1.

B.3.4 SOLVE THE OPTIMIZATION PROBLEM

In the previous two sections, we derived the error rate and EI disparity in terms of Q-functions
containing parameters θ, b0, b1. Therefore, we can construct an EI-constrained optimization problem
(which is essentially same as (1)):

min
θ,b0,b1

Pr(ŷ ̸= y)

s.t. max
i∈{0,1}

|Pr(ŷmax = 1|ŷ = 0, z = i)− Pr(ŷmax = 1|ŷ = 0)| < c

where c is a hyperparameter we can choose to balance error rate and EI disparity.

After writing error rate and EI disparity in terms of Q-functions (using the derivations in Sec. B.3.2
and Sec. B.3.3), we numerically solve the constrained optimization problems above with a popular
python module scipy.optimize. To get the experimental results in Fig. 3, we numerically solved
the above problem for 20 different c values, where the maximum c is picked as the EI disparity of the
unconstrained optimization problem.

B.4 COMPARISON WITH INDIVIDUAL-LEVEL EQUAL RECOURSE

In this part, we compare EI with individual-level equal recourse, which is suggested by Von Kügelgen
et al. (2022). Individual-level equal recourse considers a more general setting that allows causal
influence between the features. It aims to equalize the cost of recourse (i.e., effort) required for
a rejected individual to obtain an improved outcome if the individual is from a different group.
Formally, it aims at finding a classifier f satisfying

min
x′:f(x′)≥0.5

µz(x
′,x) = min

x′:f(x′)≥0.5
µz′(x′,x), for all rejected individuals and z, z′ ∈ [Z],

where µz(x
′,x) denotes the cost of improving feature from x to x′ within a causal model when the

individual has sensitive attribute z ∈ [Z]. This means that the minimum effort needed to improve the
decision outcome is identical irrespective of the sensitive attribute, for all rejected samples.

Individual-level equal recourse shares a similar spirit with EI since both of them are taking care of
equalizing the potential to improve the decision outcome for the rejected samples. However, at the
same time, introducing individual-level fairness with respect to different groups inherently requires
counterfactual fairness, which has its own limitation, as described in Wu et al. (2019).

C SUPPLEMENTARY MATERIALS ON EXPERIMENTS

In this section, we provide additional experimental results and details of experimental setup.

C.1 SYNTHETIC DATASET

We define y, z as z ∼ Bern(0.4), (y | z = 0) ∼ Bern(0.3), and (y | z = 1) ∼ Bern(0.5). The
feature x follows the conditional distribution (x | y = y, z = z) ∼ N (µy,z,Σy,z) where the mean
of each cluster is

µ0,0 = [−0.1,−0.2],µ0,1 = [−0.2,−0.3],µ1,0 = [0.1, 0.4],µ1,1 = [0.4, 0.3]

and the covariance matrix of each cluster is

Σ0,0 =

[
0.4 0.0
0.0 0.4

]
,Σ1,0 = Σ0,1 =

[
0.2 0.0
0.0 0.2

]
,Σ1,1 =

[
0.1 0.0
0.0 0.1

]
.
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Table 3: Comparison of error rate and EI disparities of ERM baseline and proposed methods on
the synthetic, German Statlog Credit and ACSIncome-CA datasets on Multi-Layer Perceptron
(MLP). For each dataset, we boldfaced the lowest EI disparity value. Compared with ERM, all three
methods proposed in this paper enjoys much lower EI disparity without losing the accuracy much.
All reported numbers are evaluated on the test set.

METHODS
DATASET METRIC ERM COVARIANCE-BASED KDE-BASED LOSS-BASED

SYNTHETIC
ERROR RATE(↓)

EI DISP.(↓)
.205 ± .003
.141 ± .036

.242 ± .006
.004 ± .002

.227 ± .008

.011 ± .006
.229 ± .012
.018 ± .009

GERMAN
STAT.

ERROR RATE(↓)
EI DISP.(↓)

.221 ± .010

.059 ± .045
.299 ± .012
.013 ± .025

.232 ± .018

.041 ± .025
.238 ± .035
.013 ± .019

ACSINCOME-CA ERROR RATE(↓)
EI DISP.(↓)

.181 ± .002

.042 ± .002
.202 ± .002
.010 ± .006

.182 ± .002

.010 ± .002
.185 ± .001
.006 ± .003

C.2 ADDITIONAL EXPERIMENTAL RESULTS ON ALGORITHM EVALUATION

Table 3 shows the performance of ERM baseline and our three approaches (covariance-based, KDE-
based, loss-based) introduced in Sec. 3, for a multi-layer perceptron (MLP) network having one
hidden layer with four neurons. Similar to the result in Table 2 for the logistic regression model, our
methods can reduce the EI disparity without losing the classification accuracy (i.e., increasing the
error rate) much.

Meanwhile, according to a previous work (Cherepanova et al., 2021), large deep learning models are
observed to overfit to fairness constraints during training and therefore produce unfair predictions
on the test data. To confirm whether our method is also having such limitations, we investigate the
performance of our algorithms on over-parameterized models. Specifically, we conduct experiments
on a five-layer ReLU network with 200 hidden neurons per layer, which is over-parameterized
for German dataset. Table 4 reports the performance of EI-constrained classifiers on such over-
parameterized setting. One can confirm that our methods (covariance-based, KDE-based, loss-based)
perform well in both training and test dataset, and we do not observe the overfitting problem.

Table 4: Error rate and EI disparities for ERM baseline and proposed methods, for an over-
parameterized neural network on German Statlog Credit dataset. Performances on train/test
dataset are presented. Note that we don’t observe the overfitting issue in the over-parameterized
setting.

METHODS
DATASET METRIC ERM COVARIANCE-BASED KDE-BASED LOSS-BASED

GERMAN
STAT.

TRAIN ERR.(↓)
TEST ERR.(↓)

TRAIN EI DISP.(↓)
TEST EI DISP.(↓)

.117 ± .004

.117 ± .010

.022 ± .017

.060 ± .032

.133 ± .003

.118 ± .010

.018 ± .011

.049 ± .024

.125 ± .008

.121 ± .010

.018 ± .009

.057 ± .028

.132 ± .011

.130 ± .009

.015 ± .013

.047 ± .025

In addition, in Table 5, we include ER and BE as baselines for the synthetic dataset experiment
provided in Table 2. We leverage the algorithm suggested by Gupta et al. (2019) for mitigating ER
disparity. We extend the loss-based to reduce BE disparity, by redefining the BE loss of group z as

L̃BE
z ≜

1

number of samples in group z

∑
i∈I−,z

ℓ(1, max
∥∆xIi∥≤δ

f(xi +∆xi)),

where

L̃EI
z ≜

1

number of rejected samples in group z

∑
i∈I−,z

ℓ(1, max
∥∆xIi∥≤δ

f(xi +∆xi)),

and I−,z is the set of rejected samples in group z for z ∈ [Z].

Table 5 shows that the minimum EI disparity is achieved by our methods. Hence, if the EI fairness
needs to be achieved, then it cannot be replaced with the existing other fairness notions for some
datasets.

21



Under review as a conference paper at ICLR 2023

Table 5: Comparison of error rate and EI disparities of ERM, ER, and BE baseline and
proposed methods on the synthetic dataset. We boldfaced the lowest EI disparity value. The three
EI-regularized approaches achieve the lowest EI disparity while maintaining low error rates. All
reported numbers are evaluated on the test set.

METHODS

DATASET METRIC ERM ER
(GUPTA ET AL. (2019))

BE
(LOSS-BASED) COVARIANCE-BASED KDE-BASED LOSS-BASED

SYNTHETIC
ERROR RATE(↓)

EI DISP.(↓)
.221 ± .001
.117 ± .007

.235 ± .009

.036 ± .018
.252 ± .006
.006 ± .004

.253 ± .003

.003 ± .001
.250 ± .001
.005 ± .003

.246 ± .001
.002 ± .001

C.3 HYPERPARAMETER SELECTION

The selected hyperparameter for each experiment is provided in our anonymous Github. In all our
experiments, we perform cross-validation to select the learning rate from {0.0001, 0.001, 0.01, 0.1}.
In addition, for each penalty term we did two-step cross-validation to choose λ. In the first step, we
used a set λ ∈ {0, 0.2, 0.4, 0.6, 0.8, 0.9}. In the second step, we generate a second set around the best
λ⋆ found in the first step, i.e., the second set is {max{λ⋆ + ε, 0} : ε ∈ {−0.1,−0.05, 0, 0.05, 0.1}}.
For example, if λ⋆ = 0.4 is the best at the first step, then at the second step we use the set
λ ∈ {0.3, 0.35, 0.4, 0.45, 0.5}.

C.4 OBTAINING BASELINE CLASSIFIERS FOR DYNAMIC SCENARIOS

Continued from Sec. 4.2, this section describes how we compute the classifiers that satisfy demo-
graphic parity (DP), bounded effort (BE) (Heidari et al., 2019) and equal recourse (ER) (Gupta et al.,
2019), respectively. Similar to EI classifier, we obtain the best DP classifier by considering the
following constrained optimization problem:

min |P(ŷt = 1 | z = 0)− P(ŷt = 1 | z = 1)| s.t. P(ŷt ̸= yt) ≤ c.

The best BE classifier can be obtained by solving the following problem:

min
∣∣∣P(τ (0)t − δt < xt < τ

(0)
t | z = 0)− P(τ (1)t − δt < xt < τ

(1)
t | z = 1)

∣∣∣ s.t. P(ŷt ̸= yt) ≤ c.

Similarly, the optimization problem for obtaining the best ER classifier is written as:

min
∣∣∣E [

τ
(0)
t − xt | xt < τ

(0)
t , z = 0

]
− E

[
τ
(1)
t − xt | xt < τ

(1)
t , z = 1

]∣∣∣ s.t. P(ŷt ̸= yt) ≤ c.

Given the data distribution at each round t, we numerically solve the constrained optimization
problems above using a popular python module scipy.optimize.

C.5 ADDITIONAL EXPERIMENTAL RESULTS ON FAIRNESS NOTIONS COMPARISON

In this section, we highlight the advantages of EI over BE and ER in terms of robustness to outliers
and imbalanced negative prediction rates. In doing so, we consider certain data distributions and
follow the method discussed in Appendix B.3 for solving the classifiers.

C.5.1 EI VERSUS ER: ROBUSTNESS TO OUTLIERS

As we claimed in Table 1, ER is vulnerable to outliers. In this experiment, we systematically study
the robustness of EI and ER to outliers.

Data Distributions (Clean) Let sensitive attribute z ∼ Bern(0.5) and label y ∼ Bern(0.5) be
independent of sensitive attribute z. Given the sensitive attribute z and label y, feature x follows the
conditional distribution x | y = y, z = z ∼ N (µy,z,Σy,z), where the mean and covariance of the
four Gaussian clusters are

µ0,0 = [1,−6],µ0,1 = [−1,−2],µ1,0 = [2, 1.5],µ1,1 = [1, 2.5],

and

Σ0,0 = Σ1,0 = Σ0,1 = Σ1,1 =

[
0.25 0.0
0.0 0.25

]
.
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(Contaminated) We contaminate the distribution by introducing additional 5% outliers to group
z = 0. The outliers follow Gaussian distribution with mean and covariance matrix

µoutlier,0 = [−1,−20],Σoutlier,0 =

[
0.05 0.0
0.0 0.05

]
.

−2 0 2

−20

−15

−10

−5

0

f(x) < 0.5
f(x) ≥ 0.5

Clean Data

−2 0 2

−20

−15

−10

−5

0
f(x) < 0.5

f(x) ≥ 0.5

Data with Outliers

Group 0

Group 1

EI Decision Boundary

ER Decision Boundary

Figure 6: Visualizations of the EI and ER decision boundaries without and with the presence
of outliers. We observe that the decision boundary of ER changes a lot in the presence of outliers,
while the decision boundary of EI is not affected. This phenomenon implies the robustness of EI to
outliers.

Results The decision boundaries of EI and ER for both the clean dataset and contaminated dataset
are depicted in Fig. 6. These decision boundaries are the optimal linear decision boundaries based on
the distributional information, we followed the same procedure as we mentioned in B.3. The δ for
the EI classifier is picked as 1.5. We observe that the introduction of outliers makes the ER decision
boundary rotate a lot, leading to a drop in classification accuracy and ER disparity w.r.t.the clean
data distribution. Moreover, we note that the newly added outliers fail to destroy EI classifier, which
implies the robustness of EI to outliers.

C.5.2 EI VERSUS BE: ROBUSTNESS TO IMBALANCED NEGATIVE RATE

In this experiment, we investigate the robustness of EI and BE to an imbalanced negative rate.

−2 0 2

−2

0

2
f(x) < 0.5

f(x) ≥ 0.5

Same Negative Rate

−2 0 2

−2

0

2

f(x) < 0.5

f(x) ≥ 0.5

Different Negative Rate

Group 0

Group 1

EI Decision Boundary

BE Decision Boundary

Figure 7: Visualizations of the EI and BE decision boundaries given the data distribution with
the same negative rates and different negative rates. The decision boundary of BE rotates a lot
when the negative rate of the dataset becomes different, implying the sensitivity of BE to imbalanced
negative rates. In contrast, the consistency of EI decision boundaries showcases the robustness of EI
w.r.t.imbalanced negative rates.

Data Distributions (Same Negative Rate) We consider the distribution with balanced subgroups.
In other words, let sensitive attribute z ∼ Bern(0.5), and label y ∼ Bern(0.5) be independent of
sensitive attribute z. Given the sensitive attribute z and label y, feature, feature x follows the Gaussian
distribution (x | y = y, z = z) ∼ N (µy,z,Σy,z) where the mean of each cluster is

µ0,0 = [−2,−1],µ0,1 = [−1,−2],µ1,0 = [1, 2],µ1,1 = [2, 1]
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and the covariance matrix of each cluster is

Σ0,0 = Σ1,0 = Σ0,1 = Σ1,1 =

[
0.25 0.0
0.0 0.25

]
.

(Different Negative Rate) We manipulate the distribution of label y for constructing data distribution
with different negative rates. To be more specific, we let y | z = 0 ∼ Bern(0.7), and y | z = 1 ∼
Bern(0.3).

Results Figure 7 shows the decision boundaries of EI and BE when (i) the dataset has the same
negative rate, and (ii) the dataset has a different negative rate. These decision boundaries are the
optimal linear decision boundaries based on the distributional information, we followed the same
procedure as we mentioned in B.3. The δ for the EI and BE classifiers is picked as 1.5. The huge
difference in BE decision boundaries under the two cases verifies our claim that BE cannot handle
imbalanced negative prediction rates. In contrast, the decision boundaries of EI learned with two
datasets with different group proportions are consistent.

D THE EFFECT OF FAIRNESS NOTIONS ON THE LONG-TERM FAIRNESS

D.1 BASIC SETUP AND PRELIMINARIES

D.1.1 CLASSIFIERS

We consider the z−aware classifier, having

f(x) =

{
1x≥τ0 , z = 0,

1x≥τ1 , z = 1,

which is parameterized by the threshold pair (τ0, τ1). We assume the effort budget is δ = m
2 where

m is defined in the dataset.

Recall the zero equal improvability (EI) disparity condition is:

P
(

max
µ(∆x)≤δ

f(x+∆x) ≥ 0.5 | f(x) < 0.5, z = 0

)
= P

(
max

µ(∆x)≤δ
f(x+∆x) ≥ 0.5 | f(x) < 0.5, z = 1

)
where µ(∆x) = |∆x|. This condition is equivalent to∫ τ0

τ0−δ
p0(x)dx∫ τ0

−∞ p0(x)dx
=

∫ τ1
τ1−δ

p1(x)dx∫ τ1
−∞ p1(x)dx

. (15)

We denote the improvability ratio of each group as

r0(τ0) =

∫ τ0
τ0−δ

p0(x)dx∫ τ0
−∞ p0(x)dx

, (16)

r1(τ1) =

∫ τ1
τ1−δ

p1(x)dx∫ τ1
−∞ p1(x)dx

(17)

The classifier that satisfies this zero EI disparity condition and minimizes the error rate is denoted as
the optimal EI classifier.

Recall that the bounded effort (BE) fairness constraint is:

P
(

max
µ(∆x)≤δ

f(x+∆x) ≥ 0.5, f(x) < 0.5 | z = 0

)
= P

(
max

µ(∆x)≤δ
f(x+∆x) ≥ 0.5, f(x) < 0.5 | z = 1

)
(18)

where µ(∆x) = |∆x|. Meanwhile, the Equal Recourse (ER) constraint is defined as

E
[

min
f(x+∆x)≥0.5

µ(∆x) | f(x) < 0.5, z = 0

]
= E

[
min

f(x+∆x)≥0.5
µ(∆x) | f(x) < 0.5, z = 1

]
(19)
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D.1.2 DYNAMIC SCENARIO

Suppose each rejected sample improves its feature by

ε(x) =

{
δ · 1x∈[τ0−δ,τ0), if z = 0,

δ · 1x∈[τ1−δ,τ1), if z = 1

Note that depending on the classifier we are using, the threshold pair (τ0, τ1) changes, thus the
formulation for ε(x) also changes. Here, we use εERM(x) to denote the improvement of features
given ERM classifier, and similarly define εEI(x), εBE(x) and εER(x).

Let pERM
z (x) = pz(x + εERM(x)) for z ∈ {0, 1}, which represent the data distribution after the

features are improved based on ERM classifier. Similarly, we define pEI
z (x), pBE

z (x) and pER
z (x) for

EI/BE/ER classifiers, respectively. In the upcoming sections, we measure the total-variance (TV)
distance

dTV (p0, p1) =
1

2

∫
R
|p0(x)− p1(x)|dx

between two groups after a single step of feature improvement, and provide how this measurement
differs for various classifiers.

D.2 EI VERSUS BE & ERM

D.2.1 FINDING THE OPTIMAL CLASSIFIER FOR EACH FAIRNESS CRITERION

Setup Let pz(x) be the data distribution of each group z ∈ {0, 1}, shown in Fig. 8. We consider
the case of each sample having one feature x, and the label is assigned as

y =

{
1x≥m/2, if z = 0

1x≥0, if z = 1

Note that we have P(y = 0|z = 0) = 3
4 , P(y = 1|z = 0) = 1

4 , P(y = 0|z = 1) = 1
2 , and

P(y = 1|z = 1) = 1
2 . We set P(z = 0) = 1

4 and P(z = 1) = 3
4 .

9
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Figure 8: The data distribution pz(x) for each group z ∈ {0, 1}. Samples with (+) sign have the true
label y = 1, while samples with (−) sign have the true label y = 0.

ERM classifier We have

(τERM
0 , τERM

1 ) =
(m
2
, 0
)

since this threshold pair has zero classification error.

BE classifier We have

(τBE
0 , τBE

1 ) =
(m
2
, 0
)

(20)

since this threshold pair has zero classification error and satisfy the BE condition in (18).
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EI classifier The optimal EI classifier for dataset in Fig. 8 is

(τEI
0 , τEI

1 ) = (0, 0). (21)

Proof. Note that (τEI
0 , τEI

1 ) = (0, 0) has error rate P(error) = P(z = 0)P(error|z = 0) + P(z =
1)P(error|z = 1) = 1

4 · 14 + 3
4 · 0 = 1

16 . We prove that no other classifier satisfing EI condition in (15)
is having error rate less than 1

16 . Note that when |τ1| > m
6 , the error rate is larger than 1

16 . Thus it is
sufficient to consider cases when |τ1| ≤ m

6 . Combining this with the fact that

• r0(τ0) in (16) and r1(τ1) in (17) are monotonically decreasing,

• EI condition in (15) is satisfied when r0(τ0) = r1(τ1) holds,

• r0(τ0) = r1(τ1) holds for τ0 = τ1 ≤ m
2 ,

we can see that the optimal EI classifier satisfies τ0 = τ1 and |τ1| ≤ m
6 . The error rate for these

classifiers is represented as P(error) = P(z = 0)P(error|z = 0) + P(z = 1)P(error|z = 1) =
1
4 · (m2 − τ0) · 1

2m + 3
4 · |τ1| · 1

2m . Plugging in τ0 = τ1 and optimizing the error probability over
|τ1| ≤ m

6 completes the proof.

D.2.2 TOTAL-VARIATION DISTANCE BETWEEN TWO GROUPS

For the dataset given in Fig. 8, the total-variation distance between two groups for each classifier is:

dTV (p
ERM
0 , pERM

1 ) = 0.5,

dTV (p
BE
0 , pBE

1 ) = 0.5,

dTV (p
EI
0 , p

EI
1 ) = 0.125.

Proof. Since ERM solution is identical to BE solution, proving the above equation for BE and EI is
sufficient. Recall that the expression of BE/EI classifiers are in (20) and (21). Using this expression,
we can derive the distribution of each group:

pBE
0 (x) =


3

4m , if x ∈ [m2 ,m]
1

2m , if x ∈ [−m, 0]
1

4m , if x ∈ [m, 3m2 ]

0, if x ∈ [0, m2 ] or x /∈ [−m, 3m2 ]

,

pBE
1 (x) =


1
m , if x ∈ [0, m2 ]
1

2m , if x ∈ [−m,−m
2 ] ∪ [m2 ,m]

0, if x ∈ [−m
2 , 0] or x /∈ [−m,m]

,

pEI
0 (x) =


1
m , if x ∈ [0, m2 ]
1

2m , if x ∈ [−m,−m
2 ]

1
4m , if x ∈ [m2 ,

3m
2 ]

0, if x ∈ [−m
2 , 0] or x /∈ [−m, 3m2 ]

,

pEI
1 (x) = pBE

1 (x) ∀x

From this expression, we can derive the total-variation distance, which completes the proof.

D.3 EI VERSUS ER

D.3.1 FINDING THE OPTIMAL CLASSIFIER FOR EACH FAIRNESS CRITERION

Setup Let pz(x) be the data distribution of each group z ∈ {0, 1}, show in Fig. 9. We consider the
case of each sample having one feature x, and the label is assigned as

y =

{
1x≥0, if z = 0

1x≥0, if z = 1
.
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Note that we have P(y = 0 | z = 0) = P(y = 0 | z = 1) = P(y = 1 | z = 0) = P(y = 1 | z =
1) = 1

2 . We set P(z = 0) = P(z = 1) = 1
2 .

10
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Figure 9: The data distribution pz(x) for each group z ∈ {0, 1}. Samples with (+) sign have the true
label y = 1, while samples with (−) sign have the true label y = 0.

ER classifier The optimal ER classifier for the dataset in Fig. 9 is

(τER
0 , τER

1 ) = (−9m, 0) . (22)

Proof. Note that the accepting thresholds (−9m, 0) has error rate P(error) = P(error | z = 0)P(z =
0) + P(error | z = 1)P(z = 1) = 1

3 · 1
2 + 0 · 1

2 = 1
6 . We prove that no other classifier satisfying ER

constraint (19) is having error rate less than 1
6 .

The necessary condition for the classifier to have an error rate less than 1
6 is τ0, τ1 ∈ (−m

2 ,
m
2 ). Note

that when τ0 ∈ (−m
2 ,

m
2 ), we have the recourse of the group 0:

E
[

min
f(x+∆x)≥0.5

µ(∆x) | f(x) < 0.5, z = 0

]
= E [τ0 − x | x < τ0, z = 0]

= τ0 − E [x | x < τ0, z = 0]︸ ︷︷ ︸
φ(τ0)

, (23)

where

φ(τ0) = E [x | x < τ0, z = 0] (24)

= P
(
x ∈

[
−10m,−19

2
m

]
| x < τ0, z = 0

)
︸ ︷︷ ︸

∆
=λ

E
[
x | x ∈

[
−10m,−19

2
m

]
, z = 0

]

+ P
(
x ∈

[
−m

2
, τ0

]
| x < τ0, z = 0

)
︸ ︷︷ ︸

1−λ

E
[
x | x ∈

[
−m

2
, τ0

]
, z = 0

]
,

for all τ0 ∈ [−m
2 ,

m
2 ], where λ ∈ [ 13 , 1]. Since E

[
x | x ∈

[
−10m,− 19

2 m
]
, z = 0

]
<

E
[
x | x ∈

[
−m

2 , τ0
]
, z = 0

]
, (24) is a decreasing function. Consequently,

≤ 1

3
E
[
x | x ∈

[
−10m,−19

2
m

]
, z = 0

]
+

2

3
E
[
x | x ∈

[
−m

2
, τ0

]
, z = 0

]
= −39

12
m+

τ0
3

− m

6
=
τ0
3

− 41

12
m.

Thus, the recourse of group 0 is

(23) ≥ 2τ0
3

+
41

12
m ≥ 37

12
m (25)
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Meanwhile, when τ1 ∈ (−m
2 ,

m
2 ), we have the recourse of the group 1:

E
[

min
f(x+∆x)≥0.5

µ(∆x) | f(x) < 0.5, z = 1

]
= E [τ1 − x | x < τ1, z = 0]

= τ1 − E [x | x < τ1, z = 0]

= τ1 −
τ1 −m

2

=
τ1 +m

2
∈
(
m

4
,
3

4
m

)
, (26)

Therefore, combining (25) and (26) implies that when τ0, τ1 ∈ (−m
2 ,

m
2 ), the ER constraint (19)

cannot be satisfied. Thus, the way for achieving error rate < 1
6 is τ0 < −m

2 and τ1 = 0. Note that
the recourse of group 0 which is written in (23) is a strictly increasing function when τ0 < −m

2 .
Therefore, there exists a unique classifier that achieves both EI while maintaining error rate < 1

6 . One
can easily verify that (−9m, 0) is the optimal ER classifier.

EI classifier We have
(τEI

0 , τEI
1 ) = (0, 0) (27)

since this threshold pair has zero classification error and satisfies the EI constraint (15).

D.3.2 TOTAL-VARIATION DISTANCE BETWEEN TWO GROUPS

For the dataset given in Fig. 9, the total variation distance between two groups for EI and ER classifier
is

dTV (p
ER
0 , pER

1 ) =
2

3
,

dTV (p
EI
0 , p

EI
1 ) =

1

3
.

Proof. By (27) and (22),

pER
0 (x) =


2

3m , if x ∈ [− 19m
2 ,−8m]

2
3m , if x ∈ [−m

2 ,
m
2 ]

0, o.w.
,

pER
1 (x) =


2

3m , if x ∈ [−m,−m
2 ]

4
3m , if x ∈ [0, m2 ]

0, o.w.
,

pEI
0 (x) =


2

3m , if x ∈ [−10m,− 19m
2 ]

4
3m , if x ∈ [0, m2 ]

0, o.w.
,

pEI
1 (x) =


2

3m , if x ∈ [−m,−m
2 ]

4
3m , if x ∈ [0, m2 ]

0, o.w.
.

For this expression, we can derive the total-variation distance, which completes the proof.
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