
Published as a conference paper at ICLR 2024

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand
Joulin, Edouard Grave, and Guillaume Lample. LLaMA: Open and Efficient Foundation Language
Models. arXiv:2302.13971, 2023.

Jialiang Wei, Anne-Lise Courbis, Thomas Lambolais, Binbin Xu, Pierre Louis Bernard, and Gérard
Dray. Boosting gui prototyping with diffusion models. arXiv preprint arXiv:2306.06233, 2023.

Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam
Roberts, and Colin Raffel. Byt5: Towards a token-free future with pre-trained byte-to-byte models,
2022.

Jiahui Yu, Yuanzhong Xu, Jing Yu Koh, Thang Luong, Gunjan Baid, Zirui Wang, Vijay Vasudevan,
Alexander Ku, Yinfei Yang, Burcu Karagol Ayan, Ben Hutchinson, Wei Han, Zarana Parekh, Xin
Li, Han Zhang, Jason Baldridge, and Yonghui Wu. Scaling autoregressive models for content-rich
text-to-image generation, 2022.

Lvmin Zhang and Maneesh Agrawala. Adding conditional control to text-to-image diffusion models.
arXiv:2302.05543, 2023.

Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric, 2018.

13



Published as a conference paper at ICLR 2024

Appendix
A LIMITATIONS

A close up of a handpalm An empty fireplace with a television above it.
with leaves growing from it. The TV shows a lion hugging a giraffe.

A grand piano with a white bench.
Three quarters view of a rusty old red pickup

truck with white doors and a smashed windshield.

Figure 8: Failure cases of SDXL despite large improvements compared to previous versions of Stable Diffusion,
the model sometimes still struggles with very complex prompts involving detailed spatial arrangements and
detailed descriptions (e.g. top left example). Moreover, hands are not yet always correctly generated (e.g. top
left) and the model sometimes suffers from two concepts bleeding into one another (e.g. bottom right example).
All examples are random samples generated with 50 steps of the DDIM sampler Song et al. (2020a) and cfg-scale
8.0 Ho & Salimans (2022).

While our model has demonstrated impressive capabilities in generating realistic images and synthe-
sizing complex scenes, it is important to acknowledge its inherent limitations. Understanding these
limitations is crucial for further improvements and ensuring responsible use of the technology.

Firstly, the model may encounter challenges when synthesizing intricate structures, such as human
hands (see Fig. 8, top left). Although it has been trained on a diverse range of data, the complexity of
human anatomy poses a difficulty in achieving accurate representations consistently. This limitation
suggests the need for further scaling and training techniques specifically targeting the synthesis of
fine-grained details. A reason for this occurring might be that hands and similar objects appear with
very high variance in photographs and it is hard for the model to extract the knowledge of the real 3D
shape and physical limitations in that case.

Secondly, while the model achieves a remarkable level of realism in its generated images, it is
important to note that it does not attain perfect photorealism. Certain nuances, such as subtle
lighting effects or minute texture variations, may still be absent or less faithfully represented in the
generated images. This limitation implies that caution should be exercised when relying solely on
model-generated visuals for applications that require a high degree of visual fidelity.

Furthermore, the model’s training process heavily relies on large-scale datasets, which can inadver-
tently introduce social and racial biases. As a result, the model may inadvertently exacerbate these
biases when generating images or inferring visual attributes.

In certain cases where samples contain multiple objects or subjects, the model may exhibit a phe-
nomenon known as “concept bleeding”. This issue manifests as the unintended merging or overlap of
distinct visual elements. For instance, in Fig. 15, an orange sunglass is observed, which indicates
an instance of concept bleeding from the orange sweater. Another case of this can be seen in Fig. 9,
the penguin is supposed to have a “blue hat” and “red gloves”, but is instead generated with blue
gloves and a red hat. Recognizing and addressing such occurrences is essential for refining the
model’s ability to accurately separate and represent individual objects within complex scenes. The
root cause of this may lie in the used pretrained text-encoders: firstly, they are trained to compress
all information into a single token, so they may fail at binding only the right attributes and objects,
Feng et al. (2023) mitigate this issue by explicitly encoding word relationships into the encoding.

14



Published as a conference paper at ICLR 2024

Secondly, the contrastive loss may also contribute to this, since negative examples with a different
binding are needed within the same batch (Ramesh, 2022).

Additionally, while our model represents a significant advancement over previous iterations of SD,
it still encounters difficulties when rendering long, legible text. Occasionally, the generated text
may contain random characters or exhibit inconsistencies, as illustrated in Fig. 9. Overcoming this
limitation requires further investigation and development of techniques that enhance the model’s text
generation capabilities, particularly for extended textual content — see for example the work of Liu
et al. (2023), who propose to enhance text rendering capabilities via character-level text tokenizers.
Alternatively, scaling the model does further improve text synthesis (Yu et al., 2022; Saharia et al.,
2022).

In conclusion, our model exhibits notable strengths in image synthesis, but it is not exempt from
certain limitations. The challenges associated with synthesizing intricate structures, achieving perfect
photorealism, further addressing biases, mitigating concept bleeding, and improving text rendering
highlight avenues for future research and optimization.

15



Published as a conference paper at ICLR 2024

B DIFFUSION MODELS

In this section, we give a concise summary of DMs. We consider the continuous-time DM frame-
work (Song et al., 2020b) and follow the presentation of Karras et al. (2022). Let pdata(x0) denote
the data distribution and let p(x;σ) be the distribution obtained by adding i.i.d. σ2-variance Gaus-
sian noise to the data. For sufficiently large σmax, p(x;σmax2) is almost indistinguishable from
σ2
max-variance Gaussian noise. Capitalizing on this observation, DMs sample high variance Gaussian

noise xM ∼ N (0, σmax2) and sequentially denoise xM into xi ∼ p(xi;σi), i ∈ {0, . . . ,M}, with
σi < σi+1 and σM = σmax. For a well-trained DM and σ0 = 0 the resulting x0 is distributed
according to the data.

Sampling. In practice, this iterative denoising process explained above can be implemented through
the numerical simulation of the Probability Flow ordinary differential equation (ODE) (Song et al.,
2020b)

dx = −σ̇(t)σ(t)∇x log p(x;σ(t)) dt, (1)

where ∇x log p(x;σ) is the score function (Hyvärinen & Dayan, 2005). The schedule σ(t): [0, 1] →
R+ is user-specified and σ̇(t) denotes the time derivative of σ(t). Alternatively, we may also
numerically simulate a stochastic differential equation (SDE) (Song et al., 2020b; Karras et al., 2022):

dx =−σ̇(t)σ(t)∇x log p(x;σ(t)) dt︸ ︷︷ ︸
Probability Flow ODE; see Eq. (1)

−β(t)σ2(t)∇x log p(x;σ(t)) dt+
√
2β(t)σ(t) dωt︸ ︷︷ ︸

Langevin diffusion component

, (2)

where dωt is the standard Wiener process. In principle, simulating either the Probability Flow ODE
or the SDE above results in samples from the same distribution.

Training. DM training reduces to learning a model sθ(x;σ) for the score function ∇x log p(x;σ).
The model can, for example, be parameterized as ∇x log p(x;σ) ≈ sθ(x;σ) = (Dθ(x;σ) −
x)/σ2 (Karras et al., 2022), where Dθ is a learnable denoiser that, given a noisy data point x0 + n,
x0 ∼ pdata(x0), n ∼ N

(
0, σ2Id

)
, and conditioned on the noise level σ, tries to predict the clean x0.

The denoiser Dθ (or equivalently the score model) can be trained via denoising score matching (DSM)

E(x0,c)∼pdata(x0,c),(σ,n)∼p(σ,n)
[
λσ∥Dθ(x0 + n;σ, c)− x0∥22

]
, (3)

where p(σ,n) = p(σ)N
(
n;0, σ2

)
, p(σ) is a distribution over noise levels σ, λσ:R+ → R+ is a

weighting function, and c is an arbitrary conditioning signal, e.g., a class label, a text prompt, or a
combination thereof. In this work, we choose p(σ) to be a discrete distributions over 1000 noise
levels and set λσ = σ−2 similar to prior works (Ho et al., 2020; Rombach et al., 2021; Sohl-Dickstein
et al., 2015).

Classifier-free guidance. Classifier-free guidance (Ho & Salimans, 2022) is a technique to guide the
iterative sampling process of a DM towards a conditioning signal c by mixing the predictions of a
conditional and an unconditional model

Dw(x;σ, c) = (1 + w)D(x;σ, c)− wD(x;σ), (4)

where w ≥ 0 is the guidance strength. In practice, the unconditional model can be trained jointly
alongside the conditional model in a single network by randomly replacing the conditional signal
c with a null embedding in Eq. (3), e.g., 10% of the time (Ho & Salimans, 2022). Classifier-free
guidance is widely used to improve the sampling quality, trading for diversity, of text-to-image
DMs (Nichol et al., 2021; Rombach et al., 2021).

16



Published as a conference paper at ICLR 2024

C COMPARISON TO THE STATE OF THE ART

Figure 9: Qualitative comparison of SDXL with DeepFloyd IF, DALLE-2, Bing Image Creator, and Midjourney
v5.2. To mitigate any bias arising from cherry-picking, Parti (P2) prompts were randomly selected. Seed 3
was uniformly applied across all models in which such a parameter could be designated. For models without a
seed-setting feature, the first generated image is included.

17



Published as a conference paper at ICLR 2024

D COMPARISON TO MIDJOURNEY V5.1

D.1 OVERALL VOTES

To asses the generation quality of SDXL we perform a user study against the state of the art text-to-
image generation platform Midjourney1. As the source for image captions we use the PartiPrompts
(P2) benchmark (Yu et al., 2022), that was introduced to compare large text-to-image model on
various challenging prompts.

For our study, we choose five random prompts from each category, and generate four 1024× 1024
images by both Midjourney (v5.1, with a set seed of 2) and SDXL for each prompt. These images
were then presented to the AWS GroundTruth taskforce, who voted based on adherence to the prompt.
The results of these votes are illustrated in Fig. 10. Overall, there is a slight preferance for SDXL over
Midjourney in terms of prompt adherence.

Vanilla

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Frequency →

Figure 10: Results from 17,153 user preference comparisons between SDXL v0.9 and Midjourney v5.1, which
was the latest version available at the time. The comparisons span all “categories” and “challenges” in the
PartiPrompts (P2) benchmark. Notably, SDXL was favored 54.9% of the time over Midjourney V5.1. Preliminary
testing indicates that the recently-released Midjourney V5.2 has lower prompt comprehension than its predecessor,
but the laborious process of generating multiple prompts hampers the speed of conducting broader tests.

D.2 CATEGORY & CHALLENGE COMPARISONS ON PARTIPROMPTS (P2)

Each prompt from the P2 benchmark is organized into a category and a challenge, each focus on
different difficult aspects of the generation process. We show the comparisons for each category
(Fig. 11) and challenge (Fig. 12) of P2 below. In four out of six categories SDXL outperforms
Midjourney, and in seven out of ten challenges there is no significant difference between both models
or SDXL outperforms Midjourney.

Food & Beverage

Animals

Artifacts

Arts

Illustrations

Abstract

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Frequency →

Figure 11: User preference comparison of SDXL (without refinement model) and Midjourney V5.1 across
particular text categories. SDXL outperforms Midjourney V5.1 in all but two categories.

1We compare against v5.1 since that was the best version available at that time.

18



Published as a conference paper at ICLR 2024

Imagination

Writing & Symbols

Quantity

Complex

Fine-grained Detail

Perspective

Style & Format

Simple Detail

Linguistic Structures

Properties & Positioning

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Frequency →

Figure 12: Preference comparisons of SDXL (with refinement model) to Midjourney V5.1 on complex prompts.
SDXL either outperforms or is statistically equal to Midjourney V5.1 in 7 out of 10 categories.

E ON FID ASSESSMENT OF GENERATIVE TEXT-IMAGE FOUNDATION
MODELS

Figure 13: Plotting FID vs CLIP score for different cfg scales. SDXL shows only slightly improved text-
alignment, as measured by CLIP-score, compared to previous versions that do not align with the judgement of
human evaluators. Even further and similar as in Kirstain et al. (2023), FID are worse than for both SD-1.5 and
SD-2.1, while human evaluators clearly prefer the generations of SD-XL over those of these previous models.

Throughout the last years it has been common practice for generative text-to-image models to assess
FID- (Heusel et al., 2017) and CLIP-scores (Radford et al., 2021; Ramesh et al., 2021) in a zero-shot
setting on complex, small-scale text-image datasets of natural images such as COCO (Lin et al., 2015).
However, with the advent of foundational text-to-image models (Saharia et al., 2022; Ramesh et al.,
2022; Rombach et al., 2021; Balaji et al., 2022), which are not only targeting visual compositionality,
but also at other difficult tasks such as deep text understanding, fine-grained distinction between
unique artistic styles and especially a pronounced sense of visual aesthetics, this particular form
of model evaluation has become more and more questionable. Kirstain et al. (2023) demonstrates
that COCO zero-shot FID is negatively correlated with visual aesthetics, and such measuring the
generative performance of such models should be rather done by human evaluators. We investigate
this for SDXL and visualize FID-vs-CLIP curves in Fig. 13 for 10k text-image pairs from COCO (Lin
et al., 2015). Despite its drastically improved performance as measured quantitatively by asking
human assessors (see Fig. 1) as well as qualitatively (see Fig. 4 and Fig. 15), SDXL does not achieve
better FID scores than the previous SD versions. Contrarily, FID for SDXL is the worst of all three
compared models while only showing slightly improved CLIP-scores (measured with OpenClip
ViT g-14). Thus, our results back the findings of Kirstain et al. (2023) and further emphasize the need

19



Published as a conference paper at ICLR 2024

for additional quantitative performance scores, specifically for text-to-image foundation models. All
scores have been evaluated based on 10k generated examples.

20



Published as a conference paper at ICLR 2024

F ADDITIONAL COMPARISON BETWEEN SINGLE- AND TWO-STAGE SDXL
PIPELINE

Figure 14: SDXL samples (with zoom-ins) without (left) and with (right) the refinement model discussed.
Prompt: (top) “close up headshot, futuristic young woman, wild hair sly smile in front of gigantic UFO, dslr,
sharp focus, dynamic composition” (bottom) “Three people having dinner at a table at new years eve, cinematic
shot, 8k”. Zoom-in for details.

21



Published as a conference paper at ICLR 2024

G COMPARISON BETWEEN SD 1.5 VS. SD 2.1 VS. SDXL

’Vibrant portrait painting of Salvador Dalí
with a robotic half face.’

’A capybara made of voxels
sitting in a field.’

SD
1-

5
SD

2-
1

SD
X

L

’Cute adorable little goat, unreal engine,
cozy interior lighting, art station, detailed’

digital painting, cinematic, octane rendering.’

’A portrait photo of a kangaroo wearing an orange hoodie
and blue sunglasses standing on the grass in front of the Sydney

Opera House holding a sign on the chest that says "SDXL"!.’

SD
1-

5
SD

2-
1

SD
X

L

Figure 15: Additional results for the comparison of the output of SDXL with previous versions of Stable
Diffusion. For each prompt, we show 3 random samples of the respective model for 50 steps of the DDIM
sampler Song et al. (2020a) and cfg-scale 8.0 Ho & Salimans (2022)

22



Published as a conference paper at ICLR 2024

’Monster Baba yaga house with in a forest,
dark horror style, black and white.’

’A young badger delicately sniffing a
yellow rose, richly textured oil painting.’

SD
1-

5
SD

2-
1

SD
X

L

Figure 16: Additional results for the comparison of the output of SDXL with previous versions of Stable
Diffusion. For each prompt, we show 3 random samples of the respective model for 50 steps of the DDIM
sampler Song et al. (2020a) and cfg-scale 8.0 Ho & Salimans (2022).

H MULTI-ASPECT TRAINING HYPERPARAMETERS

We use the following image resolutions for mixed-aspect ratio finetuning as described in Sec. 2.3.

Height Width Aspect Ratio
512 2048 0.25
512 1984 0.26
512 1920 0.27
512 1856 0.28
576 1792 0.32
576 1728 0.33
576 1664 0.35
640 1600 0.4
640 1536 0.42
704 1472 0.48
704 1408 0.5
704 1344 0.52
768 1344 0.57
768 1280 0.6
832 1216 0.68
832 1152 0.72
896 1152 0.78
896 1088 0.82
960 1088 0.88
960 1024 0.94

Height Width Aspect Ratio
1024 1024 1.0
1024 960 1.07
1088 960 1.13
1088 896 1.21
1152 896 1.29
1152 832 1.38
1216 832 1.46
1280 768 1.67
1344 768 1.75
1408 704 2.0
1472 704 2.09
1536 640 2.4
1600 640 2.5
1664 576 2.89
1728 576 3.0
1792 576 3.11
1856 512 3.62
1920 512 3.75
1984 512 3.88
2048 512 4.0

23



Published as a conference paper at ICLR 2024

I PSEUDO-CODE FOR CONDITIONING CONCATENATION ALONG THE
CHANNEL AXIS

1 from einops import rearrange
2 import torch
3

4 batch_size=16
5 # channel dimension of pooled output of text encoder(s)
6 pooled_dim = 512
7

8 def fourier_embedding(inputs, outdim=256, max_period=10000):
9 """

10 Classical sinusoidal timestep embedding
11 as commonly used in diffusion models
12 :param inputs: batch of integer scalars shape [b,]
13 :param outdim: embedding dimension
14 :param max_period: max freq added
15 :return: batch of embeddings of shape [b, outdim]
16 """
17 ...
18

19 def cat_along_channel_dim(
20 x:torch.Tensor,) -> torch.Tensor:
21 if x.ndim == 1:
22 x = x[...,None]
23 assert x.ndim == 2
24 b, d_in = x.shape
25 x = rearrange(x, "b din -> (b din)")
26 # fourier fn adds additional dimension
27 emb = fourier_embedding(x)
28 d_f = emb.shape[-1]
29 emb = rearrange(emb, "(b din) df -> b (din df)",
30 b=b, din=d_in, df=d_f)
31 return emb
32

33 def concat_embeddings(
34 # batch of size and crop conditioning cf. Sec. 3.2
35 c_size:torch.Tensor,
36 c_crop:torch.Tensor,
37 # batch of aspect ratio conditioning cf. Sec. 3.3
38 c_ar:torch.Tensor,
39 # final output of text encoders after pooling cf. Sec. 3.1
40 c_pooled_txt:torch.Tensor, ) -> torch.Tensor:
41 # fourier feature for size conditioning
42 c_size_emb = cat_along_channel_dim(c_size)
43 # fourier feature for size conditioning
44 c_crop_emb = cat_along_channel_dim(c_crop)
45 # fourier feature for size conditioning
46 c_ar_emb = cat_along_channel_dim(c_ar)
47 # the concatenated output is mapped to the same
48 # channel dimension than the noise level conditioning
49 # and added to that conditioning before being fed to the unet
50 return torch.cat([c_pooled_txt,
51 c_size_emb,
52 c_crop_emb,
53 c_ar_emb], dim=1)
54

55 # simulating c_size and c_crop as in Sec. 3.2
56 c_size=torch.zeros((batch_size, 2)).long()
57 c_crop=torch.zeros((batch_size, 2)).long()
58 # simulating c_ar and pooled text encoder output as in Sec. 3.3
59 c_ar=torch.zeros((batch_size, 2)).long()
60 c_pooled=torch.zeros((batch_size, pooled_dim)).long()
61

62 # get concatenated embedding
63 c_concat = concat_embeddings(c_size, c_crop, c_ar, c_pooled)

Figure 17: Python code for concatenating the additional conditionings introduced in Secs. 2.1 to 2.3 along the
channel dimension.

24



Published as a conference paper at ICLR 2024

Config Batch Size EMA Global Steps rFID [↓] PSNR [↑] SSIM [↑] LPIPS [↓]

B 256 ✗ 500k 7.52 24.30 0.71 1.27
Be 256 ✓ 500k 7.35 24.33 0.72 1.24

A1 8 ✗ 500k 9.14 24.42 0.72 1.32
A1e 8 ✓ 500k 8.85 24.51 0.72 1.29
A2 8 ✗ 1.9M 6.28 25.05 0.74 1.08
A2e 8 ✓ 1.9M 5.57 25.05 0.74 1.07

Table 4: Evaluting two AE models trained with different batch sizes, see App. J for details.

J AUTOENCODER TRAININGS-HYPERPARAMETER

To assess the effect of (1) larger batch size and (2) using an exponential moving average (EMA) of
the weights discussed in Sec. 2.4, we conduct two experiments, where we train the autoencoder (from
scratch) on with (a) a total batch size of 8 and (b) a total batch size of 256. These models are trained
as an exploratory experiment and not trained until convergence. For both experiments, we evaluate
the reconstruction performance on a fixed 10k subset of the COCO2014 validation set, comparing
EMA and non-EMA weights for both models. We report rFID, PSNR, SSIM, and LPIPS in a Tab. 4.
Example reconstructions can be seen in Fig. 18.

We see, that:

1. In all our evaluations the EMA variants give a consistent improvement compared to the
non-EMA variant. This effect is especially amplified with more update steps (compare A1(e)
and A2(e) in Tab. 4).

2. To evaluate the effect of the large batch size we first compare the models when they are both
trained for the same number of gradient updates (A1(e) and B(e)): In this case, the large
batch size provides a clear benefit in terms of rFID: 7.34 vs 8.85, while the other metrics are
relatively close. However, when we evaluate the models after they have trained for roughly
the same wall time (500k (B) and 1.9M (A2) update steps), the larger number of updates is
a more important factor, with A2e outperforming Be in all metrics.
We believe that training until convergence might change this outcome, since we can see
from the B/A1 evaluation that the large batch size provide a better update direction for the
weights. This will likely help in finding a loss-minimum.

From this experiment, we conclude that EMA-tracking has a significant effect on our performance,
but we believe that the choice of the trade-off between batch size and update steps requires more
thorough investigation in a future work.

25



Published as a conference paper at ICLR 2024

Figure 18: Qualitative evaluation of the AEs trained for App. J. The rows correspond to: real images, B, Be, A1,
A1e, A2, A2e (cf. Tab. 4).

26


