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A DATASETS DETAILS
The sizes of the test set, the textual templates employed, and the
configurations of the evaluation metrics pertinent to the dataset
utilized in our study are systematically delineated in Table. 1. To bol-
ster the reproducibility and precision of the experimental outcomes,
this section will elucidate the specifics concerning the utilization
of the dataset.

A.1 Image Datasets
In this paper, the image datasets utilized are widely recognized in
the field of computer vision and serve as established benchmarks
for image classification models. The CLIP text encoder relies on
text templates for guidance. During our experiments, ImageNet[1],
CIFAR-100[2], Stanford Cars[3], SUN397[4], and Food-101[5] all
employ the standard text template "a photo of a [Label]," which is a
widely adopted format. On the other hand, DTD[6], Oxford Pets[7],
Oxford Flowers 102[8], and EuroSAT[9] employ customized text
templates tailored to the unique characteristics of each dataset,
mirroring the approach in CALIP[10]. While Oxford Pets and Ox-
ford Flowers 102 are assessed using "Mean per class accuracy," the
remaining datasets are evaluated using "Accuracy," aligning with
the methodology employed in CLIP[11].

The MSCOCO[12] dataset is a versatile image dataset commonly
employed for tasks like object detection, segmentation, and image
captioning. In our retrieval task, we utilized the image captioning
annotations based on the Karpathy split[13], with a test set size of

5000 images. On the other hand, the Flickr30k[14] dataset serves
as a benchmark dataset comprising numerous images paired with
corresponding descriptions. We adopted a data split identical to
that of research [15] and research[16], resulting in a test set size of
1000 images.

A.2 Audio Datasets
The UrbanSound8K[17] dataset is a compilation of audio data con-
sisting of 10 distinct classes and a total of 8732 audio tracks, each
track not exceeding 4 seconds in duration. The prevalent audio
categories encompass commonplace sounds like "air conditioner,"
"car horn," and "children playing" typically encountered in daily life.
The ESC-50[18] dataset comprises 50 audio categories and a total
of 2000 tracks, each track spanning a duration of 5 seconds. The
primary audio categories within this dataset encompass five major
groups: animal sounds, natural and water sounds, non-speech hu-
man sounds, interior sounds, and exterior sounds. We aligned our
partitioning of the UrbanSound8K dataset with research[17] and
the ESC-50 dataset with research[18]. In the data preprocessing
stage, we sampled all audio files at a rate of 44100Hz and trans-
formed the sampled audio vectors into 1D tensors for input into
the audio encoder.

B CLASS-LEVEL ACCURACY ANALYSIS
Comparison of class-level results on all image datasets on Vit-B32
using two methods, DN and WaveDN, is shown in Figure. 1. The

Table 1: Dataset details

Dataset Test split size Text template Evaluation metric

ImageNet 50000 "a photo of a [Lable]" Accuracy
Cifar100 10000 "a photo of a [Lable]" Accuracy
Standford Cars 8041 "a photo of a [Lable]" Accuracy
sun397 19850 "a photo of a [Lable]" Accuracy
DTD 1880 "[Lable] texture" Accuracy
Oxford Pets 3669 "a photo of a [Lable], a type of pet" Mean per class accuracy
Food-101 25250 "a photo of a [Lable]" Accuracy
Oxford Flowers 102 6149 "a photo of a [Lable], a type of flower" Mean per class accuracy
EuroSAT 5000 "a centered satellite photo of [Lable]" Accuracy
FGVC Aircraft 3333 "a photo of a [Lable], a type of aircraft" Accuracy
ESC-50 2000 "[Lable]" Accuracy
UrbanSound8k 8732 "[Lable]" Accuracy

ESC-50(retrival) 2000 "[Lable]" Recall
UrbanSound8k(retrival) 8732 "[Lable]" Recall
MSCOCO 5000 "A photo depicts [Discription]" Recall
Flicker30k 1000 "A photo depicts [Discription]" Recall
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Figure 1: Comparison of Class-Level Top-1 Accuracy Changes Using ViT-B32.

class-level comparison results on Cifar100 are reported in the main
text, here we present the class-level accuracy variation results for
the remaining image datasets. The bar graphs with light red back-
ground indicate the number of classes where the recognition accu-
racy decreases after applying a certain method. Conversely, the bars
with light blue background represent the number of classes where
the recognition accuracy increases. Across numerous datasets, it is
evident that WaveDN significantly reduces the number of classes
affected by negativity and has a more positive impact on a greater
number of classes. These experimental results demonstrate that
compared to DN, WaveDN disrupts the original data representation
in embedding less and can achieve alignment with InfoNCE loss
during the testing phase.

In the experiments with EuroSAT and Food101 datasets,WaveDN
has a higher negative impact compared to DN. However, the reduc-
tion in recognition accuracy by WaveDN is at a relatively low level,
not exceeding 10%. Moreover, for these datasets, WaveDN exerts a
stronger positive impact, with dataset-level accuracy higher than
DN. Although WaveDN may also negatively affect the recognition

accuracy of certain categories, the magnitude of the negative im-
pact is much smaller than DN. From the graphs, it is evident that
DN can decrease the recognition accuracy of some categories by
over 30%, which severely undermines the generalization ability of
VLM itself.

In the experimental results of FGVAircraft, WaveDN has some
additional negative impacts compared to DN (eg. -0.18 to -0.12).
We believe this is related to the distribution characteristics of the
FGVAircraft dataset itself, where the representations of aircraft
images in the dataset are highly similar, leading to very close simi-
larities between the embeddings output by the CLIP image encoder.
This similarity makes CLIP less adaptable to this dataset. Due to the
model’s poor understanding of the data within the dataset, WaveDN
cannot perform well, resulting in additional negative impacts to
some classes. However, at the dataset level, WaveDN still has a
good positive effect on recognition accuracy, improving recogni-
tion accuracy more than DN.
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