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ABSTRACT

Large language models have shown remarkable reasoning abilities and scaling
laws suggest that large parameter count, especially along the depth axis, is the pri-
mary driver. In this work, we make a stronger claim — many reasoning problems
require a large depth but not necessarily many parameters. This unlocks a novel
application of looped models for reasoning. Firstly, we show that for many syn-
thetic reasoning problems like addition, p-hop induction, and math problems, a
k-layer transformer looped L times nearly matches the performance of a kL-layer
non-looped model, and is significantly better than a k-layer model. This is further
corroborated by theoretical results showing that many such reasoning problems
can be solved via iterative algorithms, and thus, can be solved effectively using
looped models with nearly optimal depth. Perhaps surprisingly, these benefits also
translate to practical settings of language modeling — on many downstream rea-
soning tasks, a language model with k-layers looped L times can be competitive
to, if not better than, a kL-layer language model. In fact, our empirical analysis
reveals an intriguing phenomenon: looped and non-looped models exhibit scaling
behavior that depends on their effective depth, akin to the inference-time scal-
ing of chain-of-thought (CoT) reasoning. We further elucidate the connection to
CoT reasoning by proving that looped models implicitly generate latent thoughts
and can simulate T steps of CoT with T loops. Inspired by these findings, we
also present an interesting dichotomy between reasoning and memorization, and
design a looping-based regularization that is effective on both fronts.

1 INTRODUCTION

Language models have shown a lot of promise in solving problems that require strong reasoning abil-
ities like math, coding, common sense reasoning and logical puzzles (Brown et al., 2020; Team et al.,
2023). This has sparked interest in developing techniques to improve reasoning on harder problems
(Wei et al., 2022b) and has inspired theoretical studies on how Transformers are able to perform
reasoning (Feng et al., 2024; Sanford et al., 2024a). Reasoning abilities are often emergent in larger
language models (Wei et al., 2022a) – this aligns with various scaling laws (Kaplan et al., 2020; Hoff-
mann et al., 2022; Allen-Zhu & Li, 2024) that show that the performance of language models is very
strongly dependent on the model size (i.e., number of parameters) and much lesser on other archi-
tectural design choices. However, recent works have started to question this view. Ye et al. (2024)
argue that scaling laws for reasoning are more subtle, and depth is very important in addition to
parameter count – at the same parameter count, deeper but shallower models are better. This is a de-
viation from the conventional scaling law wisdom, but it intuitively makes sense because reasoning
problems often requires multi-step compositional thinking, and thus, depth can play a crucial role.

In this work, we make a stronger claim – while depth is important, many reasoning problems do not
necessarily require a lot of parameters. How does one solve reasoning problems with large depth but
few parameters? We argue that looped models are perfectly suited, where a function, parameterized
with few parameters, is iteratively applied on the input. This leads us to our first important claim:

Claim 1: Many reasoning problems require depth but not necessarily parameters. That is, they can
be solved via looped models
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Looped models have been studied in the literature for parameter efficiency (Lan et al., 2020),
adaptive compute (Dehghani et al., 2018), equilibrium models (Bai et al., 2019) and for in-context
learning (Yang et al., 2023; Gatmiry et al., 2024a). In this work, we initiate the study of looped
models in the context of reasoning. Admittedly, reasoning is not very well-defined and can be
of various forms (Sun et al., 2023). Acknowledging this hurdle, we focus on a non-exhaustive
list of problems that intuitively require reasoning and that are inspired by reasoning benchmarks.
Throughout the paper, we use the notation (k ⊗ L) to denote a k-layer model looped L times
(precise definition in Section 2), which has the same number of parameters as a (k ⊗ 1) model
and same flops as a (kL ⊗ 1) non-looped model (see Figure 5). As a first step towards connecting
looped models and reasoning, we empirically evaluate looped models on several simple reasoning
tasks in the literature (e.g. Section 2). Perhaps surprisingly, we find that a (k ⊗ L) looped models
does almost as well as, if not better than, a non-looped model (kL ⊗ 1) that has the same effective
depth but L times more parameters on these reasoning tasks. The looped model is also significantly
better than a (k⊗1) model which has the same number of parameters. Our theoretical results on the
expressiveness of looped models in representing iterative algorithms with short description further
corroborate these empirical findings and provide strong support for our claim. This naturally raises
an important question: do looped models benefit language modeling in a similar manner?

Claim 2: For language modeling, looped models have an inductive bias towards good reasoning
despite having worse perplexity and memorization to an iso-flop non-looped model

For the above claim, we again train a (k ⊗L) looped model on causal language modeling and com-
pare it to the iso-param (k⊗1) and iso-flop (kL⊗1) non-looped baselines. While the looped model
improves over the iso-param baseline, perhaps unsurprisingly, it ends up with worse perplexity than
iso-flop baseline, since perplexity depends strongly on number of parameters. However, the down-
stream evaluations reveal an intriguing trend: looped models have a tendency to improve tasks that
require reasoning a lot more than memorization tasks. Specifically, the looped model has reasoning
performance much closer to the iso-flop baseline, sometimes even exceeding it despite having L
times fewer parameters and worse perplexity. This contrasting behavior between the pretraining and
downstream metrics has been a subject of study lately (Saunshi et al., 2022; Liu et al., 2023) and is
attributed to the inductive biases introduced due to different architectures and training algorithms.
Our empirical analysis also uncovers an interesting phenomenon: accuracy on downstream tasks
scale as logarithm of the effective depth. In particular, more loops enhances performance, and the
relative benefit of loops is higher for tasks that require more reasoning. This is conceptually similar
to inference time scaling discovered for CoT, but with looping as a central component. To further
elucidate this interesting relationship of looped models with CoT, we present the following claim.

Claim 3: Looped models generate latent thoughts and can, in theory, simulate CoT reasoning

Note that CoT reasoning gives the model more time and compute by generating multiple thought
tokens before the answer, and it has powered the recent paradigm of inference-time scaling for
“thinking” models like O1 and DeepSeek’s R1 (Guo et al., 2025). We make an observation about
CoT reasoning – it is essentially a looped model that generates 1 thought token in each iteration.
However, looped models seem to be much more powerful, since they can generate multiple latent
thoughts in each iteration. We translate this intuition into a theoretical result about how looped mod-
els can simulate CoT reasoning. Motivated by these findings, we propose a regularization scheme
that aims to tap into the inductive bias of looped models towards reasoning.

Claim 4: Looping-inspired regularization can leverage this inductive bias towards better reasoning

With the backdrop of these claims, we concretely present the contributions of the paper below:

• In this paper we study looped models – multilayer models with weight sharing – and their role in
reasoning. In particular, we compare a k-layer model looped L times, denoted by (k ⊗ L), with
an iso-param (k ⊗ 1) non-looped model with k layers and an iso-flop (kL ⊗ 1) model with kL
layers and L times more parameters.

• We conduct experiments on synthetic reasoning tasks like addition, p-hop induction and GSM-
style math word problems in Section 2. For these tasks, we surprisingly find that iso-flop looped
models, despite having way fewer parameters, can nearly match or outperform a non-looped
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model. Supporting these experiments, in Section 5 we present theoretical results for why looped
models can solve such problems with almost optimal depth.

• In Section 3, we train looped models on causal language modeling at 1B parameter scale. Here,
we show that looped models have an inductive bias towards doing well on reasoning benchmarks,
despite having much worse perplexity. This finding is novel, since most prior work on looping
focused more on perplexity metrics rather than downstream reasoning tasks. We validate this in-
ductive bias by visualizing the perplexity vs downstream performance plots as training process.
Additionally, we show that looped models demonstrate good scaling behavior on various bench-
marks as the number of loops are increased, akin to CoT reasoning. Finally, we show that looped
models, along with a scratchpad, can simulate chain-of-thought reasoning.

• Inspired by this inductive bias, in Section 4, we propose a regularization that encourages layers
to be more similar to each other. We find that training with such a regularization inherits the
inductive bias of looped models towards reasoning without affecting perplexity.

2 LOOPED MODELS ON SIMPLE REASONING TASKS

We first explore our hypothesis of looped models helping reasoning tasks on a set of tasks con-
structed in a procedural manner. The illustrative reasoning tasks we consider are: n-ary addition,
p-hop induction head that tests the model’s ability to track back for p steps, and i-GSM which con-
sists of synthetically constructed grade-school math problems. While these obviously do not cover
the whole spectrum of reasoning problems, they provide useful insights into looped models and
provide a basis for the theoretical results in Section 5.

Looped models. While many variants of looped model have been proposed (Lan et al., 2020; De-
hghani et al., 2018; Giannou et al., 2023; Yang et al., 2023; Mohtashami et al., 2023), we use the
vanilla version for simplicity. For any sequence-to-sequence function f , we denote f (L) = f ◦f · · ·◦
f to be the function that is f looped L times. In general, the looping mechanism is independent of
architectural choices for f . For the rest of the paper, we typically use f to denote a k-layer Trans-
former backbone of a model. Thus, f looped L times is the same as a kL layer model with weight
sharing between all L blocks of k consecutive layers. We denote such looped models with the nota-
tion (k⊗L). Please refer to Figure 5 for a succinct illustration of the looping mechanism. Section 5.1
provides a more formal definition of looped transformers that is used for theoretical analysis.

2.1 EXPERIMENTS WITH SIMPLE REASONING PROBLEMS

n-ary addition. We consider the problem of adding n numbers with 3 digits each. Addition is pop-
ular in the literature to study aspects of reasoning with Transformers, such as use of scratchpad (Nye
et al., 2021), chain of thought reasoning (Lee et al., 2024; Li et al., 2024) and length generalization
(Cho et al., 2024). One reason for its popularity is that addition can have algorithmic solutions,
which is a feature of many reasoning problems. For our experiments, we train on a uniform mixture
on numbers of operands n ∈ {2, 4, 8, 16, 32} and sample each 3-digit operand uniformly at random
between [0, 999]. We train all models directly on the input-output pair, without any chain-of-thought
steps. For instance, for n = 4, we have Input: “315 + 120 + 045 + 824 =” ; Output = “1304”.

We train a standard Transformer-based baseline (12 ⊗ 1) model with 12 layers. Please refer to
Appendix B.1 for details on the training setup. We also train (k ⊗ 12/k) looped model and an
iso-param (k ⊗ 1) baseline models for comparison, and vary k ∈ {2, 3, 4, 6}. All trained models
are finally evaluated separately on each of n ∈ {8, 16, 24, 32} to measure accuracy on increasingly
difficult problems. Results are presented in Table 1. We find that, while the shallower baselines
(k⊗ 1) degrade with lower k, the looped model (k⊗ 12/k) performs very well, and nearly matches
the iso-flop (12 ⊗ 1) baseline. In fact, even a 1-layer network looped 12 times is able to solve this,
despite using merely 1/12th of the parameters of the baseline. This suggests the addition problem
primarily requires depth, but not necessarily more parameters.

p-hop induction. The p-hop problem is a synthetic induction task studied in Sanford et al.
(2024b), who were inspired by the analysis of induction heads from Elhage et al. (2021). Specif-
ically, given a sequence of letters v = (v1 . . . vn) from an alphabet Σ, an induction head tries to
find the penultimate occurrence of vn (from left to right) in the sequence and output the character
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Table 1: Accuracy of looped and non-looped models on the addition problem (left) and p-hop induc-
tion (middle), and i-GSM (right) as described in Section 2. Left. For addition, we report accuracies
for different number of operands (n). For all budgets, a (k ⊗ 12/k) looped model is significantly
better than the iso-param (k⊗ 1) model and also nearly as good as the non-looped iso-flop (12⊗ 1)
baseline model. Middle. The findings are very similar for the p-hop problem for different values of
p. Note that a random guessing baseline would get at least 25% accuracy (since only 4 choices for an-
swer). This suggests that depth via looping and small number of parameters is very effective for these
problems. Right. Accuracy on i-GSM task from Section 2. (k ⊗ L) looped model is significantly
better than the iso-param (k⊗1) model and performs as well as non-looped iso-flop (kL⊗1) model.

Addition of n numbers
Params / n = 24 n = 32
FLOPs

Base (12⊗ 1) 12x / 12x 100.0 100.0
1 layer model

Base (1⊗ 1) 1x / 1x 0.1 0.0
Loop (1⊗ 12) 1x / 12x 99.9 99.6

2 layer model
Base (2⊗ 1) 2x / 2x 49.3 38.8
Loop (2⊗ 6) 2x / 12x 99.7 99.5

3 layer model
Base (3⊗ 1) 3x / 3x 69.2 60.7
Loop (3⊗ 4) 3x / 12x 97.0 96.6

p-hop with n tokens
Params / p = 16 p = 32
FLOPs n = 256 n = 256

Base (6⊗ 1) 6x / 6x 99.9 99.6
1 layer model

Base (1⊗ 1) 1x / 1x 48.9 49.0
Loop (1⊗ 6) 1x / 6x 99.9 99.5

2 layer model
Base (2⊗ 1) 2x / 2x 68.8 59.4
Loop (2⊗ 3) 2x / 6x 99.9 99.8

3 layer model
Base (3⊗ 1) 3x / 3x 97.2 73.0
Loop (3⊗ 2) 3x / 6x 99.9 99.5

i-GSM Params / FLOPs Accuracy

Base (8⊗ 1) 8x / 8x 73.2
1 layer model

Base (1⊗ 1) 1x / 1x 24.5
Loop (1⊗ 2) 1x / 2x 52.3
Loop (1⊗ 4) 1x / 4x 69.9
Loop (1⊗ 8) 1x / 8x 73.2

2 layer model
Base (2⊗ 1) 2x / 2x 54.0
Loop (2⊗ 2) 2x / 4x 66.9
Loop (2⊗ 4) 2x / 8x 73.6

4 layer model
Base (4⊗ 1) 4x / 4x 71.3
Loop (4⊗ 2) 4x / 8x 71.6

immediately succeeding it. The p-hop problem generalizes this idea to sequentially hop p times.
Intuitively, the p-hop problem tests a model’s ability to recursively backtrack and retrieve the answer
for a given query. This is reminiscent of the reasoning abilities required to solve reading compre-
hension kind of problems. We present the formal definition of the p-hop problem in Definition B.1.
We perform experiments with looped and non-looped models on the p-hop problem, with alphabet
size set to 4 and sequences of length 256, and vary p between 16 and 32 to control the problem
difficulty. Our observations are presented in Table 1. Similarly to our findings on the addition task,
reasonably deep looped models perform as well as the baseline using much fewer parameters.

i-GSM (Synthetic Grade School Math Problems). Inspired by Ye et al. (2024), we built our own
version of grade-school level math word problems. While we follow many of the design guidelines
of Ye et al. (2024), we make a few simplifying changes. We generate the math problem as a DAG
of arithmetic computations modulo 7, and restrict the depth of the graph to 4. For simplicity, we
retain the problems in the symbolic form and do not map them to English (e.g., see Table 8) 1 We
train models of depths 1, 2, 4 and 8 and compare them with different looped variants in Table 1. The
answer is computed modulo 7. Hence, a random guessing baseline would get at least 14% accuracy.
Appendix B.1 has more details. Remarkably, we again observe that a depth k model looped L times
matches or outperforms a depth kL model and far outperforms a depth k non-looped model. This
suggests that even a more complex and realistic looking reasoning problem does not need too many
parameters and can benefit from depth via looping.

3 LANGUAGE MODELING WITH LOOPED MODELS

In this section, we pretrain and evaluate looped models for causal language models. We train models
on 250B tokens of the Pile dataset (Gao et al., 2020) and use a 24-layer 1B parameter model for most
experiments, motivated by the setting in Tay et al. (2022) (refer to Appendix B.2 for more details).

3.1 EXPERIMENTS WITH LANGUAGE MODELING

For causal language modeling, we pretrain various looped models on the standard GPT2-style next
token prediction objective (Radford et al., 2019). We train models with different parameter budgets
to make sure that the findings are robust. We remind the reader that the notation (k⊗L) corresponds
to a k layer model looped L times. For each setting, we compare 3 models: (a) (24 ⊗ 1): 24-layer
1B model, (b) (k ⊗ 1): k-layer model with the same configuration as the 24-layer model for other
dimensions, (c) (k ⊗ 24/k): k-layer model looped 24/k times to match the parameter count of (b)

1Similar to Ye et al. (2024), the simplified setting still allows for over 7 billion unique solution templates.
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Table 2: Downstream evaluations for language models trained on the Pile dataset. Comparisons in-
clude a 24-layer 1B-parameter baseline model, iso-flop looped models (k⊗24/k) for various param-
eter budgets k, and the corresponding iso-param baselines (k⊗1). Downstream evaluations are aver-
aged over tasks within 4 task groups. We also include the % Gap metric for each k to measure the gap
between the iso-param and iso-flop baselines that is covered by the looped model (see Equation (1)).
Overall the looped models are worse on perplexity and closed book QA (memorization benchmarks),
but the % Gap is much higher for task groups that require reasoning (open book QA, math word
problems). In fact for reasoning primitives, which are purely testing for reasoning skills, the looped
models are much better than the 1B baseline for all k, despite having 24/k× fewer parameters.

Params / Perplexity (↓) Closed Open Math Word All Tasks Reasoning
FLOPs (validation) Book QA (↑) Book QA (↑) Problems (↑) Average (↑) Primitives (↑)

(4 tasks) (5 tasks) (6 tasks) (15 tasks) (4 tasks)

24 layers
Baseline 24x / 24x 7.40 11.2 33.9 29.3 26.0 47.5

12 layers
Base (12⊗ 1) 12x / 12x 8.16 8.2 26.9 26.7 21.8 35.7
Loop (12⊗ 2) 12x / 24x 7.90 9.3 30.8 34.3 26.5 51.2
% Gap 34 % 37 % 56 % 282 % 110 % 131 %
Middle Loop 12x / 24x 7.81 11.0 32.3 28.3 25.0 56.5
(4⊗ 1, 4, 1)

% Gap 46 % 94 % 78 % 62 % 95 % 176 %
8 layers

Base (8⊗ 1) 8x / 8x 8.75 6.3 22.7 17.1 16.1 33.0
Loop (8⊗ 3) 8x / 24x 8.19 8.5 30.8 28.4 23.9 55.3
% Gap 41 % 44 % 72 % 92 % 78 % 153 %

6 layers
Base (6⊗ 1) 6x / 6x 9.25 4.0 19.3 17.7 14.6 24.1
Loop (6⊗ 4) 6x / 24x 8.42 8.2 28.7 29.8 23.7 56.1
% Gap 44 % 58 % 64 % 104 % 80 % 136 %

4 layers
Base (4⊗ 1) 4x / 4x 10.12 1.8 13.8 9.7 9.0 19.4
Loop (4⊗ 6) 4x / 24x 8.79 6.7 26.2 24.8 20.4 56.9
% Gap 48 % 52 % 61 % 77 % 67 % 133 %

and match the effective depth/FLOPs of (a). We run experiments for k ∈ {4, 6, 8, 12} to ensure that
the findings are robust. After pretraining on Pile, we evaluate the models on validation perplexity
and on downstream benchmarks using k-shot evaluations. Results are summarized in Table 2

Evaluation metrics. We evaluate the models on perplexity metric after training is completed. Since
there is growing evidence that perplexity, although very useful for training, is a narrow measure of
model quality, we also track more holistic downstream evaluations (Liang et al., 2023). Thus, we
evaluate the model on 4 important slices: closed book QA, open book QA, math word problems
and reasoning primitives. These comprise of 19 different tasks in total. We defer details for the
evaluation benchmarks in Appendix B.3

For each task group G from above, in Table 2 we report the average accuracy for that task group,
denoted by AvgG. Furthermore, for each layer budget k, we report the % gap between the iso-param
and iso-flop models that is covered by the looped model. More specifically

% Gap =
AvgG(k ⊗ 24/k)− AvgG(k ⊗ 1)

AvgG(24⊗ 1)− AvgG(k ⊗ 1)
. (1)

This measures how effectively looping can bridge the gap between iso-param and iso-flops
baselines. Implicitly, it measures how different task groups behave when a model only has a few
parameters but is given depth through looping. % Gap being closer to 0% means that providing
depth via looping does not benefit the task group, and number of parameters is the most important
factor. On the other hand, % Gap closer to 100% means parameter count matters much less for the
task group, and that depth via looping is more essential.

Perplexity results. Firstly we notice that all (k ⊗ 24/k) looped models have better perplexity
compared to the iso-param (k ⊗ 1) baseline, but worse perplexity compared to the non-looped 24-
layer baseline. The looped models only covers up roughly 34− 50% of the perplexity gap between
the iso-param and iso-flop baselines for various values of k. This perplexity gap is not too surprising
since the looped model has 24/k times fewer parameters, and thus, lower capacity than the 24-layer
baseline. This was also been observed in prior works (Lan et al., 2020; Mohtashami et al., 2023)
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Figure 1: Downstream evaluation for various task groups on the x-axis, vs validation log perplexity
on the y-axis (reversed), as training proceeds. We compare a 12-layer baseline model (12⊗ 1) with
a looped model (12⊗ 2). For closed book QA (memorization) tasks looping has very similar trends
to baseline. For open book QA tasks and math word problems, looping has much better downstream
performance at an equivalent log perplexity.

and is the primary reason looped models have been ignored for language modeling. However, as we
shall see shortly, the downstream metrics paint a more interesting and favorable picture.
Results on QA tasks. We first consider closed book and open book QA categories in Table 2.
Closed book QA tasks are primarily testing the model’s memorization abilities. Open book QA
on the other hand tests the model’s ability to infer the answer from the additional context that is
provided. Thus, intuitively, open book QA tasks require more reasoning. Firstly we notice that the
% Gap for closed book QA (memorization) is very similar to % Gap for perplexity. The % Gap
for open book QA, on the other hand, is much higher for all parameter budgets. This suggests that
looped models relatively improve contextual QA much more than memorization based QA.

Math problems and reasoning primitves. We also present the % Gap for the math word problem in
Table 2. Surprisingly, we find that (k⊗ 24/k) looped model can almost match the baseline (24⊗ 1)
model for k ≥ 6, despite having k times fewer parameters. In fact, the 12 layer model looped twice
is even signficantly better (34.3) than the 24 layer baseline (29.3), despite having 50% of parameters
and worse perplexity; suggesting that looping disproportionately improves mathematical reasoning.

To better understand the effect on reasoning, we direct the readers attention to the evaluations for
reasoning primitives in Table 2. The results are quite remarkable: (k ⊗ 24/k) looped models are
better than the iso-flop baseline (24 ⊗ 1) at reasoning primitives, for all values of k. This is
a priori very surprising, since these are synthetic generated tasks and have nothing to do with the
pretraining data or the model architecture. Thus, solving these tasks necessarily requires reasoning
from context, and memorization abilities will not help here. These results clearly suggest that looped
models have a bias towards improving reasoning, despite having worse perplexity and memorization.

3.2 INDUCTIVE BIAS TOWARDS REASONING

In this section, we formalize the inductive bias by plotting the perplexity vs downstream metric
iso-plots, as introduced in Saunshi et al. (2022). Section 3.1 showed that looped models have higher
than expected performance on reasoning problems. However, since looped models are worse on
perplexity, it is hard to make a direct comparison between various models. One way to bring parity
between models is to look at their downstream performances at the same validation pretraining loss
(Liu et al., 2023). Saunshi et al. (2024) proposed plotting pretraining loss vs downstream metrics
as training proceeds, as a way to study the inductive bias of various methods. For each model, we
evaluate the log perplexity and downstream metrics at every 20k steps, starting from 120k steps. We
plot these values in a scatter plot and fit a linear function with log perplexity and the corresponding
downstream metric being input and output respectively. Please refer to Figure 1 for two sets of
isoplots. For all values of k, we observe the following:

• The isoplots for (k⊗L) looped model and (k⊗1) baseline are very aligned for closed book QA
tasks (if extrapolated). This suggests that log perplexity is a very strong indicator of downstream
performance on memorization based tasks.

• For open book QA and math word problems, the isoplot line for the looped model is always
higher than the baseline model. This suggests that at the same log perplexity, looped models
will tend to have higher evaluation on these tasks that require more reasoning.
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Figure 2: Scaling behavior for various task groups as the effective depth increases (also see Fig-
ure 7). The blue curve shows how performance scales for (4⊗D/4) looped models as the number
of loops increases, without increasing parameters. The orange curve visualizes the scaling behavior
of (D ⊗ 1) which increases the depth by adding fresh parameters. For reasoning primitives, the
looped model scales as well, or even better, than the baseline despite having D/4 fewer parameters.

• For reasoning primitives, there is a stark difference between looped and baseline models. The
looped model seems to have good performance at most points in training.

This suggests a strong inductive bias of looped models towards improving reasoning. We discuss
connections to gradual stacking (Appendix B.4) approaches that have a similar inductive bias.

3.3 SCALING BEHAVIOR OF LOOPING

In this section, we discuss an intriguing scaling behavior of looping, specifically the impact of the
number of loops on various evaluation metrics. In particular, we are interested in scaling behavior
of: (a) accuracy as a function of number of loops and (b) comparison of looped and non-looped
baseline of the same effective depth. To this end, we pretrain various looped language models of the
form (4 ⊗ L), i.e., 4-layer model looped L times, for L ∈ {1, 2, 3, 6, 9, 12}. To enable iso-FLOPs
comparison, we also train baseline models of the form (4L⊗1), which has L times more parameters.
For each task group, we plot the average accuracy as a function of the effective depth, i.e. D = 4L.
From the results presented in Figure 2, we observe the following.

1. In both cases, we find that the accuracies for all task groups continue to increase with more
loops/depth, although, unsurprisingly, the returns are diminishing with depth for both looped and
non-looped models. Interestingly, for both looped and non-looped models, we found that one can
fit a simple scaling law of the following form:

Acc = α log(D) + β, (2)

where D is the effective depth and α measures the impact of depth on downstream performance.

2. Furthermore, for each task group, we compute αloop/αbase to assess the relative impact of “depth
via looping” compared to “depth via additional parameters”. We find that more loops continue
to help, and the relative benefit of loops is higher for reasoning tasks like open book QA and
math problems. Remarkably, the impact of loops is even higher (1.19x) than impact of depth for
reasoning primitives, which further consolidates the benefit of looped models for reasoning.

Latent thoughts and connections to CoT reasoning. We end this discussion with an important
question: why should we expect this interesting scaling behavior of looped models? We argue that
looped models have a strong connection to chain-of-thought (CoT) reasoning. Such a connection is
insightful because recent works on thinking have shown CoT can demonstrate inference-time scaling
behavior, where the accuracy on reasoning datasets continues to improve as the length of the models
chain of thought increases; i.e., generating more thoughts leads to better reasoning.

To establish this connection, we make a simple observation about CoT reasoning – it is essentially
a looped model that generates a single thought token in each iteration. However, looped models can
be more powerful since they can generate multiple “latent thoughts” in each iteration. This can be
visualized in Figure 8. We further translate this intuition into a theoretical result (see Section 5.4)
about how looped models can in fact simulate CoT reasoning. Given this connection to CoT rea-
soning, it is believable that looping can scale well for harder reasoning. We believe that leveraging
looping explicitly for inference-time scaling is a very promising future direction.
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Table 3: Results for the 24-layer 1B model with and without the regularization introduced in
Section 4. We try various block sizes k motivated by the looped model settings from Table 2.
Overall, regularization helps retain the inductive bias towards reasoning, with notable improvements
on math word problems and reasoning primitives, without almost neutral perplexity.

Perplexity (↓) Closed Open Math Word All Tasks Reasoning
(validation) Book QA (↑) Book QA (↑) Problems (↑) Average (↑) Primitives (↑)

(4 tasks) (5 tasks) (6 tasks) (15 tasks) (4 tasks)

Baseline 7.40 11.2 33.9 29.3 26.0 47.5
Regularized (k = 4, λreg = 1) 7.41 11.2 34.8 31.6 27.2 42.5
Regularized (k = 4, λreg = 10) 7.38 12.5 36.2 36.4 30.0 57.2
Regularized (k = 6, λreg = 10) 7.40 12.0 35.8 31.0 27.5 55.8
Regularized (k = 8, λreg = 10) 7.43 11.3 34.4 32.8 27.6 56.3
Regularized (k = 12, λreg = 10) 7.51 10.1 34.1 32.3 27.0 50.7

4 LOOPING-INSPIRED REGULARIZATION

In the previous section, we observed the looped models can improve reasoning with worse perplex-
ity. Can we leverage this observation to improve reasoning without affecting perplexity? Here, we
propose a simple approach: regularize the weights of the model to encourage them to be close to a
looped model. This could have two advantages, (a) the model still has free parameters to improve
perplexity, (b) the closeness to looped model can inherit the desirable inductive bias. In particular,
if an L-layer model is denoted as f0 ◦ f1 . . . , ◦fL/k−1, where each fi is a block of k layers, we
add a regularization term that makes all the weights of the block fi close to fi+1 in terms of cosine
similarity. For a parameter group G (e.g. first feed-forward layer, or query matrix in Transformer),
we use θ

(0)
G , θ

(1)
G , . . . , θ

(L−1)
G to denotes the weights in all layers. Then the regularization term is

RG(k) =
1

L− k

L
k −2∑
i=0

k−1∑
j=0

Cosine
(
θ
(ik+j)
G , θ

((i+1)k+j)
G

)
(3)

The final loss function is a sum of the standard cross-entropy loss and the regularization term aver-
aged over all groups, multiplied by a scalar hyperparameter. Let G denote the set of all parameter
groups; G = {Attn-Q,Attn-K, . . . ,FFN-W2}

L = Lxent + λreg|G|−1
∑
G∈G

RG(k) (4)

In the above formulation, λreg = 0 would recover standard training and λreg → ∞ would converge
to a fully looped model. Intermediate values of λreg will lead to “approximately” looped models.
For instance, to emulate the (4 ⊗ 6) looped model setting, we use pick k = 4, L = 24 and a large
regularization strength like λreg = 10. All other hyperparameters are kept the same as baseline
training for a fair comparison. We tried options other than cosine similarity, like ℓ2 norm, to bring
the weights closer but found that cosine was more robust and effective.

Cosine similarities. Firstly, we check if the regularization had the right effect by measuring the
cosine similarities between the successive blocks of k layers at the end of training. We, indeed, find
that for all parameter groups, the cosine similarity around 0.98 or higher (see Figure 3).

Inductive bias. To confirm the inductive bias of the regularizer, we visualize the log perplexity vs
downstream isoplots for λreg = 10 and baseline models in Figure 6. While the plots are similar
for closed book QA, a strong inductive bias shows up for open book QA and reasoning problems.
Crucially, the regularized model does well on reasoning without hurting perplexity (see Table 3).

5 THEORETICAL ANALYSIS FOR LOOPED MODELS

In this section, we present theoretical results to understand the phenomenon from the previous
sections – why can looped model with few parameters match an iso-flops non-looped baseline on
reasoning problems? While a complete theory is challenging, since “reasoning” is a very broad
concept, the goal is to provide some intuition and formalization for the expressive power of looped
models. First, we show that looped Transformers can effectively solve group composition (a
generalization of the addition problem). Then we show a very general result on how a non-looped
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model with very few distinct layers can be simulated by a looped model with a small blowup in
model size. This result is then used to solve the p-hop problem using a one-layer looped transformer.
Our construction for group composition and p-hop problem are nearly optimal in terms of depth
and much more efficient in terms of parameters compared to non-looped models.

5.1 PRELIMINARIES AND NOTATIONS

We first define the standard transformer architecture. Throughout the paper we will fix the dimension
of the embedding to be d ∈ N+, the vocabulary to be V and maximum sequence length to be nmax.
We will use id to denote the identity mapping. Here, we describe the high-level notation. Please
refer to Appendix C.1 for detailed notations. We use FF and MHA to denote the feed-forward and
attention layers respectively, and θMHA and θFF denote the parameters in these layers.
Definition 5.1 (Transformer Block). Given number of layers L ∈ N+ and parameter θTB =

(θ
(l)
MHA, θ

(l)
FF)

L−1
l=0 , L-layer transformer block TBθTB : (Rd)n → (Rd)n for any n ∈ N+ is defined as

TBθTB ≜ (id+ FF
θ
(L−1)
FF

) ◦ (id+MHA
θ
(L−1)
MHA

) ◦ · · · (id+ FF
θ
(0)
FF

) ◦ (id+MHA
θ
(0)
MHA

), (5)

We also denote EMBED and OUTPUT to be the input embedding and output softmax layers respec-
tively. Please refer to Appendix C.1 for precise definitions. Finally, we define the entire transformer
model that maps a sequence of tokens to a distribution over tokens: pθ : ∪n≤nmax

Vn → ∆|V|−1.

pθ ≜ OUTPUTθOUTPUT
◦ TBθTB ◦ EMBEDθTE,θPE (6)

where θ = (θTB, θTE, θPE, θOUTPUT) denote all the transformer parameter. In particular, we use
TFθ(v1, . . . , vn) ≜ argmaxv∈V pθ(v|v1, . . . , vn) to denote the deterministic version of the trans-
former model. We now define a looped Transformer model that also subsumes a non-looped model.

Definition 5.2 ((L⊗T ) Looped Transformer). Given the number of loops T ∈ N+, parameters θ =

(θTB, θTE, θPE, θOUTPUT), where θTF = (θ
(l)
MHA, θ

(l)
FF)

L−1
l=0 , we define a (L ⊗ T ) looped Transformer

as pθ,T ≜ OUTPUTθOUTPUT
◦ (TBθTB)

T ◦ EMBEDθTE,θPE .

5.2 GROUP COMPOSITION PROBLEM

We consider the problem of composing n elements from a group, and prove that a standard 1-layer
transformer looped O(log(n)) times can solve this problem. This is a generalization of the modular
addition problem and has a long history (see Appendix C.2.2). Recently, Liu et al. (2022) show
that transformers with log2 n depth can compute composition over n group elements, regardless of
whether the group is solvable or not. However, the construction in Liu et al. (2022) uses different
attention parameter for each layer. Here, we provide a more parameter efficient construction where
we solve this problem by looping a one-layer transformer log(n) times. This result matches the
depth upper bound shown for non-looped models by Liu et al. (2022), and is very close to their
super constant lower bound. Thus looped models can solve the problem with best known depth.

Theorem 5.1. For any finite group G and every n ∈ N+, there exists a constant-precision looped
transformer TFθ,T computing the composition of n elements from G with a 1-layer transformer
block, T = ⌈log2 n⌉ loops, G ∪ {#} being the vocabulary, d = 3 (⌈log2 |G|⌉+ ⌈log2 n+ 1⌉)
embedding size, dFF = |G|2 + 6⌈log2 |G|⌉ hidden dimension in MLP, dATTN = ⌈log2 n⌉ hid-
den attention dimension, and 2 attention heads. More specifically, for any g1, . . . , gn ∈ G,
TFθ(#, g1, . . . , gn) = g1 ◦ · · · ◦ gn.

5.3 LOOPED MODELS CAN SIMULATE NON-LOOPED MODELS

Our second theoretical result shows that a non-looped transformer with repeated layers can be sim-
ulated by a looped transformer with fewer parameters and same depth.

Theorem 5.2. For any transformer pθ with L layers, d embedding size, dFF hidden dimension for
MLP, H attention heads with dATTN hidden dimension, at most R distinct transformer layers and
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bounded activation value, there is a looped transformer pθ′,L working on the same vocabulary V plus
a dummy token #, which loops a 1-layer transformer block for L times, with d+R+2 embedding
size, RhFF +O(L) hidden dimension for MLP, RH attention heads with dATTN hidden dimension,
such that for any string v1, . . . , vn ∈ V , pθ(v1, . . . , vn) = pθ′,L(#, v1, . . . , vn).

We can also use the above theorem to convert the O(log2 n) depth transformer that simulates group
composition into a 1-layer looped transformer, although it is less parameter efficient than the result
from the previous section. Please refer to Appendix C.2.1 for the full proof.

Theory for p-hop. The experiments on p-hop induction from Section 2.1 surprisingly show that a
small model looped multiple times can solve it very effectively. We establish a theoretical basis for
this finding. More specifically, we show that a constant layer transformer with log(p) loops suffices
to solve p-hop induction problem. This result, in fact, matches the lower bound for layers required
for non-looped models proved in Sanford et al. (2024b). The result follows from Theorem 5.2 and
the construction for non-looped models from Sanford et al. (2024b) (restated in Theorem C.12).

Corollary 5.3. p-hop problem (Definition B.1) can be solved by looping a 1-layer transformer
⌊log2 p⌋ + 2 times, which has O(log n) bits of precision, d = dFF = dATTN = O(1) embedding
size, hidden dimension for MLP and attention, and at most 3 attention heads.

5.4 LOOPED MODELS CAN SIMULATE COT REASONING

In Section 3.3, we discussed how looped models can be viewed as generating multiple latent
thoughts in each iteration. The following theorem shows that one can use looped transformer with
L loops to simulate L steps CoT of another transformer with similar sizes.

Theorem 5.4 (Looped transformer simulates CoT). For any L-layer non-looped transformer TFθ

with fixed input length n and the number of CoT steps m, there exists a looped transformer TFθ′

with L + O(1) layers, Ω(log(n + m)), more embedding dimension and constantly many more
attention heads, such that for any input v = (vi)

n
i=1, the output of non-looped transformer after m

steps of CoT, TFm
θ (v), is the same as that of the looped transformer on input x concatenated by m

dummy tokens with m loops, TFθ′,m(v,#m).

We sketch the high-level idea behind Theorem 5.4; the full proof can be found in Appendix C.3.

• (Masking all-but-one) We maintain a counter t (Lemma C.10) at each position for the current
number of loop and for the ith position, we will only ”update” the embedding if i−n ≥ t and reset
the embedding to the input to the looped transformer layer otherwise. This can be implemented
by MLP. So similar to CoT, the first n+ i− 1 embedding won’t be changed in the ith loop.

• (Shift by one) We can use attention to obtain the output of the current loop at the previous position
and use that as the input of the next loop at current position. (Lemma C.9)

• (Token decoding) We show that we can use MLP with ReLU activation to simulate the encoding
and decoding process of CoT. (Lemma C.7)

6 CONCLUSIONS, LIMITATIONS AND FUTURE WORK

This work explores a new direction of “looped models for reasoning”. Not only are looped models
able to solve many reasoning problems with very fewer parameters, they also have an inductive
bias towards disproportionately improving the reasoning performance of language models, over
memorization. The theoretical results on the expressivity of looped models start to provide some
hints into their depth-optimality. While we test looped models on a subset of reasoning problems,
a natural question is whether the results hold for many other forms of reasoning (e.g. multimodal
and common-sense reasoning). In particular, a succinct formalization of reasoning problems itself
is an interesting future direction. Furthermore, the inductive bias towards improved reasoning
performance at the same perplexity is very intriguing and deserves further exploration. We find the
scaling behavior of looped models very fascinating, and the connections to latent thoughts and CoT
reasoning start to provide hints into this behavior. We hope this inspires future exploration on using
looped models for more efficient inference-time scaling to aid with deeper reasoning.
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A RELATED WORK

Reasoning is recognized as a core ability for intelligent and robustly model and has thus seen
significant focus over the last few years. The synthetic reasoning problems we consider in this
work have all been used in the prior works of Sanford et al. (2024b); Ye et al. (2024); Sanford
et al. (2024a); Nogueira et al. (2021) to theoretically analyze the strengths and limitations of
Transformers. There is also interest in the representation power of Transformers for computational
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problems (Liu et al., 2022; Strobl et al., 2023) and for chain-of-thought reasoning (Merrill &
Sabharwal, 2023a; Feng et al., 2023; Li et al., 2024). The necessity of model depth for performance
has been remarked upon, for small models (Liu et al., 2024) and reasoning (Chen & Zou, 2024; Ye
et al., 2024; Petty et al., 2023). In this work, we make a finer observation that albeit larger depth is
necessary, this can be achieved with a limited parameter budget via looping.

Looping in transformer models has been studied since the works (Dehghani et al., 2018; Lan et al.,
2020) where they showed the benefits of looping for supervised learning tasks and BERT pretrain-
ing respectively. Looping also appears in (Schwarzschild et al., 2021; Bansal et al., 2022) that
study the extrapolation properties of looping for certain algorithmic tasks. More recently Gian-
nou et al. (2023); de Luca & Fountoulakis (2024) have studied the theoretical properties of looped
decoder models and show that looping can simulate arbitrary Turing machines. In addition Yang
et al. (2023); Gao et al. (2024); Gatmiry et al. (2024a;b) study looped models as a way to sim-
ulate iterative algorithms for in-context learning. Recently, Mohtashami et al. (2023) introduced
CoTFormer, which tries to improve the perplexity of looped language models and (Liu et al., 2024)
explore latency-efficiency parameter sharing for on-device LLMs. In contrast, our work focuses on
the surprising inductive bias of looping to improve downstream reasoning tasks, and goes beyond
algorithmic and in-context learning tasks.

Different training algorithms (e.g. gradient descent (Soudry et al., 2018)) and architectural choices
(e.g. attention (Edelman et al., 2022)) have been shown to have certain implicit biases. There
is increasing interest in such inductive biases during pretraining (Saunshi et al., 2022; Liu et al.,
2023). More recently, Saunshi et al. (2024) showed an inductive bias of stacking (Reddi et al.,
2023) towards improving reasoning and hypothesize that a connection of stacking to looped models
could be responsible for this. Our results provide further verification for this hypothesis.

B EXPERIMENTS

B.1 SIMPLE REASONING SETUP DETAILS

n-ary addition. All experiments are run on a standard Transformer architecture with input di-
mension of 256, 8 heads and 1024 hidden dimension in the feed-forward layers. We train using
Adafactor (Shazeer & Stern, 2018) employing a linear warmup coupled with a cosine decay sched-
ule for the learning rate. All runs use a batch size of 1024, learning rate of 0.005 and run for 200k
steps. This corresponds to 200M examples, which is insignificant compared to the total possible ex-
amples (> 10320). Thus memorization of the answer is not an issue. Since training is a bit noisy, for
each setting, we run 3 different random seeds and pick the run with the maximum average accuracy.
We pick maximum instead of average because we care about expressivity power of these models.

p-hop induction. We formally define the p-hop problem below:

Definition B.1 (p-hop, Sanford et al. (2024b)). For a finite alphabet Σ, define the map hopp : Σn →
Σ ∪ {⊥} as hopp(v) = vfindp(v,n) if findp(v, n) ̸= 0 else ⊥, where

find1(v, i) = max ({0} ∪ {j ≤ i, vj−1 = vi})
findp(v, i) = find1(v, findp−1(v, i)) for p ≥ 2.

For the p-hop problem we sample instances randomly while enforcing that there always exists p-
hops present in the input sequence. We do this by first picking the sequence of p-hops randomly and
then shuffling them around in a sequence with filler tokens to be filled by the remaining characters.
After the shuffle, we sample the remaining characters to occur in place of the filler tokens while
respecting the p-hop order. Our train set consists of 4M examples and our test and validation sets
consist of 262k examples each. For all models we train on this dataset, the model dimension is 128,
hidden dimension is 512 and 8 attention heads are used. Rotary positional encodings are used as
well. We train using Adafactor for 200,000 steps with a batch size of 256 using a base learning rate
of 10−3 and use a linear warmup coupled with a cosine decay schedule for the learning rate.
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(a) Attn:Q (b) FFN:W1 (c) Attn:PostNorm

Figure 3: Cosine similarities for different layers in the model trained with the regularization strength
λreg = 10 for block size k = 4 (see Section 4 for details). The 24 layer model will have 6 such
blocks of size 4. The heatmap above shows the cosine similarities between weights for all pairs
of blocks. Overall we find the final cosine similarity to be very high, thus suggesting a strong
connection to looped models.

(a) Attn:Q (b) FFN:W1 (c) Attn:PostNorm

Figure 4: Cosine similarities for different layers in the baseline model trained without any regular-
ization strength. Overall the cosine similarities are very low for large matrices, as expected for high
dimensions matrices.
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Figure 5: Illustration of the simple and architecture agnostic looping mechanism that we consider.
A k-layer block looped L times (middle) is denoted by (k ⊗ L), which can essentially be viewed
as a weighted shared model. The iso-param baseline, (k ⊗ 1), is a k-layer model with the same
number of distinct parameters. The iso-FLOP baseline, (kL ⊗ 1), is a kL-layer model with the
same depth but L times more parameters. Middle looping is a strategy that is inspired from prior
works on model stacking (e.g. (Saunshi et al., 2024)).

i-GSM. We describe how the i-GSM dataset is generated in more detail here. We start with a
hierarchy of entities of depth 4 from which we build a randomly sampled structure graph where
directed edges connect entities in level i to those in level i + 1. Each edge in the structure graph
defines a instance parameter which is an integer (for e.g. an edge between city center and car parks
denotes the number of car parks in city center). We then construct a randomly sampled mathematical
dependency graph which is a DAG over all the instance parameters by relating each to the others.
Finally we pick one of the nodes of the dependency graph to query and the goal is to compute the
numerical value of this node modulo some prime number P . For more details on the sampling
process for the structure and dependency graphs, we refer the reader to Ye et al. (2024). We make
3 simplifications compared to Ye et al. (2024): we phrase our problems in a symbolic language
without the English construction of sentences (see Table 8); we do not allow abstract parameters in
our problems; we perform arithmetic modulo 7 as opposed to 23. Our train dataset consists of around
4 million examples and we test on around 50k examples. Given the significantly larger number of
unique solution templates possible, train-test overlap in the problem template space is going to be
limited with high probability. For all models we train on this dataset, the model dimension is 128,
hidden dimension is 512 and 8 attention heads are used. Rotary positional encodings are used as
well. We train using Adafactor for 200,000 steps with a batch size of 256 using a base learning rate
of 10−3 and use a linear warmup coupled with a cosine decay schedule for the learning rate.

B.2 LANGUAGE MODELING SETUP

We train on the Pile data using causal language modeling objective. The dataset is pre-processed
and cached to ensure that all models are trained on exactly the same tokens in the same order. For
all experiments, we use a batch size of 512 and sequence length of 1280. We use a cosine learning
rate schedule decaying over 400k steps with a peak learning rate of 0.01, tuned based on the baseline
model. The base model is a 1.5B parameter decoder only Transformer model, with 24 layers, model
dimensions of 2048, hidden dimension 5120 and 32 heads. For the shallower baselines and looped
models, we only change the number of layers and keep all other hyperparameters the same.

B.3 RESULTS FOR EACH TASK GROUP

In Section 3 we discussed results for various task groups like closed book QA, math word problems
etc. Here we present details on the task groups and results for each individual task for completeness.

• Closed book QA: This includes tasks like TriviaQA (Joshi et al., 2017), TydiQA-NoContext
(Clark et al., 2020), Natural Questions (Kwiatkowski et al., 2019) and Web Questions (Talmor
& Berant, 2018) that test the model’s ability to answer questions without any context, and thus,
primarily measure the memorization abilities of language models.

• Open book QA: This includes tasks like TydiQA-GoldP (Clark et al., 2020), SquadV2 (Ra-
jpurkar et al., 2018), Drop (Dua et al., 2019), QuAC (Choi et al., 2018), CoQA (Reddy et al.,
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Table 4: Downstream evaluations for the models in Table 2 for closed book QA tasks.

Params / FLOPs TriviaQA TydiQA- Natural Web Average
NoContext Questions Questions Average

Baseline 24x / 24x 24.5 10.6 4.3 5.6 11.2
Base (12⊗ 1) 12x / 12x 15.9 9.3 2.4 5.2 8.2
Loop (12⊗ 2) 12x / 24x 18.6 9.6 3.4 5.8 9.3
Regularized (k = 12) 24x / 24x 20.9 10.9 3.6 5.0 10.1
Base (8⊗ 1) 8x / 8x 12.3 7.4 1.8 3.9 6.3
Loop (8⊗ 3) 8x / 24x 17.3 8.8 2.5 5.2 8.5
Regularized (k = 8) 24x / 24x 23.6 10.6 4.1 6.7 11.3
Base (6⊗ 1) 6x / 6x 7.4 4.8 1.1 2.7 4.0
Loop (6⊗ 4) 6x / 24x 16.0 9.3 2.7 4.9 8.2
Regularized (k = 6) 24x / 24x 25.8 12.2 4.5 5.6 12.0
Base (4⊗ 1) 4x / 4x 3.3 1.9 0.6 1.5 1.8
Loop (4⊗ 6) 4x / 24x 11.8 8.8 2.4 3.5 6.7
Regularized (k = 4) 24x / 24x 26.1 13.3 4.5 6.2 12.5

Table 5: Downstream evaluations for the models in Table 2 for open book QA tasks.

Params / FLOPs TydiQA-NoContext SquadV2 DROP QuAC CoQA Average

Baseline 24x / 24x 33.4 41.3 23.4 18.6 52.7 33.9
Base (12⊗ 1) 12x / 12x 21.8 34.6 20.0 17.3 41.1 26.9
Loop (12⊗ 2) 12x / 24x 27.7 39.5 22.3 17.6 46.8 30.8
Regularized (k = 12) 24x / 24x 33.0 44.3 23.8 17.7 51.9 34.1
Base (8⊗ 1) 8x / 8x 12.7 33.8 16.0 15.3 35.9 22.7
Loop (8⊗ 3) 8x / 24x 29.8 38.1 21.6 17.6 46.6 30.8
Regularized (k = 8) 24x / 24x 33.0 41.7 25.2 19.3 52.9 34.4
Base (6⊗ 1) 6x / 6x 8.2 26.8 14.8 14.4 32.5 19.3
Loop (6⊗ 4) 6x / 24x 26.6 34.6 20.8 18.1 43.7 28.7
Regularized (k = 6) 24x / 24x 34.5 46.1 26.2 18.6 53.4 35.8
Base (4⊗ 1) 4x / 4x 3.4 19.0 11.1 13.1 22.3 13.8
Loop (4⊗ 6) 4x / 24x 22.0 32.4 20.1 15.8 40.7 26.2
Regularized (k = 4) 24x / 24x 33.6 49.4 24.1 19.8 54.0 36.2

2019) that evaluate the model’s ability to infer the answer to a question from the extra context
that is provided, akin to reading comprehension.

• Math word problems: To evaluate the model’s ability to reason, we test them on math word
problems considered in (Wei et al., 2022b). This includes tasks like SVAMP (Patel et al., 2021),
ASDiv (Miao et al., 2020), the MAWPS benchmark (Koncel-Kedziorski et al., 2016). We report
5-shot evaluation for the pretrained model on these tasks.

• Reasoning primitives: Saunshi et al. (2024) introduced these datasets to study the inductive
bias of stacking towards improving reasoning, by isolating simple reasoning abilities. One
such primitive is depth-k variable assignment that requires the model to resolve a chain of
assignments of length k. An example of depth-0 var-assign is a=1, b=2, c=6, b=?, and example
for depth-1 var-assign is a=1, b=2, c=a, d=b, d=?. We evaluate on the math and coding variants
of the depth-0 and depth-1 problems using 5-shot evaluation.

Detailed results for closed book QA are in Table 4, open book QA in Table 5, math word problems in
Table 6 and reasoning primitives in Table 7. These tables include, both, looped models from Table 2
and the models trained with regularization from Table 3.

B.4 MIDDLE LOOPING VARIANT AND RELATIONSHIP WITH GRADUAL STACKING

Recently Saunshi et al. (2024) introduced a gradual stacking (Gong et al., 2019; Reddi et al., 2023)
approach for training language models called MidAS. This approach gradually grows the model
depth as training proceeds by duplicating certain layers of the model in each stacking operation.
Surprisingly, they found that MidAS not only speeds up pretraining, but also improves reasoning
in the same sense as Figure 1 – better reasoning at the same perplexity. Furthermore, the paper
established a strong connection between stacking via MidAS and looped models, owing to the
layer duplication operation, and conjectured that this is the reason for such an inductive bias. Our
results from the previous section provides a compelling evidence for this conjecture by showing that
looped models also show a very similar inductive bias, thus, further strengthening the connection
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Table 6: Downstream evaluations for the models in Table 2 for math word problems.

Params / FLOPs ASDiv MAWPS- MAWPS- MAWPS- MAWPS- SVAMP Average
AddSub MultiArith SingleEq SingleOp

Baseline 24x / 24x 26.9 49.9 2.7 38.6 40.2 17.9 29.3
Base (12⊗ 1) 12x / 12x 23.1 44.8 2.0 36.8 37.9 15.3 26.7
Loop (12⊗ 2) 12x / 24x 31.5 55.9 2.0 47.4 50.2 18.5 34.3
Regularized (k = 12) 24x / 24x 27.4 54.4 2.7 43.7 45.9 19.8 32.3
Base (8⊗ 1) 8x / 8x 12.9 32.7 2.0 19.9 21.9 13.4 17.1
Loop (8⊗ 3) 8x / 24x 23.2 54.9 2.3 36.2 38.3 15.6 28.4
Regularized (k = 8) 24x / 24x 31.0 56.7 3.5 40.7 47.5 17.3 32.8
Base (6⊗ 1) 6x / 6x 15.4 31.1 1.3 21.3 26.3 10.9 17.7
Loop (6⊗ 4) 6x / 24x 24.5 51.6 0.7 38.0 47.7 16.3 29.8
Regularized (k = 6) 24x / 24x 32.0 47.1 3.5 44.9 42.0 16.8 31.0
Base (4⊗ 1) 4x / 4x 7.9 10.4 1.5 11.0 19.0 8.3 9.7
Loop (4⊗ 6) 4x / 24x 19.9 49.1 1.7 29.3 35.9 12.6 24.8
Regularized (k = 4) 24x / 24x 35.0 53.9 3.2 52.2 50.9 23.0 36.4

Table 7: Downstream evaluations for the models in Table 2 for reasoning primitives.

Params / FLOPs Code Math Code Math Average
Depth-0 Depth-0 Depth-1 Depth-1

Baseline 24x / 24x 71.1 72.5 24.2 22.3 47.5
Base (12⊗ 1) 12x / 12x 52.2 51.6 20.7 18.3 35.7
Loop (12⊗ 2) 12x / 24x 73.5 86.5 21.3 23.6 51.2
Regularized (k = 12) 24x / 24x 75.1 74.9 27.0 25.7 50.7
Base (8⊗ 1) 8x / 8x 48.7 42.0 21.4 19.8 33.0
Loop (8⊗ 3) 8x / 24x 88.4 86.9 23.1 22.9 55.3
Regularized (k = 8) 24x / 24x 92.2 86.7 23.1 23.3 56.3
Base (6⊗ 1) 6x / 6x 26.3 29.7 20.2 20.1 24.1
Loop (6⊗ 4) 6x / 24x 90.6 88.1 24.1 21.7 56.1
Regularized (k = 6) 24x / 24x 84.0 79.7 31.4 28.3 55.8
Base (4⊗ 1) 4x / 4x 19.3 23.3 17.3 17.6 19.4
Loop (4⊗ 6) 4x / 24x 87.9 90.0 24.8 24.8 56.9
Regularized (k = 4) 24x / 24x 88.0 86.9 27.9 25.8 57.2

between stacking and looped models. Why such an inductive bias occurs is still an open question,
and we believe that understanding this is an important future direction.

Furthermore, inspired by their findings, we explore middle looping (see Figure 5 for an illustration)
— a variant of looping which maintains independent layers at the start and the end of the network,
and perform looping on the middle block of layers. The high-level intuition from Saunshi et al.
(2024) is that the first and last layers play a special role in the model and thus, should be treated
differently from the middle layers. In Table 2, we report results for a version of middle looping that
is iso-param with a (12 ⊗ 1) baseline and iso-flop with a (24 ⊗ 1) baseline, just like the (12 ⊗ 2)
model. Overall, we find that middle looping has better perplexity and more uniform improvements
than the default looping of (12 ⊗ 2) (except for math word problems), and thus, might be a more
practical looping approach. We leave the exploration of the best looping strategies for future work.

C THEORETICAL RESULTS

C.1 DETAILED NOTATIONS

Definition C.1 (Embedding Layer). Given a finite vocabulary V , embedding dimension d ∈ N+,
token embedding parameter θTE ∈ Rd×|V| and position embedding parameter θPE ∈ Rd×nmax , we
define the embedding layer as a sequence-to-sequence map, denoted by EMBEDθTE,θPE : Vn →
(Rd)n for any 1 ≤ n ≤ nmax, where

EMBEDθTE,θPE(v1, . . . , vn) = (θTE(v1) + θPE(1), . . . , θTE(vn) + θPE(n)) . (7)

Multi-Head Self-Attention Mechanism: Given attention parameters θATTN =
{WQ,WK ,WV ,WO}, where each Wm

Q ,Wm
K ,Wm

V ,Wm
O ∈ RdATTN×d, we define the Self-

Attention layer with a causal mask for a decoder-only transformer in Algorithm 1. We also
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Table 8: Left. Symbolic i-GSM problem and its solution. Right. Accuracy of looped and non-
looped models on the i-GSM task from Section 2. (k ⊗ L) looped model is significantly better than
the iso-param (k ⊗ 1) model and performs as well as non-looped iso-flop (kL⊗ 1) model.

Question. E#I := 4. E#J := E#I. K#N := I#N + J#O + F#K. F#K
:= E#J. J#O := F#K + K#O + E#J. H#J := E#J + F#K. I#P := L#M
+ I#N + K#O. I#M := J#O + J#P + F#K. J#P := H#J - F#K. L#M :=
I#N + J#P + F#K. I#N := 2 * J#P + H#J + E#I. K#O := J#P + I#N +
E#J. I#P?

Answer with CoT. E#I = 4. =⇒ E#I = 4. E#J = E#I. =⇒ E#J
= 4. F#K = E#J. =⇒ F#K = 4. H#J = E#J+F#K. =⇒ H#J = 1.
J#P = H#J-F#K. =⇒ J#P = 4. I#N = 2J#P+2H#J+2E#I. =⇒ I#N
= 4. L#M = I#N+J#P+F#K. =⇒ L#M = 5. K#O = J#P+I#N+E#J.
=⇒ K#O = 5. I#P = L#M+I#N+K#O. =⇒ I#P = 0.

Params / FLOPs Accuracy

Base (8⊗ 1) 8x / 8x 73.2
1 layer model

Base (1⊗ 1) 1x / 1x 24.5
Loop (1⊗ 2) 1x / 2x 52.3
Loop (1⊗ 4) 1x / 4x 69.9
Loop (1⊗ 8) 1x / 8x 73.2

2 layer model
Base (2⊗ 1) 2x / 2x 54.0
Loop (2⊗ 2) 2x / 4x 66.9
Loop (2⊗ 4) 2x / 8x 73.6

4 layer model
Base (4⊗ 1) 4x / 4x 71.3
Loop (4⊗ 2) 4x / 8x 71.6

define a Multi-Head Attention layer as a collection of self-attention layer with non-shared pa-
rameters θMHA = {θ(h)ATTN}Hh=1, and its output is the sum of the outputs from each head. That is,
MHAθMHA

=
∑H

h=1 ATTNθ
(h)
ATTN

.2

Algorithm 1 Causal Self-Attention, ATTN

Input: Parameter θATTN = (WQ,WK ,WV ,WO), Input embedding x1, . . . , xn) ∈
(
Rd

)n
.

Output: Output embedding x′ = (x′
1, . . . , x

′
n) ≜ ATTNθATTN(x1, . . . , xn).

1: qi ≜ WQxi, ki ≜ WKxi, vi ≜ WV xi,∀i ∈ [n]

2: si ≜ softmax(⟨qi, k1⟩ , . . . , ⟨qi, ki⟩)∥(0, . . . , 0).
3: h′

i ≜ W⊤
O

∑n
j=1(si)jvj .

Feed-Forward Network: Given the parameters of the fully-connected feedforward network layer
θFF = (W1, b1,W2, b2) ∈ RxFF×d ×RdFF ×Rd×dFF ×RdFF , we define the feedforward layer FFθFF :

Rd → Rd as FFθFF(h) ≜ W2, relu(W1h+ b1) + b2.

Definition C.2 (Output Layer). Given parameter θOUTPUT ∈ Rd×|V|, we denote the output layer as
OUTPUTθOUTPUT

: (Rd)n → ∆|V|−1, where

OUTPUTθOUTPUT
(x1, . . . , xn) ≜ softmax(x⊤

n θOUTPUT) (8)

Finally, we define the entire transformer model pθ : ∪n≤nmax
Vn → ∆|V|−1 as

pθ ≜ OUTPUTθOUTPUT
◦ TBθTB ◦ EMBEDθTE,θPE (9)

for any θ = (θTB, θTE, θPE, θOUTPUT).For convenience, we also write [pθ(v1, . . . , vn)] (v) as pθ(v |
v1, . . . , vn). In particular, we use TFθ(v1, . . . , vn) ≜ argmaxv∈V pθ(v|v1, . . . , vn) to denote the
deterministic version of the transformer model.

Finite-precision Modeling: In this paper we assume the transformer is of finite precision. More
specifically, we follow the setting in Li et al. (2024) and use the shorthand Fs ≜ {c · k · 2−s |
c ∈ {−1, 1}, 0 ≤ k ≤ 22s − 1, k ∈ N} to denote fixed-point numbers of constant precision s and
rounding operation [·]s : R → Fs to denote the correcting rounding, namely the mapping from R
to the closest representable number in Fs. (We break the tie by picking the number with smaller
absolute value). We assume that (1). all the parameters of the transformer are in Fs and (2). correct
rounding is performed after every binary operation in the forward pass of the transformer. We will
refer the readers to Li et al. (2024) for detailed discussion on such finite-precision modeling and
only list important notations and lemmas that will be used in this paper below.

2Though in this paper we focus on attention with casual mask, our definition of looped transformer gener-
alizes to the cases with other attention masks.

20



Published as a conference paper at ICLR 2025

Figure 6: Downstream evaluation for various task groups on the x-axis, vs validation log perplexity
on the y-axis (reversed), as training proceeds. The top plots compare a 12-layer baseline model
(12 ⊗ 1) and the looped model (12 ⊗ 2). The second row compares the baseline 24-layer model
and the 24-layer model trained with regularization using block size k = 4 and λreg = 10 (See Equa-
tion (4)). For both comparisons we have similar observations. For closed book QA (memorization)
tasks looping has very similar trends to baseline. For open book QA tasks and math word problems,
looping has much better downstream performance at an equivalent log perplexity. This verifies the
inductive bias of looping and regularization towards better reasoning abilities.

We use 1s to denote all-one vectors of length s. Similarly we define ⟨·, ·⟩s, ×s, and softmaxs. We
recall that for any s ∈ N+ and integer 0 ≤ x ≤ 2s − 1, we use bins(x) ∈ {0, 1}s to denote the
usual binary encoding of integer x using s binary bits in the sense that x =

∑s
i=1 2

i(bins(x))i and
sbins(x) ∈ {−1, 1}s to denote the signed binary encoding, which is 2bins(x)− (1, . . . , 1). Finally
we define Bs = maxFs = 2s − 2−s.

Lemma C.1. [Lemma E.1, (Li et al., 2024)] For any s ∈ N+, it holds that [exp(−Bs)]s = 0.

Lemma C.2. [Lemma E.2, (Li et al., 2024)] For any s ∈ N+, it holds that [exp(Bs)]s = Bs.

Lemma C.3. [Lemma E.5, (Li et al., 2024)] Unlimited-fanin AND,OR (resp. MAJORITY) :
{0, 1}n → {0, 1} can be simulated by some 2-layer feedforward ReLU network with constant (resp.
log n) bits of precision constant hidden dimension and additional n constant inputs of value 1.

Mathematically, let FF[s(n)] be the set of functions C : {0, 1}n → {0, 1} which can be a two-
layer feedforward ReLU network with at most s(n) bits of precision and constant hidden dimension
FFθ : {0, 1}2n → {0, 1},FFθ(x

′) = W2 ×s relu([W1 ×s x
′ + b1]s), where θ = (W2,W1, b1), such

that for any x ∈ {0, 1}n,

FFθ(x1, 1, x2, 1, . . . , xn, 1) = C(x). (10)

We have unlimited-fanin AND,OR ∈ FF[1] and MAJORITY ∈ FF[log n].

Given two vectors x, y of the same length s, we use x⌢y to denote their interleaving, that is,
(x⌢y)2i−1 = xi, (x

⌢y)2i = yi for all i ∈ [e].

Lemma C.4. [Lemma E.3, (Li et al., 2024)] For any s ∈ N+, let qi = sbins(i)
⌢
1s and ki = Bs ·

(sbins(i)
⌢
(−1s)) for all i ∈ [2s−1], it holds that

[
exp(⟨qi, kj⟩s)

]
s
= 1 [i = j] for all i, j ∈ [2s−1].
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Figure 7: Scaling behavior for various task group as the effective depth increases. The blue curve
shows how performance scales as the number of loops increases, without increasing parameters, us-
ing models of the form (4⊗D/4) for various values of D. The orange curve visualizes the scaling be-
havior of (D⊗1) which increases the depth by adding fresh parameters. For reasoning primitives, the
looped model scales as well, or even better, than the baseline despite having D/4 fewer parameters.

C.2 PROOFS

C.2.1 LOOPED MODELS CAN SIMULATE NON-LOOPED MODELS

Proof of Theorem 5.2. We start by introduce some more notations. We will proof the theorem for
any fixed sequence of v = (v1, . . . , vn). We use x(l) = (x

(l)
i )ni=1 to denote the intermediate

embedding of pθ in the lth layer. More specifically, we define

xl = (id+ FF
θ
(l−1)
FF

) ◦ (id+MHA
θ
(l−1)
MHA

) ◦ · · · (id+ FF
θ
(0)
FF

) ◦ (id+MHA
θ
(0)
MHA

) ◦ EMBEDθEMBED
(v).

(11)

We also use x(l+0.5) = (x
(l+0.5)
i )ni=1 to denote the intermediate embedding of pθ in the lth layer

after the attention layer.

xl+0.5 = (id+MHA
θ
(l−1)
MHA

)(xl). (12)

Similarly, for the constructed looped transformer pθ,T , we use v′ = (#,v1, . . . ,vn) to denote
its input. For simplicity, we use the convention that # is at position 0. The proof still works
if # starts at position 1 because we can just transfer the later tokens by 1 position. We define
x′(l) = (x

′(l)
0 , x

′(l)
1 , . . . , x

′(l)
n ) as the intermediate embedding of pθ in the lth layer and x′(l+0.5) =

(x
′(l+0.5)
0 , x

′(l+0.5)
1 , . . . , x

′(l+0.5)
n ) as the intermediate embedding of pθ in the lth layer.

Below we first state the key properties that our construction will satisfy, which imply the correctness
of the theorem and then we state our construction of pθ′,T and show the properties are actually
satisfied:

• x
′(l)
i = (x

(l)
i ,1R − er(l), l,1 [i = 0]).

• x
′(l+0.5)
i = (x

(l+0.5)
i ,1R − er(l), l,1 [i = 0]).

• x
(l)
0 = x

(l+0.5)
0 = 0.3

3Here we abuse the notation for simplicity of presentation. x(l)
0 = x

(l+0.5)
0 are not defined in the original

non-looped transformer. The key point here is that they are 0 vectors throughout the forward pass.
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Algorithm 2 Group Composition

Input: Group elements g0, g1, . . . , gn ∈ G, where g0 = e.
Output: g0 ◦ g1 ◦ . . . gn.

1: g
(0)
i = gi, ∀0 ≤ i ≤ n.

2: for l = 1 → ⌈log2 n⌉ do
3: a

(l)
i = g

(l−1)
[2i−n−1]+

, b
(l)
i = g

(l−1)
[2i−n]+

∀0 ≤ i ≤ n.

4: g
(l)
i = a

(l)
i ◦ b(l)i , ∀0 ≤ i ≤ n.

5: end for
6: return g

(⌈log2 n⌉)
n .

To get the last coordinate l, which is a depth counter, we just need to add 1 more hidden dimension
in MLP.

Next we show we can use two-layer with L+ 2 MLP to get the mapping from ℓ 7→ 1R − er(l). Let
(θ

(i)
FF , θ

(i)
MHA)

R
i=1 be the parameters of the R distinct layers in θ. We assume in the lth layer, r(l)’s

parameters are used. This is because er(l) =
∑L

i=1 er(i)0.5∗ ([l− i+1]+−2[l− i]++[l− i−1]+).

Now we explain how to deactivate the undesired MLP neurons. In other words, our construction of
θ′FF is essentially concatenation of θ(i)FF for i ∈ [r] in the hidden dimension of FF, with the additional
control that FFθ′

FF
((x

(l)
i ,1R−er(l), l),1 [i = 0]) =

∑R
i=1 FFθ

(i)
FF

(x
(l)
i )1 [r(l) = i, i ̸= 0] at lth layer.

This control can be done by subtracting 1− er(l) + 1 [i = 0] by a constant which is larger than the
maximum pre-activation in the hidden layer.

Finally we explain how to deactivate the undesired attention. We will only use attention to update the
first part of the embedding, which is x(l+0.5)

i . A crucial step here is that we set the token embedding
of # as 0 We construct keys and queries as follows:

1. W ′(r′)
Q (x

′(l)
i ) = (W

(r′)
Q x

(l)
i , 1− 1 [r′ = r(l)] for r′ ∈ [R] and i = 0, . . . , n

2. W ′(r′)
K (x

′(l)
i ) = (W

(r′)
K x

(l)
i ,−B1 [i = 0]) for r′ ∈ [R] and i = 0, . . . , n, where

B is some constant larger than the maximum previous inner product in attention,
maxl∈[L],i,j

〈
(WKx

(l)
i , (WQx

(l)
i

〉
.

3. W ′(r′)
O W ′(r′)

V (x
′(l)
i ) = (W

(r′)
O W

(r′)
V x

(l)
i ,0, 0, 0).

This construction works because only the ‘desired’ attention head r = r(l) will be activated and
behave as in the non-looped case, because otherwise all position in that attention head will be com-
pletely attended to position 0 and returns a zero vector. (We can choose B to be large enough and
distribution calculated by the attention score is delta distribution) at position 0, which yields a zero
vector as its value. This completes the proof.

C.2.2 GROUP COMPOSITION.

The landmark result in automata theory, Krohn-Rhodes Decompotision Theorem (Krohn & Rhodes,
1965), shows that all semi-automaton with solvable transformation group (which includes compo-
sition problem of solvable groups) can be simulated by a cascade of permutation-reset automata,
which can be simulated by TC0 circuits. (Liu et al., 2022) further showed that such automaton
with solvable transformation group can be continuously simulated by constant-depth transformers.
However, it is also shown (Barrington, 1986) that the composition problem of unsolvable groups are
NC1-complete, for example, the composition of permutation group over 5 elements, S5. Under the
common hardness assumption that NC1 ̸= TC0), constant depth transformer cannot solve composi-
tion of S5 using a single forward pass (Merrill & Sabharwal, 2023b; Liu et al., 2022; Li et al., 2024).
But with CoT, very shallow transformers (depth equal to one or two) can simulate the composition
problem of any group(Li et al., 2024; Merrill & Sabharwal, 2023a).
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Proof of Theorem 5.1. We will set the token embedding of # the same as that of e, which is the
identity of G. In the following proof, we will just treat # as e. We will construct the transformer
simulating group composition following the following algorithm Algorithm 2, which gives the high-
level idea of the construction. The correctness of Algorithm 2 follows from the associativity of group
composition. More concretely, we can verify by induction that gl0 ◦ gl1 ◦ . . . gln is the same for all
l = 0, . . . , ⌈log2 n⌉ and in the final round, i.e., when l = ⌈log2 n⌉, g(l)i = e for all i < n.

Below we show how to construct a transformer of the given sizes to simulate the above Al-
gorithm 2. We will embed each g ∈ G as a different vector g ∈ {−1, 1}⌈log2 |G|⌉ and
each position 0 ≤ i ≤ n as its binary representation in i ∈ {−1, 1}⌈log2 n+1⌉, which is
a shorthand for sbins(i) with s = ⌈log2 n + 1⌉. We concatenate them to get {x(0)

i }ni=0,
that is, x

(0)
i = (gi, i, [2i− n− 1]+, [2i− n− 1]+, 0

⌈log2 |G|⌉, 0⌈log2 |G|⌉). For convenience, we
will drop the 0’s in the end (also in the other proofs of the paper) and write it as x

(0)
i =

(gi, i, [2i− n− 1]+, [2i− n− 1]+). Below we show we can construct 1-layer transformer block
with parameter (θMHA, θFF) satisfying that

1.
[
MHAθMHA

(
(gi, i, [2i− n− 1]+, [2i− n− 1]+)

n
i=0

)]
k
= (0⌈log2 |G|⌉+3⌈log2 n+1⌉, g[2k−n−1]+ , g[2k−n]+)

for all g0 = e, gi ∈ G∀i ∈ [n], k = 0, . . . , n;
2. FFθFF(g, i, j, k, g

′, g′′) = (g′ ◦ g′′ − g, 03⌈log2 n+1⌉,−g′,−g′′), for all i, j, k = 0, . . . , n,
g, g′, g′′ ∈ G.

The first claim is because we can use two attention heads to retrieve g[2k−n−1]+ and g[2k−n]+ re-
spectively, where both of them use k as the key and use −[2k − n− 1]+ and −[2k − n]+ as queries
respectively. This is possible because all the required information are already in xi. We further make
attention temperature low enough so the probability returned by attention is a one-hot distribution at
the position whose key is equal to the negative query after rounding.

Now we turn to the second claim about MLP. We will use |G|2 neurons with ReLU activation and
bias to simulate the product of g′ and g′′. We can index each neuron by (h, h′) for h, h′ ∈ G and set
its incoming weight [W1](h,h′),: = (h, h′) and set bias (b1)(h,h′) = −2⌈log2 |G|⌉+1, which ensures
that the activation of neuron (h, h′) will only be 1 when g′ = h, g′′ = h′ and be 0 otherwise. Then
setting the outgoing weight of neuron (h, h′) as h ◦ h′ and the bias in the second layer to be 0 finishes
the construction for simulating the group composition. Finally we use the remaining 6⌈log2 |G|⌉ to
simulate negative identity mapping x → −x for the remaining 3⌈log2 |G|⌉ embedding dimension.
This completes the proof.

C.3 CONNECTION TO CHAIN-OF-THOUGHT REASONING

In this section, we establish a connection betwee looped models and CoT reasoning. We first define
the recursion for CoT reasoning as follows:

TFi
θ(v1, . . . , vn) ≜ TFi−1

θ (v1, . . . , vn,TFθ(v1, . . . , vn)),

for i, n ∈ N+ satisfying i + n ≤ nmax − 1 along with the base case of TF1
θ(v1, . . . , vn) ≜

TFθ(v1, . . . , vn). For all 0 ≤ i ≤ nmax − n − 1, the output with i steps of CoT is vn+i+1 =

TFi+1
θ (v1, . . . , vn) = TFθ(v1, . . . , vn, vn+1, . . . , vn+i).

We first give the formal statement below.
Theorem C.5 (Looped transformer simulates CoT). For any L-layer non-looped transformer TFθ,
there exists a looped transformer TFθ′ with L + O(1) layers, constantly many more dimensions
in embedding, MLP and attention layers and constantly many more attention heads, such that for
any input v = (vi)

n
i=1 and integer m, the output of non-looped transformer after m steps of CoT,

TFm
θ (v), is the same as that of the looped transformer on input x concatenated by m dummy tokens

with m loops, TFθ′,m(v,#m).

Below are some helping lemmas towards showing Theorem C.5 is at least as powerful as CoT.
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Figure 8: Left. Chain-of-thought reasoning can be viewed as a looped model, where each iteration
produces one new thoughts token. The new tokens are highlighted in red. Right. A looped model
can instead generate multiple latent thoughts in parallel and, in theory, can simulate CoT reasoning
my masking the updates appropriately (see Theorem 5.4)

Lemma C.6 (Simulating argmax using MLP). For every d ∈ N and precision s ∈ N+, there exists
a 3-layer network with relu activation and d2 width f with s precision, such that for any x ∈ Fd

s , if
there is k ∈ [d], such that xk > maxj ̸=k,j∈[d] xj , f(x) = ek.

Proof of Lemma C.6. Define gi = 2s · relu(2−s −
∑

j ̸=i relu(xj − xi)) for each i ∈ [n]. We claim
that if there is k ∈ [d], such that xk − maxj ̸=k,j∈[d] xj ≥ 2−s, gi = 1 iff i = k for all i ∈ [d].
First gk = 2s · relu(2−s) = 1. Next for i ̸= k, it clearly holds that

∑
j ̸=i relu(xj − xi) ≥ 2−s

and thus gi ≤ 0. This construction can clearly be implemented by a 3-layer relu network with s
precision.

Lemma C.7 (Simulating Decoding and Embedding using MLP). Given any s-precision θTE ∈
Rd×Σ and θOUTPUT, there is a 5-layer network f : Rd → Rd with relu activation and max(|Σ|2)
width with s-precision, such that for all s-precision x ∈ Rd which admits unique argmax for
v ≜ argmaxo∈Σ(x

⊤θOUTPUT)(o), it holds that

f(x) = θTE(v).

Proof of Lemma C.7. This is a simple application of Lemma C.6.

Lemma C.8 (Control Gate). A 2-layer relu network with precision s can implement F : Fs × Fs ×
{0, 1}, F (x, y,M) = Mx+ (1−M)y.

Proof of Lemma C.8. Note that F (x, y,M) = relu(x− 2s · (1−M))− relu(−x− 2s · (1−M)) +
relu(y − 2s ·M)− relu(−y − 2s ·M). The proof is completed.

Definition C.3 (Transformer Block with Mask). Given number of layers L ∈ N+, parameter θTB =

(θ
(l)
MHA, θ

(l)
FF)

L−1
l=0 , and mask function M : N → {0, 1}, we define the L-layer transformer block with

maskTBθTB,M : (Rd)n → (Rd)n for any n ∈ N+ as

[TBθTB,M (x)]i ≜ (1−M(i))xi +M(i)[TBθTB(x)]i (13)

Definition C.4 (Looped Transformer with Mask). Given number of loops T ∈ N+, pa-
rameters θ = (θTB, θTE, θPE, θOUTPUT), and mask functions {M t}Tt=1, where θTF =

(θ
(l)
MHA, θ

(l)
FF)

L−1
l=0 , we define the looped transformer with mask as pθ,T,M ≜ OUTPUTθOUTPUT

◦
TBθTB,MT ◦ · · ·TBθTB,M1 ◦ EMBEDθTE,θPE and the corresponding deterministic version as
TFθ,T,M (v1, . . . , vn) ≜ argmaxv∈V pθ,T,M (v|v1, . . . , vn).
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Definition C.5 (Shifting Layer). We define the shifting layer SHIFT : (Rd)n → (Rd)n as the
following for any d, n ∈ N+ and x1, . . . , xn ∈ Rd:

SHIFT(x1, x2, x3, . . . , xn) = (x1, x1, x2, x3, . . . , xn−1). (14)

Lemma C.9. For input sequence length up to some integer n, SHIFT could be implemented by
a attention layer by concatenating each embedding xi with (sbins(i), sbins(f(i))), where n =
⌈log2 n+ 1⌉.

Proof of Lemma C.9. It is equivalent to show we can construct an attention heads which computes
xf(i) at each position i.

To do so, we just need to invoke Lemma C.6 and use that to set key and query, so position i attends
to position f(i). We set value at position i to be xi. This completes the proof.

Lemma C.10. For any positive integer s > 0, there is a constant-depth MLP F with O(s) hidden
neurons per layer and parameters in Fs, such that for any input bin(x) ∈ {−1,+1}s, where 0 ≤
x ≤ 2s − 1, it holds that

F (x) = bin(x+ 1).

Proof of Lemma C.10. By Lemma C.3, it suffices to show that we can simulate bin(x) 7→ bin(x)+1
using O(s) wide, constant-depth boolean circuits with AND,OR,NOT gates with unlimited fan-ins.
This is immediate by noting that

[bin(x+ 1)]i = [bin(x+ 1)]i ⊕
i−1∧
j=1

[bin(x+ 1)]j (15)

Lemma C.11. For any positive integer s > 0, there is a constant-depth MLP F with O(s) hidden
neurons per layer and parameters in Fs, such that for any input (bin(x), bin(y)) ∈ {−1,+1}s, where
0 ≤ x, y ≤ 2s − 1, it holds that

F (x, y) = 1 [x > y] .

Proof of Lemma C.11. By Lemma C.3, it suffices to show that we can simulate bin(x), bin(y) 7→
1 [x > y] using O(s) wide, constant-depth boolean circuits with AND,OR,NOT gates with unlim-
ited fan-ins. This is immediate by noting that

1 [x > y] =
∨
i∈[s]

([bin(x)]i = 1) ∧ ([bin(y)]i = 0) ∧
∧

1≤j<i

([bin(x)]j = [bin(y)]j)

 . (16)

Proof of Theorem C.5. We consider mask M t(i) = 1 [i− t ≥ n], which we call it CoT masking.
Let s = ⌊log(n + m) + 1⌋, we use i to denote sbins(i) for 1 ≤ i ≤ n + m for convenience.
The embedding size of our newly constructed transformer is larger than the target transformer to be
simulated by an additive constant of 3s. We denote the new embedding at position i after tth loop
by (x

(t)
i , p

(t)
i ), where x

(t)
i will be the original embedding of the transformer to be simulated, and

p
(t)
i is of dimension 3s and only depends on i and t. In particular, we can show that we can set

p
(t)
i ≜ (i, [i− 2]+ + 1, n+ t) to save information about position and the number of loops — p

(0)
i is

from the positional embedding and the update is due to Lemma C.10. The size of hidden dimension
of MLP and attention (key, query, value) will also be increased by O(s).

The proof contains two steps:

1. To show that there is a transformer with CoT masks simulating the target transformer with m
steps of CoT and L layers by looping its own L+O(1) layer block m times.
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2. To show that the above looped transformer with CoT masks can be simulated by a standard
looped transformer without mask and with constantly many more layers.

For the first claim, starting from the same parameter of the transformers with CoT θ, we build a new
looped model with parameter θ′ with constantly many more layers in each transformer block and
at most constantly many more heads per attention layer. First, we can add constantly many more
layers to use MLP to simulate the decoding-encoding process using Lemma C.7. Next, we can add
one more transformer layer in each block and use the attention layer to simulate the shifting layer
by Lemma C.9, since we have the additional position embedding p

(
it). In particular, the embedding

we get at position n+ t after t loops, x(t)
n+t, now simulates the token embedding of n+ t of the CoT

transformer. By the way we define CoT mask M , for every t ≥ −n + 1, the embedding x̂
(t′)
n+t will

keep the same for all t′ ≥ max(t, 0). In tth loop, the only embedding update that matters happens
at n + tth position, because no updates happen at earlier positions, and updates at later positions
n + t′ for some t′ > t will be overwritten eventually in the future loops t′, by some value which
is independent of their value at the current loop t. In the end, we know the embedding x

(T )
i in

Definition C.4 is exactly equal to that in CoT transformer, and so does the final output.

For the second claim, because CoT mask can be computed by a O(log(n + m)) wide, constant-
depth MLP (Lemma C.11), together with Lemma C.8, we know it suffices to increase the number of
layers per transformer block and embedding size and hidden dimensions by constant to simulate the
transformer with mask by a transformer without mask.

Theorem C.12 (Restatement of Theorem 4.2, (Sanford et al., 2024b)). p-hop problem (Defini-
tion B.1) can be solved by ⌊log2 p⌋+2-layer non-looped transformer with log n bits of precision, at
most 3 different layers, d = dFF = dATTN = O(1) embedding size, hidden dimension for MLP and
attention, 1 attention head.
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