
Supplementary Material446

A Algorithm447

Below we provide the pseudo-code for the LARGST-JUMP procedure. Give a list of noisily increasing448

values — in our case, a list of noisily increasing “naturalness” values as we increase _, the goal of449

LARGST-JUMP is to identify the two values, adjacent or not, that have the largest gap between them.450

This enables iterative refinement in Alg. 1.451

Algorithm 2 Procedure: LARGEST-JUMP

Require:
1: all _’s ⇤all, all target values (.
2: length of sliding window !

procedure LARGEST-JUMP ((, ⇤all)
3: Sort (based on ⇤all.
4: lower_bound_so_far, upper_bound_so_far = [], []
5: lower_idx_so_far, upper_idx_sov_far = [], []
6: high_acc, low_acc = 10, -1
7: high_idx, low_idx = len(S), 1
8: for i = 0, . . . , len(()�1 do
9: if 8 = 1 then

10: lower_bound_so_far.append(([0])
11: lower_idx_so_far.append(low_idx)
12: else
13: istart = max(i + 1 - !, 0)
14: lower_bound_so_far.append(min(([istart: i+1]))
15: lower_idx_so_far.append(argmin(([istart: i+1])) + istart)
16: end if
17: end for
18: for i = len(()�1, . . . ,0 do
19: if 8 = 1 then
20: upper_bound_so_far.append(([-1])
21: upper_idx_so_far.append(high_idx)
22: else
23: upper_bound_so_far.append(max(([i: i+!]))
24: upper_idx_so_far.append(argmax(([i: i+!])) + i)
25: end if
26: end for
27: max_gap_so_far = -1, max_gap_idxs = null
28: for i = len((), . . . ,1 do
29: diff = upper_bound_so_far[i] - lower_bound_so_far[i]
30: if diff > max_gap_so_far then
31: max_gap_so_far = diff
32: max_gap_idxs = (lower_idx_so_far[i], upper_idx_so_far[i])
33: end if
34: end for

return⇤all [max_gap_idxs[0]], ⇤all [max_gap_idxs[1]
end procedure

B Environment Setup452

Assistive Gym Itch Scratching We use the itch scratching environment proposed in [55] with the453

original settings. The biggest di�erence is that we limit the itch positions to randomizing from two454

fixed points, one in the middle of the forearm and one in the middle of the upper arm, as opposed455

to freely sampling from any position on the arms. This is to simplify the robot assistance problem so456

that we can focus on studying robot robustness.457

1

We also modify the environment time-span to 100 steps so as to speed up downstream RL training. The458

reward function in the original itch-scratching environment does not fully capture unwanted behaviors459

such as the robot swinging its arm and making unwanted contacts. We modify the environment460

reward function to increase the distance penalty (the robot’s end-e�ect being far from the human) and461

add in contact penalty when the robot impacts areas other than the human’s arms.462

Co-Optimization We adopt the co-optimization framework proposed in [52], where we have both463

the human and robot jointly optimize for the task reward. We train both policies using PPO [49]. At464

every RL step, we update both the robot and the human policies.465

More specifically, we use the ray library and train co-optimized policy pairs using batch sizes of466

19,200 timesteps per iteration. We use the default learning rate and PPO hyperparameters in the467

RLLib library and train for a total of 400 iterations.468

Training Personalized Robot Policies We keep the human policy from the co-optimized pair as our469

synthetic human policies. We can then train a personalized robot policy to assist the synthetic human.470

This is akin to programming robotic agents to assist humans. The resulting robot policy – which471

we refer to as personalized policies – is the focus of the paper and the target on which we compute472

the Natural-Adversarial curves. Note that there are di�erent methods to find personalized policies473

besides running Vanilla RL. We describe them in more detail in Sec. C.474

Collecting Canonical Datasets We collect datasets of 40 trajectories of synthetic humans and475

personalized policies as canonical datasets, which we later use to train GAN to compute “naturalness”.476

Basically, the GAN enforces that perturbation trajectories stay in the proximity of the canonical477

trajectories. Here by “natural”, we mean human motions that are indistinguishable from the478

canonical trajectories. This notation can apply to general human-robot interaction settings because479

such applications typically assume canonical trajectories (i.e. default dressing motions), and allow480

humans to fluctuate within some range of motions.481

Visualizations Here in Fig. 7 we provide visualizations of the trajectories of four di�erent co-482

optimized human-robot policy pairs. We use the same hyperparameters except for random seeds. The483

human motions are di�erent amongst di�erent seeds, and remain within reasonable motion range.484

Figure 7

C Experiment Setup485

In this section, we talk about the details of di�erent methods for training personalized policies. We486

also detail the training of GAN for generating natural-adversarial human behaviors.487

2

C.1 Learning Robot Policies488

Vanilla RL We use o�-the-shelf library on PPO algorithm. To facilitate policy training, we use the489

original robot policy in the co-optimized human-robot pair as the expert to guide the training. More490

specifically, we query the expert policy for actions and compute Behavior Cloning loss on the robot491

policy. We set RL loss coe�cient to 0.1 and BC loss coe�cient to 1.492

The robot policy is a 4-layer MLP with 100 hidden size. We use batch sizes of 9,600 timesteps per493

iteration and train for a total of 240 iterations. We set environment gamma as 0.09. We use a learning494

rate of 0.00005, and an eps of 0.0001. We also set the clip parameter as 0.3 in PPO. In each iteration,495

we perform 30 epochs of policy optimization, with 20 mini-batch each. We use clipped policy loss,496

clip gradient norm of robot policy by 20, and clip the value function by 10.497

PALM We adopt the same setup as in [37]. To create a diverse human distribution, we vary the itch498

position to randomly sample from anywhere on the two arms. This leads to more diverse human499

movements. We use a recurrent history of 4 timesteps for PALM, and use a 4-layer recurrent VAE500

with 24 encoder hidden size, and 4 latent size to predict human motions.501

Gleeve et al Based on [54], we diversify the human population from the co-optimization phase.502

During co-optimization, we jointly train 1 robot policy with 3 human policies initialized from503

di�erent seeds. The resulting human policies are di�erent from each other and naturally induces504

diversity in robot training. During the personalization phase, we train 1 robot personalized policy to505

simultaneously work with the 3 human policies from co-optimization.506

Robust GT We perform Robust GT by first computing the Natural-Adversarial curve, and then507

manually select adversarial human policies that leads to the lowest robot reward given that the policy508

naturalness 2 [0.2,0.8]. We visualize these failure cases in Sec. F. To train with these adversarial509

humans, we sample them at 15% rate beside the original synthetic human. While one can train robot510

policy this way from scratch, we load the previous vanilla RL policy and continue training with this511

enhanced population.512

C.2 Improving GAN training513

While GANs are knownly di�cult to train, there exists a large number of practical tricks in improving514

GAN training. We find that the most helpful tricks are: adding noise with annealing. LS-GAN,515

gradient penalty, and applying di�erent weights for expert and human data. We experimented with516

training discriminators on concatenated observation and action, and find that it does not lead to much517

change. Thus we end up using observation-only discriminators.518

Because human joints move at di�erent rates and scales, it is important to add di�erent amounts of519

noise to di�erent joint observations. We compute the joint movements from the existing dataset [53],520

and multiply each joint movement’s standard deviation by a factor of 10. We then anneal this by a521

decay rate of 0.98. We apply a gradient penalty of 0.3. We also set the expert loss rate in GAN as 4,522

and the agent loss rate as 1. This helps prevent the discriminator from overfitting to the agent data523

distribution and collapsing early in the training.524

D Running RIGID Finding Natural-Adversarial Frontier Curve525

To perform the RIGID algorithm to find the Natural-Adversarial Frontier Curve, we sweep over526

_ 2 [0.00001,10]. We perform RIGID algorithm in an iterative refinement manner as in Alg. 1. We527

keep 3 separate RIGID histories over 3 di�erent random seeds. During each iteration, we select 6 new528

_’s for each seed. We terminate after three iterations. This results to a total of 54 RL runs per curve.529

Plotting in the Natural-Adversarial Coordiate We set the naturalness (x value) of the resulting530

policies as the mean prediction result from the discriminator. To compute the adversarialness, we531

normalize the negative robot reward in [200, 1400] range, and clip values that exceed this range to the532

boundary. We find this range of manually performing di�erent motions VR to find the mean negative533

reward values of natural motions as well as adversarial human behaviors that lead to failures.534

3

E More Natural-Adversarial Curves535

We visualize additional Natural-Adversarial curves of di�erent Vanilla RL robot policies, trained on536

di�erently-seeded synthetic humans.537

Figure 8

F More Visualizations of Robot Failure Cases538

We visualize more failure cases of Vanilla RL as well as robust baselines.539

Figure 9

G More details on User Study540

We provide more details on the user study in Sec. 5.2.541

G.1 VR Visualizations542

In the following figure Fig. 10, left and center are the user interacting with virtual robots through the543

HTC VIVE headset and the hand controller. The right is the first-person view in VR[53].544

We first have the users watch 3 iterations of canonical trajectories executed by the personalized robot545

policies and the original synthetic humans. We then instruct then to perform similar trajectories in546

their own ways.547

4

Figure 10

G.2 Interface548

For the study on evaluating faithfulness, we use the following interface in Fig. 11, where we display a549

canonical trajectory on the left, and display single-timestep snapshots of two trajectories, one from550

RIGID policies and one from user VR executions. We ask the user to select which snapshot has551

stronger correspondence to the left trajectory. We randomize the sequence for each question.552

Figure 11

5

	Introduction
	Related Work
	Natural-Adversarial Robustness
	Computing the Natural-Adversarial Frontier
	Connecting The Dots: the Natural-Adversarial Curve
	Sampling Useful Trade-Offs

	Experiments
	How robust is Vanilla RL?
	How do Natural-Adversarial curves from RIGID align with user judgments?
	Do existing robust RL methods improve robustness? Can training with RIGID examples help?

	Limitations
	Conclusions
	Algorithm
	Environment Setup
	Experiment Setup
	Learning Robot Policies
	Improving GAN training

	Running RIGID Finding Natural-Adversarial Frontier Curve
	More Natural-Adversarial Curves
	More Visualizations of Robot Failure Cases
	More details on User Study
	VR Visualizations
	Interface

