
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

WaveDN: A Wavelet-based Training-free Zero-shot Enhancement
for Vision-Language Models

Anonymous Authors

ABSTRACT
Vision-Language Models (VLMs) built on contrastive learning, such
as CLIP, demonstrate great transferability and excel in downstream
tasks like zero-shot classification and retrieval. To further enhance
the performance of VLMs, existing methods have introduced ad-
ditional parameter modules or fine-tuned VLMs on downstream
datasets. However, thesemethods often fall short in scenarios where
labeled data for downstream tasks is either unavailable or insuf-
ficient for fine-tuning, and the training of additional parameter
modules may considerably impair the existing transferability of
VLMs. To alleviate this issue, we introduce WaveDN, a wavelet-
based distribution normalization method that can boost the VLMs’
performance on downstream tasks without parametric modules or
labeled data. Initially, wavelet distributions are extracted from the
embeddings of the sampled, unlabeled test samples. Subsequently,
WaveDN conducts a hierarchical normalization across the wavelet
coefficients of all embeddings, thereby incorporating the distri-
butional characteristics of the test data. Finally, the normalized
embeddings are reconstructed via inverse wavelet transformation,
facilitating the computation of similarity metrics between the sam-
ples. Through extensive experiments on two downstream tasks,
using a total of 14 datasets covering text-image and text-audio
modal data, WaveDN has demonstrated superiority compared to
state-of-the-art methods.

CCS CONCEPTS
• Computing methodologies→ Computer vision.

KEYWORDS
vision language, test-time augmentation, multi-modal, zero-shot
recognition, wavelet transform

1 INTRODUCTION
Large-scale self-supervised pre-training has been extensively val-
idated as highly effective and reliable through notable contribu-
tions such as GPT-4[1], ERNIE[2], Sora[3], and CLIP[4]. The use
of pre-trained models on open-set tasks has shown promising re-
sults, with transferability that rivals supervised methods designed
for closed-set tasks. In the field of computer vision, Contrastive
Language-Image Pre-training (CLIP)[4] has demonstrated its effi-
cient and accurate open-set recognition capability across various
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Figure 1: Training-free zero-shot enhancement using
WaveDN . We propose WaveDN, a method for enhancing
the zero-shot transfer abilities of VLMs, without training.
By performing wavelet transformation and coefficient fea-
ture extraction on a small amount of unlabeled test data
embeddings, the estimated wavelet distribution coefficients
are obtained. Before calculating similarity, utilize the esti-
mation coefficients from the previous stage to transform
each embedding using hierarchical normalization, thereby
enhancing performance during testing.

visual tasks such as image classification, instance segmentation,
object detection, and more downstream tasks. CLIP is trained on
an extensive image-text corpus utilizing the InfoNCE Loss[5, 6],
which enhances the similarity among positive sample pairs while
diminishing the similarity among negative sample pairs, thereby
establishing a meaningful alignment between the visual and lin-
guistic modalities. During model evaluation, solely the dot product
between image and text features is requisite for computing their
similarity.

Presently, a multitude of advancements have been implemented
to refine CLIP, including methods rooted in few-shot learning[7–
9] and model fine-tuning[10–12], all aimed at augmenting CLIP’s
efficacy across downstream tasks. Nevertheless, these strategies,
which often necessitate supplementary parameter modules or rely
on annotated test data, pose significant obstacles to the inherent effi-
ciency and generalization capacity of CLIP. To circumvent the intro-
duction of extra parameters and labeled data, testing enhancement
techniques like CALIP[13] and Distribution Normalization(DN)[14]
have been introduced. These methods focus on enhancing the zero-
shot capability of the model by refining and optimizing the features
extracted by the text and image encoders.

The research of DN[14] indicates that, during training, the model
takes into account information from both positive and negative
sample pairs. However, during testing, using only the dot product
between two modals’ embeddings is a zeroth-order approximation
of the InfoNCE loss. The absence of distribution data from the
test dataset in similarity calculations results in information loss.
This dot product-based similarity calculation method has not fully
utilized the model’s capabilities. The DN method introduces the
mean of test samples during the similarity calculation phase to
align the loss functions between testing and training.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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However, while this method partially addresses the issue of mis-
aligned testing loss functions, performing operations on features
with high semantic information, such as subtracting the mean, will
lead to additional information loss. The features of the test sample
will be compromised due to additional processing. The results in
Figure. 2 can better illustrate this point. After implementing the
DN, the proportion of classes exhibiting positive effects surpasses
those with negative effects, yielding an enhancement in overall
recognition accuracy at the dataset level. Nonetheless, at the in-
dividual class accuracy level, a considerable fraction of categories
exhibit reduced recognition accuracy, with reductions reaching up
to 30%. This decline is attributed to substantial degradation in the
representation quality of the test data.

To tackle this issue, we introduce WaveDN, which employs
wavelet transformation to decompose the test samples’ embeddings,
facilitating a more detailed hierarchical normalization process that
maximally preserves the features of the test samples when introduc-
ing the test data distribution. The method’s brief process is shown
in Figure.1. Initially, a wavelet decomposition based wavelet coeffi-
cient mean estimation is performed. Similar to DN,WaveDN’s mean
estimation only requires sampling a small portion of unlabeled test
data to obtain a convergent estimation result, as confirmed by ex-
periments. Subsequently, during the inference stage, the previous
stage’s wavelet coefficients are used to hierarchically normalize the
embeddings of the text or images to be predicted. In this process,
each embedding is transformed into multiple wavelet coefficients,
providing a more detailed reflection of its information. A weighted
normalization usingwavelet coefficient similarity is then conducted,
aiming to preserve the information content of the test data while
introducing data distribution information. As shown in Figure.2,
WaveDN has a lesser negative impact on fewer classes and a positive
impact on more classes, thereby to some extent avoiding represen-
tation degradation of test samples and achieving better utilization
of test data.

The overall process of the WaveDN framework is zero-shot,
parameter-free, and does not require additional training, which is
consistent with CALIP[13] and DN[14].Wavelet transformation can
effectively handle encoding results with high information density.
By considering embedding generated by vision-language models as
a time series signal and performingwavelet decomposition, informa-
tion at different frequencies and times can be obtained, providing a
more precise and reliable reference for subsequent transformations.
Through our meticulous calculations, WaveDN has demonstrated
the capability to strike a delicate equilibrium between aligning the
loss function through the incorporation of negative sample infor-
mation and mitigating information loss in normalized test samples,
consequently mitigating the adverse effects of sample mean intro-
duction. As depicted in Figure 2, our methodology demonstrates
enhanced efficacy relative to DN, achieving favorable results de-
void of significant adverse effects, such as a marked reduction in
recognition accuracy across specific categories. WaveDN not only
augments the overall accuracy of category recognition but also pre-
serves the generalization capabilities of VLMswithout undermining
their robust generalization capacity.

To substantiate the efficacy and supremacy of our approach, we
employed WaveDN in the context of two downstream tasks: Zero-
shot classification and Cross-modal Retrieval, juxtaposed against

Figure 2: Impact of Top1 Accuracy on different classes of
Cifar100. The height of each column represents the number
of categories influenced to some extent. The horizontal axis
values represent the impact on the top 1 accuracy of the class
level after using a certain method. Negative values indicate
a decrease in class accuracy after using the method, while
positive values indicate improvement.

cutting-edge methodologies. Our experimental framework encom-
passed the utilization of diverse CLIP visual encoder architectures,
with a focus on augmenting modal alignment across text, image,
and audio pre-training encoders. Findings derived from evaluations
conducted on 12 image datasets and 2 audio datasets unequivo-
cally underscore the overarching superiority of WaveDN. Notably,
for some benchmarks, it surpassed certain existing approaches
that necessitate few-shot fine-tuning. Furthermore, comprehen-
sive ablation analyses corroborate the computational efficiency and
the relatively straightforward and robust implementability of our
methodology.

The main contributions of WaveDN:
• WaveDN creatively employs wavelet transformation to de-
compose the information-rich embeddings extracted by the
VLM model, supporting more detailed analysis and compu-
tations for distribution normalization.

• Wavelet-based feature extraction and hierarchical normal-
ization can better introduce the test data distribution during
the testing phase. This approach aligns with the InfoNCE
loss for VLM, while maintaining the fidelity of the original
data.

• Experiments across a multitude of datasets has substanti-
ated the superior performance and multimodal scalability
of the WaveDN. WaveDN is a parameter-free, training-free,
and computationally efficient VLM zero-shot enhancement
method.

2 RELATEDWORK
2.1 Vision-Language models’ downstream

augmentation
This zero-shot transfer capability positions CLIP[4] on par with
supervised models tailored for specific tasks. Efforts to augment the
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prowess of Visual Language Models have spurred the development
of innovative methodologies. Prompt-based approaches[7, 9, 15],
for instance, strive to refine input data, bridging the gap between
the distribution of test data and that of the training data for VLMs.
Fine-tuning techniques[10, 11, 16] have also emerged as a means to
enhance performance on downstream tasks while preserving the
original generalization capacities of VLMs. In a bid to enhance the
accessibility and versatility of models, researchers have proposed
parameter-free and training-free methods. Noteworthy examples
include CALIP[13], which introduces a parameter-free attention
mechanism, and SuS-X[17], which adopts a name-only strategy to
construct image support sets. There are also some works[18, 19]
that leverage the power of large language models to enrich text
labels, maximizing information utilization during testing.

Moreover, Distribution normalization[14] introduces a novel
approach aligning InfoNCE loss[20] during testing, effectively har-
nessing distribution information from test data without the need
for labeled data. In this paper, we explore a distribution estimation
approach utilizing wavelet decomposition, accompanied by a hier-
archical normalization method that exerts minimal impact on the
features of test data relative to the DN method.

2.2 Wavelet method for Deep learning
Currently, many studies utilize Discrete Wavelet Transform (DWT)
to enhance the efficiency of deep learning models. The Grid-based
neural radiation field wavelet transformation method [21] dimin-
ishes the computational demands of neural rendering while preserv-
ing the benefits of supplementary data structures. Discriminative
Wavelet Sub-bands [22] utilize unsampled 2D discrete wavelet trans-
formation for the recognition of deformed facial images. HifaFace
[23] employs wavelet transformation to convert images into multi-
ple frequency domains, wherein the high-frequency components
facilitate the recovery of detailed features. NEGAN, a noise prior
learner [24], predominantly aligns the high-frequency segments of
noisy images using discrete wavelet transformation (DWT). DaReN-
eRF [25] implements Inverse Dual-Tree Complex Wavelet Trans-
formation (DTCWT) to reconstruct plane-based information, with
features for each spatiotemporal point derived by amalgamating
vectors from these reconstituted planes. The DWT-FFC frequency
branch [26] leverages DWT to extract complex high-frequency
features. In our research, we treat the embeddings produced by
VLM encoders as one-dimensional discrete time series signals. We
apply discrete wavelet transformation to these signals, extracting
the wavelet distribution coefficients. This process decomposes em-
beddings, which are rich in semantic information, into finer scales,
thereby facilitating more precise calculations and hierarchical nor-
malization operations.

3 METHOD
3.1 Preliminary
3.1.1 CLIP. CLIP is a large-scale visual languagemodel pre-trained
on 400 million text-image pairs. To achieve cross-modal feature
extraction and prediction, CLIP consists of a text encoder and a
visual encoder, donated as 𝐸𝑇 and 𝐸𝐼 . The text segment employs
a transformer encoder[27] for text encoding, whereas the image
segment utilizes ResNet[28] or Vision-transformer[29] structures

for image encoding, enabling it to excel in cross-domain image and
text processing. For an image 𝑖 and a text 𝑡 , the image embedding
𝐼 ∈ 𝑅1×𝐶 and text embedding𝑇 ∈ 𝑅1×𝐶 can be obtained as follows:

𝐼 = 𝐸𝐼 (𝑖) (1)

𝑇 = 𝐸𝑇 (𝑡) (2)
As shown in Eq. 3, the similarity between text embedding and
image embedding is calculated through dot product. In downstream
tasks, the similarity used for prediction is obtained through the
dot product of text embeddings and image embeddings after L2
normalization.

𝑀𝑜𝑟𝑔 = 𝐿2(𝐼 )𝑇 · 𝐿2(𝑇 ) (3)
For the image recognition task, the goal is to determine which

of the 𝐾 categories the test image belongs to. The text prompt
contains the names of the 𝐾 categories as tokens. The encoded
𝐹𝑇 = {𝑇1,𝑇2, . . . ,𝑇𝐾 } contains 𝐾 embeddings, where the j-th vector
in the set 𝐹𝑇 ∈ 𝑅𝐾×𝐶 represents the features of prompts containing
the name of the j-th category. For a test image embedding 𝐼1 ∈ 𝑅1×𝐶 .
Calculating similarity using Eq.3 results in a similarity matrix𝑀 ∈
𝑅1×𝐶 , where the text prompt corresponding to the highest similarity
value in the matrix is the classification result for this image.

3.1.2 Distribution Normalization. During training, CLIP utilizes
the Information Noise Contrastive Estimation(InfoNCE)[5, 6] loss
function, which considers both positive and negative sample pairs.
However, during testing, only the dot product calculation using Eq.
3 is used as a similarity calculation method, which has been proven
in DN[14] to be a zeroth-order approximation of InfoNCE loss. This
research also highlights that using zeroth-order approximation to
calculate similarity leads to the loss of information regarding the
distribution of negative samples, which is crucial for predictions. To
alleviate this issue, during the prediction phase, the DN method re-
places the approach of Eq. 3 with the similarity calculation method
from Eq. 4 to introduce distribution information of negative sample
pairs, which has been proven to be a reliable first-order approxima-
tion of InfoNCE loss. 𝜇𝐼 and 𝜇𝑇 are estimated mean values obtained
through sampling a small number of test samples’ embeddings.

𝑀𝐷𝑁 = 𝐿2(𝐼 − 1
2
𝜇𝐼 )𝑇 · 𝐿2(𝑇 − 1

2
𝜇𝑇 ) (4)

3.1.3 Wavelet transform. Wavelet decomposition provides a pow-
erful tool for processing and analyzing various signals by offering
a method for local analysis in both time and frequency domains
simultaneously. Its multi-scale nature demonstrates advantages
that traditional methods cannot match when dealing with non-
stationary signals with complex frequency characteristics. The ul-
timate goal of wavelet decomposition is to decompose any time-
domain signal 𝑥 (𝑡) into multiple wavelet coefficients containing
different information of the signal, including approximation coeffi-
cients {𝐴𝑙 , 𝐴𝑙−1, . . . , 𝐴1}, and detail coefficients {𝐷𝑙 , 𝐷𝑙−1, . . . , 𝐷1}
where 𝑙 represents the number of wavelet decomposition levels.
Once the wavelet basis is selected, the low-pass filter coefficients ℎ𝑘
and high-pass filter coefficients𝑔𝑘 can be determined. The first-level
decomposition in the iterative process of wavelet decomposition is
as follows:

𝐴1 =
∑︁

𝑘
ℎ𝑘 ∗ 𝑥 (2𝑡 − 𝑘) (5)

𝐷1 =
∑︁

𝑘
𝑔𝑘 ∗ 𝑥 (2𝑡 − 𝑘) (6)
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Figure 3: The pipeline of WaveDN. We introduce WaveDN, a parameter-free zero-shot enhancement method for VLM. During
testing, we apply the Discrete Wavelet Transformation(DWT) to the embeddings of multimodal data to obtain the wavelet
coefficient set, then sample a small number of coefficients to obtain the mean wavelet distribution of the test data. Then,
normalize the wavelet coefficients of all data using a hierarchical normalization algorithm. Finally, WaveDN restores the data
representation to its original dimensions through Inverse Discrete Wavelet Transformation(IDWT) for similarity calculation.

For each subsequent level 𝑢 (2 ≤ 𝑢 ≤ 𝑙), the same decomposition
process is applied to the previous approximation coefficient 𝑐𝐴𝑢−1
to obtain new approximation coefficient 𝑐𝐴𝑢 and detail coefficient
𝑐𝐷𝑢 :

𝐴𝑢 =
∑︁

𝑘
ℎ𝑘 ∗𝐴𝑢−1 (2𝑡 − 𝑘) (7)

𝐷𝑢 =
∑︁

𝑘
𝑔𝑘 ∗ 𝐷𝑢−1 (2𝑡 − 𝑘) (8)

The highest level wavelet approximation coefficient 𝐴𝑙 and all
wavelet detail coefficients {𝐷𝑙 , 𝐷𝑙−1, . . . , 𝐷1} can represent all the
information of the original signal. In the following text, we can
represent the process of discrete wavelet transformation(DWT) as
Eq. 9, where the embedding 𝜈 output by the encoder is decomposed
through DWT into 𝑙 + 1 wavelet coefficients E = {𝑒1, 𝑒2, . . . , 𝑒𝑙+1}.

E = {𝐴𝑙 , 𝐷𝑙 , 𝐷𝑙−1, . . . , 𝐷1} = 𝐷𝑊𝑇 (𝜈) (9)

The inverse discrete wavelet transform(IDWT) can be performed
by combining the scaling function 𝜃 𝑗,𝑘 (𝑡) and wavelet function
𝜑 𝑗,𝑘 (𝑡) of the selected wavelet basis as shown in Eq. 10. In the
following text, we can abbreviate this process as shown in the form
of Eq. 11

𝑥 (𝑡) =
∑︁

𝑘
𝐴𝑙,𝑘 ∗ 𝜃𝑙,𝑘 (𝑡) +

∑︁𝑙

𝑗=1

∑︁
𝑘
𝐷 𝑗,𝑘 ∗ 𝜑 𝑗,𝑘 (𝑡) (10)

𝜈 = 𝐼𝐷𝑊𝑇 (E) (11)

3.2 Frameworks of WaveDN
Introducing a distribution with negative sample information is cru-
cial during the testing phase to align with InfoNCE loss. However,
it is essential to minimize the disruption of the rich information
content in the embeddings. Based on this concept, we propose
the WaveDN method, as illustrated in Figure. 3. It involves two
main steps: extracting wavelet distributions and hierarchical nor-
malization. The former aims to estimate a distribution with less
information loss compared to directly taking the mean. The latter

incorporates this distribution estimation into the similarity calcula-
tion process during the testing phase to utilize information from the
negative samples while also ensuring the maximum preservation
of the test sample’ embeddings.

3.2.1 Wavelet Distribution Extraction. By sampling a finite num-
ber of unlabeled samples, we can obtain vectors that approximate
convergence and contain distribution characteristics. The exper-
imentation regarding the sampling quantity is discussed in the
section 4.4.1. After random sampling, 𝑁 images and text are ob-
tained, which are then processed through the corresponding en-
coder for feature extraction, resulting in an image embedding set
{𝐼1, 𝐼2, . . . , 𝐼𝑁 } and a text embedding set {𝑇1,𝑇2, . . . ,𝑇𝑁 }. By per-
forming DWT with 𝑙 level to an embedding 𝐼𝑖 in the image feature
sets, it can be decomposed into a set with 𝑙 + 1 wavelet coefficients,
donated as A𝑖 = {𝛼𝑖,1, 𝛼𝑖,2, . . . , 𝛼𝑖,𝑙+1}. The text feature set under-
goes the same transformation as described above. A text feature 𝑇𝑖
will be decomposed as B𝑖 . The process can be represented as:

A𝑖 = 𝐷𝑊𝑇 (𝐼𝑖 ) = {𝛼𝑖,1, 𝛼𝑖,2, . . . , 𝛼𝑖,𝑙+1} (12)

B𝑖 = 𝐷𝑊𝑇 (𝑇𝑖 ) = {𝛽𝑖,1, 𝛽𝑖,2, . . . , 𝛽𝑖,𝑙+1} (13)
Decomposing the embedding into multiple wavelet coefficients,

each representing partial information of the embedding at different
scales and positions. Through wavelet decomposition, the embed-
ding with high information density is to some extent unfolded. The
process of extracting the mean distribution is to take the average
of wavelet coefficients at the same level. By performing operations
as shown in Eq. 14 and Eq. 15, wavelet average distributions of
images A𝐴𝑣𝑔 and texts B𝐴𝑣𝑔 are obtained for the hierarchical nor-
malization in the next step. This feature extraction method, first
performing DWT and then taking the mean, can maximize the
preservation of local information for each sample. Compared to
directly averaging the embedding, which can only provide over-
all average information, our method can achieve more accurate
distribution feature extraction.
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A𝐴𝑣𝑔 = {
∑𝑁
𝑖=1 𝛼𝑖,1

𝑁
,

∑𝑁
𝑖=1 𝛼𝑖,2

𝑁
, . . . ,

∑𝑁
𝑖=1 𝛼𝑖,𝑙+1
𝑁

} (14)

B𝐴𝑣𝑔 = {
∑𝑁
𝑖=1 𝛽𝑖,1

𝑁
,

∑𝑁
𝑖=1 𝛽𝑖,2

𝑁
, . . . ,

∑𝑁
𝑖=1 𝛽𝑖,𝑙+1
𝑁

} (15)

3.2.2 Hierarchical normalization. The main process of hierarchi-
cal normalization is shown in Figure. 3 on the right. For a gen-
eral task of downstream inference, the similarity matrix between
𝑖 image embeddings 𝐹𝐼 = {𝐼1, 𝐼2, . . . , 𝐼𝑖 } and 𝑗 text embeddings
𝐹𝑇 = {𝑇1,𝑇2, . . . ,𝑇𝑗 } needs to be calculated. Initially, transform all
embeddings into coefficients sets using DWT, resulting in image
sets A and text sets B.

A = {A1, . . . ,A𝑖 } = {𝐷𝑊𝑇 (𝐼1), . . . , 𝐷𝑊𝑇 (𝐼𝑖 )} (16)

B = {B1, . . . ,B𝑗 } = {𝐷𝑊𝑇 (𝑇1), . . . , 𝐷𝑊𝑇 (𝑇𝑗 )} (17)
After performing hierarchical normalization computation as

shown in Algorithm 1, the normalized coefficient sets A′ and B′
are obtained. Specifically, the hierarchical normalization operation
involves applying a weighted normalization to each wavelet co-
efficient sequence in the wavelet coefficient set, calculating the
similarity between the wavelet coefficients of each layer of the test
sample and the mean wavelet coefficients extracted earlier for the
corresponding layer as the normalization weight. Also, there is
a fixed constant 𝜆 that will be used in the normalization process,
whose value is determined through experiments.

By performing weighted normalization of wavelet coefficients
at different levels, our method can execute normalization opera-
tions of different intensities at different levels. For a certain level of
wavelet coefficients, if its similarity with the mean wavelet coeffi-
cients of the corresponding level is lower, it indicates that this level
contains more information representing the sample itself, which
should be preserved to a greater extent. Through this hierarchical
normalization with different intensities, our method can introduce
distribution information while retaining more specific information
about the test samples.

Using IDWT, transform the variables from A′
𝑘
and B′

𝑘
obtained

above to the same dimensions as the original embeddings. Obtain
normalized sets of image embeddings 𝐹 ′

𝐼
and text embeddings 𝐹 ′

𝑇
,

then calculate the similarity matrix of the two using the Eq.20 for
the final result prediction.

𝐹 ′𝐼 = {𝐼 ′1, . . . , 𝐼
′
𝑖 } = {𝐼𝐷𝑊𝑇 (A′

1), . . . , 𝐼𝐷𝑊𝑇 (A′
𝑖 )} (18)

𝐹 ′𝑇 = {𝑇 ′
1 , . . . ,𝑇

′
𝑗 } = {𝐼𝐷𝑊𝑇 (B′

1), . . . , 𝐼𝐷𝑊𝑇 (B′
𝑗 )} (19)

𝑀𝑊𝑎𝑣𝑒𝐷𝑁 = 𝐿2(𝐹 ′𝑇 )
𝑇 · 𝐿2(𝐹 ′𝐼 ) (20)

4 EXPERIMENTS
In the experimental section, we conducted experiments on 14 datasets
with various VLM backbones for two downstream tasks. We aim
to discuss and validate the following point through experimenta-
tion. 1) Can WaveDN be widely applied to multiple downstream
tasks with different datasets and adapt to various VLM encoder

Algorithm1: Hierarchical normalization
Input: Images coefficients set A, texts coefficients set B, image av-
erage coefficients AAvg, text average coefficients BAvg, 𝜆 constant
Output: Hierarchical normalized image coefficients set A′, hierar-
chical normalized text coefficients set B′.
Procedure: HierarchicalNor (Array 𝑋,Array 𝑌,Array 𝑍 ):

for each index i from 1 to length of X do
Initialize S as an empty array
for each index j from 1 to length of Y do

x = X[i][j]
y = Y[j]
//Calculate j-th wavelet coefficients’ similarity.
z = x · y
k = x - z · y ·𝜆
Append k to S

end for
Append S to Z

end for
Output Z

End Procedure.
Initialize A′, B′ as empty arrays.
A′ = HierarchicalNormalization(A,AAvg,A′).
B′ = HierarchicalNormalization(B,BAvg, B′).
Output: A′, B′.

structures? 2) Compared to current advanced VLM testing enhance-
ment methods, does our method have superiority? Does WaveDN
mitigate the deficiencies of DN? 3) Will our method be affected
by parameter settings? How much impact will the selection of
sampling quantity and related wavelet parameters have on the ef-
fectiveness of WaveDN? Does the method possess robustness? 4)
During the testing phase, is the computational cost significant for
applying wavelet transform and hierarchical normalization to all
embeddings? Does WaveDN result in a substantial computational
overhead?

4.1 Downstream tasks
4.1.1 Zero-shot classification. This task involves using a pre-trained
VLM model directly to predict the category to which the test sam-
ples belong. Our experiments include zero-shot recognition of both
image and audio data. For image data, each category is represented
by a fixed text template input to the text encoder to obtain the corre-
sponding feature representation. The image encoder encodes the im-
age to get the image feature representation, then calculates the sim-
ilarity with the text embedding to determine the category with the
highest similarity as the prediction result. The image dataset used
includes: ImageNet1K[30], Cifar100[31], SUN397[33], Standford
Cars[32], Flowers102[37], Food101[36], DTD[34], OxfordPets[35],
EuroSAT[38] and FGVCAircraft[39]. For audio data, the only dif-
ference from images is the use of an audio encoder for feature
extraction. The audio dataset used includes UrbanSound8K[41] and
ESC-50[40]. To ensure the correctness of the test phase, we main-
tain a non-overlapping folds partition consistent with the one used
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Table 1: Zero-shot Top1 Accuracy on 10 Image Datasets

ImageNet[30] Cifar100[31] Cars[32] SUN397[33] DTD[34] Pets[35] Foods[36] Flowers[37] EuroSAT[38] Aircraft[39] Average

CLIP(Vit-B32)[4] 59.13 64.18 58.55 57.06 43.99 87.17 82.29 66.75 45.21 19.20 58.35
CLIP+DN[14] 58.61 65.20 58.99 58.24 45.30 86.77 83.11 65.80 49.02 19.92 59.10

CLIP+WaveDN(ours) 59.26 65.42 59.21 58.48 46.16 87.16 83.32 66.71 50.60 20.29 59.66

CLIP(RN50)[4] 55.84 40.70 56.21 58.49 41.97 85.54 77.16 65.75 37.51 16.98 53.62
CLIP+DN[14] 55.95 43.52 55.93 59.25 43.29 85.14 78.50 65.80 40.01 17.70 54.61

CLIP+WaveDN(ours) 56.08 45.99 56.33 59.00 43.14 86.07 79.18 66.06 45.04 17.90 55.48

Figure 4: Improvement in zero-shot top1 accuracy across 10 image datasets. WaveDN has demonstrated superior performance
on two CLIP image encoders, outperforming or matching DN on all datasets.

Table 2: Zero-shot Top1 Accuracy on 2 Audio Datasets

ESC-50[40] UrbanSound8K[41] Average

AudioCLIP(Full-training)[42] 66.95 63.97 65.46
AudioCLIP+DN[14] 68.53 66.53 67.53
AudioCLIP+WaveDN(ours) 72.02 69.31 70.67

AudioCLIP(Partial-training)[42] 66.80 63.55 65.18
AudioCLIP+DN[14] 67.39 64.63 66.01
AudioCLIP+WaveDN(ours) 69.96 66.15 68.06

by the original authors for both audio datasets. For all the zero-shot
experiments, we report Top1 accuracy(Acc@1) on each dataset.

4.1.2 Cross-modal Retrieval. Cross-modal querying task involves
using a sample from one modality to query samples from another
modality. It can be said that the classification task is a subtask of the
cross-modal querying task. In our experiments, we conducted three
cross-modal zero-shot querying experiments: text-to-image, image-
to-text, and text-to-audio. For image-related tasks, we utilized the
Flicker30k[43] and the COCO[44], while for audio-related tasks, we
used the UrbanSound8K[41] and ESC-50[40] datasets. For retrieval
experiments, the setup details for image-related datasets align with
DN[14], while for audio-related datasets, our setup aligns with
AudioCLIP[42]. We report the results of each experiment in terms
of recall@1(R@1), recall@5(R@5) and recall@10(R@10).

4.2 Experimental Settings
During the experiment, we extensively tested various image and
audio encoders. For image-related tasks, we utilized two different

CLIP encoders, VIT-B32 and RN50, with implementation, image
data preprocessing, and pretraining weights sourced from CLIP[4]’s
open-source content. For audio-related tasks, we employed the
model implementation, training weights, and audio data sampling
and preprocessing methods publicly available in AudioCLIP[42],
conducting experiments with both full-training and partial-training
audio encoders. Across each dataset, in addition to testing with
WaveDN, we also conducted experiments based on DN[14]’s open-
source implementation and hyperparameter settings to test the DN
on all datasets for deeply comparing the differences between the
two methods.

Due to the need for bothWaveDN and DN to sample test samples
and then estimate distributions, and since random sampling results
are inherently random, all our experimental results are obtained by
conducting experiments on 5 randomly selected random seeds and
averaging the results, aiming to minimize the randomness of the
experimental results. During the distribution feature estimation,
we sampled only 100 test samples for both, consistent with the
approach used in DN[14]. For both methods, the samples used for
distribution estimation are sourced from the dataset’s test set to
avoid introducing additional information and to simulate a realistic
testing process, rather than from the validation set.

WaveDNuses DaubechiesWavelet as thewavelet basis forwavelet
decomposition. Due to its hierarchical nature, it is well-suited for
discrete wavelet decomposition. In the experiments, WaveDN con-
sistently utilizes the "db6" wavelet basis with a decomposition level
of 5. The impact of wavelet basis selection and decomposition lev-
els on the effectiveness of WaveDN is extensively discussed in the



697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

WaveDN: A Wavelet-based Training-free Zero-shot Enhancement for Vision-Language Models ACM MM, 2024, Melbourne, Australia

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 3: Retrieval Experiments on 2 Image Datasets

MSCOCO (5K test set) Flicker30K (1K test set)
Image → Text Text → Image Image → Text Text → Image

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10
CLIP(Vit-B32) [4] 51.59 75.68 83.94 30.23 55.11 66.41 81.30 95.00 98.50 62.72 85.95 91.95
CLIP+DN [14] 51.86 75.90 83.85 33.38 58.53 69.36 83.38 96.41 98.54 65.91 88.20 93.27
CLIP+WaveDN(ours) 52.18 76.05 84.18 33.51 58.69 69.68 83.50 96.16 98.23 65.94 88.12 93.36

CLIP(RN50) [4] 50.72 75.08 83.36 28.54 52.70 64.10 82.20 95.59 97.89 59.88 85.91 91.86
CLIP+DN [14] 50.70 74.81 83.14 31.52 56.48 67.50 83.09 96.15 98.15 63.69 87.85 93.28
CLIP+WaveDN(ours) 50.87 75.35 83.66 31.42 56.54 67.61 82.28 96.25 97.77 63.71 87.24 92.95

ablation experiments section. The choice of wavelet basis and de-
composition levels may have a slight impact on the experimental
results. However, all combinations have a positive impact on the
experimental results.

4.3 Experimental Results
4.3.1 Zero-shot classification results. The results of the zero-shot
experiment for images are shown in Table. 1. We conducted a per-
formance comparison on two types of CLIP image encoders, DN
and WaveDN. WaveDN demonstrated significant improvements
over the baseline across all datasets and outperformed DN. In the 14
datasets tested, WaveDN increased the performance by an average
of 1.31% on Vit-B32 and 1.86% on RN50. The comparative effec-
tiveness is illustrated in Figure. 4, where WaveDN shows superior
overall performance, especially notable on the EuroSAT dataset
with improvements of 5.39% and 7.53% on two different architec-
tures. However, the results on Pets and Flowers indicate that the
DN-related methods have negative optimization, possibly because
CLIP (Vit-B32) itself has already adapted well to the data distri-
bution of the test datasets. Additional operations on the already
well-represented data may lead to information loss. Nonetheless,
WaveDN reduces this negative impact compared to DN. Moreover,
experimental results on a large number of datasets also show that
this situation of negative optimization on the final results occurs
less frequently.

The experimental results for zero-shot audio classification are
shown in Table. 2. WaveDN demonstrates significant improvements
on both Full-training and Partial-training audio encoders, with
increases of 5.21% and 2.82% respectively compared to the baseline.
Notably, on UrbanSound8k, the accuracy of full-training audio
recognition increased significantly by 5.34%.WaveDN demonstrates
good adaptability for audio-related classification problems.

4.3.2 Cross-modal Retrieval results. We conducted image-to-text
and text-to-image retrieval experiments onMSCOCOand Flicker30k,
with the experimental results shown in Table. 3. For all image en-
coder structures, using DN or WaveDN had a positive impact on
all retrieval tasks. Moreover, WaveDN showed improvement over
DN in most experimental results, reflecting WaveDN’s support
for various downstream tasks to some extent. We also observed
that in some cases where the results were not ideal, such as the
image-to-text retrieval of CLIP(RN50)+WaveDN on Flicker30k, DN
performed better. This could be due to the unique data distribution

Table 4: Retrieval Experiments on 2 Audio Datasets

ESC-50 US8k
Text→ Audio Text → Audio

R@1 R@5 R@10 R@1 R@5 R@10
AudioCLIP(Partial-training)[42] 80.00 93.99 96.4 81.00 90.99 94.00
AudioCLIP+DN [14] 81.76 91.04 95.03 84.20 91.40 96.00
AudioCLIP+WaveDN(ours) 82.08 93.20 96.8 87.4 94.20 97.20

AudioCLIP(Full-training)[42] 82.00 95.19 96.40 84.00 92.00 96.00
AudioCLIP+DN [14] 81.36 92.80 95.51 88.40 96.60 97.80
AudioCLIP+WaveDN(ours) 83.11 94.80 96.80 89.00 97.00 97.80

of Flicker30k leading to insufficient feature estimation by WaveDN.
However, in other retrieval experiments, WaveDN demonstrated
good adaptability.

Experimental text-to-audio retrieval was conducted on ESC-50
and UrbanSound8k datasets, with the experimental results shown
in Table. 4. Since both datasets only had a single text label for each
audio, the audio-to-text retrieval experiment essentially overlapped
with the zero-shot classification experiment. Therefore, we focused
solely on text-to-audio retrieval. WaveDN demonstrated signifi-
cant improvements across all results and managed to avoid the
negative impact of DN methods on cross-modal retrieval. For in-
stance, in the ESC-50 experiment with AudioCLIP (Partial-training),
while DN improved the R@1 performance, there were decreases in
R@5 and R@10. This was attributed to DN disrupting the intrinsic
feature representation of samples. WaveDN, on the other hand,
circumvented this issue and exhibited better performance across
all metrics.

4.4 Ablation Study
4.4.1 Convergence of Distribution Extraction. Due to the need for
WaveDN to sample multiple unlabeled test samples for estimating
test data wavelet distributions, the quantity of sampled samples
will have a significant impact on the distribution estimation re-
sults, thereby affecting the method’s effectiveness. Therefore, we
conducted sampling quantity experiments using CLIP(Vit-B32) to
extract text and image features on Cifar100.

The experimental results, as shown in Figure. 5, indicate the
similarity between the wavelet distribution estimated using the
corresponding sample quantity and the true distribution. The true
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Figure 5: Convergence of Distribution Extraction. Estimate
wavelet distributions using different sample quantity. For
all modal data, a stable and convergent distribution estimate
can be obtained with only a small amount of unlabeled test
data.

distribution is obtained by performing wavelet transform and fea-
ture extraction on all samples. The results show that when the
sampled samples approach 10, the similarity between the sampled
estimated distribution and the true distribution reaches 97.5%, and
when the sample quantity exceeds 40, the estimated distribution
has already converged to the true distribution. These results indi-
cate that only a small amount of unlabeled samples is needed to
achieve effective distribution feature estimation. In our experiment,
we uniformly used a sample quantity of 100 to ensure consistency
with DN’s sampling quantity.

Table 5: Impact of Different Wavelet Bases and Decomposi-
tion Levels on CLIP(Vit-B32)’s Cifar100 Top1 Accuracy

db base/level 1 2 3 4 5 6 7

db2 65.24% 65.29% 65.35% 65.27% 65.35% 65.29% 65.27%
db4 65.32% 65.34% 65.27% 65.31% 65.29% 65.21% \
db6 65.35% 65.27% 65.28% 65.38 % 65.42% \ \
db8 65.30% 65.31% 65.37% 65.24% 65.41% \ \
db10 65.30% 65.25% 65.26% 65.26% \ \ \
db12 65.27% 65.31% 65.25% 65.27% \ \ \
db14 65.30% 65.35% 65.24% 65.28% \ \ \
db16 65.25% 65.28% 65.17% 65.28% \ \ \
db18 65.25% 65.34% 65.29% \ \ \ \
db20 65.27% 65.35% 65.37% \ \ \ \

4.4.2 The influence of wavelet bases and decomposition levels. DWT
and IDWT need to select the wavelet base used in the transforma-
tion and the number of decomposition layers. Lower decomposition
levels are suitable for analyzing high-frequency detailed informa-
tion, while higher decomposition levels are suitable for analyzing
low-frequency overall characteristics, and different wavelet bases
pay different attention to signal scales. To ensure that no extra
information is lost in the decomposition process, the maximum
decomposition levels of wavelet bases with different lengths are
different.

The experimental results in Table. 5 show the influence of differ-
ent selection schemes on the experimental results. All the results
are averaged by experiments on 10 random seeds. Compared with
the 64.1% top1 accuracy of CLIP(Vit-B32) on Cifar100, all the se-
lection schemes of wavelet bases and layers after using WaveDN
can improve the recognition accuracy, which proves the universal-
ity of our method. Different combinations of wavelet bases have
a weak influence on the results, and we finally completed all our
experiments with the combination of "db6" and "level 5", which
is a combination with good adaptability to the characteristics of
embedding.

4.4.3 Computational complexity experiment. During the testing
phase, WaveDN incurred additional computational costs by per-
forming extra operations on all samples. The main computations in-
volved wavelet transformation, hierarchical normalization, wavelet
inverse transformation, convolution operations, and additional sim-
ilarity calculations for each sample. However, the experimental
results in Table. 6 indicates that the additional computational cost
introduced by WaveDN during testing is almost negligible com-
pared to the costs of feature extraction and similarity calculation.
When performing zero-shot image classification on the Cifar100
dataset, the computational overhead introduced by WaveDN av-
erages only 0.0001 GFlops per sample. Compared to the original
calculation method without WaveDN, the computational overhead
for CLIP (Vit-B32) increased by only 0.0022%, and for CLIP (RN50)
it increased by just 0.0017%. This further demonstrates the effi-
ciency of our proposed method, as it only requires a small amount
of computational overhead to enhance the performance of VLM on
multiple downstream tasks.

Table 6: Computation Overhead on Cifar100 Test Set

Method Total Operations(GFlops) Per Image Operations(GFolps)

CLIP(Vit-B32) 44,649.95 4.4650
CLIP+WaveDN 44650.94 4.4651

CLIP(RN50) 58830.58 5.8831
CLIP+WaveDN 58831.57 5.8832

5 CONCLUSION
In this paper, we introduceWaveDN, a parameter-free, training-free
method for enhancing the zero-shot capability of VLMs. WaveDN
innovatively interprets the embeddings as a time series signal, sub-
sequently applying discrete wavelet transform for feature extrac-
tion. By estimating feature distribution and employing hierarchical
normalization, WaveDN aligns with the InfoNCE loss during the
testing phase, without compromising the original sample feature
representation. WaveDN requires only a small number of unlabeled
test samples, with computational costs negligible compared to the
entire inference phase. Experiments and results in multimodal set-
tings also demonstrate WaveDN’s beneficial effects on multiple
downstream tasks with various VLMs. WaveDN is influenced by
sample distribution in specific scenarios, indicating that future re-
search could beneficially focus on this aspect. Improved methods
for sampling and distribution estimation may exist and warrant
exploration.
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