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ABSTRACT

In recent years, task arithmetic has garnered increasing attention. This approach
edits pre-trained models directly in weight space by combining the fine-tuned
weights of various tasks into a unified model. Its efficiency and cost-effectiveness
stem from its training-free combination, contrasting with traditional methods that
require model training on large datasets for multiple tasks. However, applying
such a unified model to individual tasks can lead to interference from other tasks
(lack of weight disentanglement). To address this issue, Neural Tangent Kernel
(NTK) linearization has been employed to leverage a “kernel behavior”, facilitat-
ing weight disentanglement and mitigating adverse effects from unrelated tasks.
Despite its benefits, NTK linearization presents drawbacks, including doubled
training costs, as well as reduced performance of individual models. To tackle
this problem, we propose a simple yet effective and efficient method that is to
finetune the attention modules only in the Transformer. Our study reveals that the
attention modules exhibit kernel behavior, and fine-tuning the attention modules
only significantly improves weight disentanglement. To further understand how
our method improves the weight disentanglement of task arithmetic, we present
a comprehensive study of task arithmetic by differentiating the role of the rep-
resentation module and task-specific module. In particular, we find that the rep-
resentation module plays an important role in improving weight disentanglement
whereas the task-specific modules such as the classification heads can degrade the
weight disentanglement performance. []_-]

1 INTRODUCTION

The emergence of large pre-trained models in the open-source community has significantly ex-
panded the potential to enhance performance on downstream tasks (Ilharco et al., 2023} [2022;
Zhuang et al.|[2020), align with human preferences (Lu et al., [2022; (Glaese et al.,|2022; Xiao et al.,
2024; |L1 et al.l [2025; [Wang et al.l [2025)), and improve robustness (Hou et al., 2017; |Ortiz-Jiménez
et al., 20215 Santurkar et al., 2021} [Tancik et al., 2020). However, traditional methods often in-
volve expensive joint fine-tuning across multiple tasks (Zhuang et al 2020) and rely heavily on
human feedback (Ouyang et al.,|2022)), which limits their scalability and broad adoption. Moreover,
optimizing performance for specific downstream tasks usually compromises the model’s initial pre-
training performance or zero-shot accuracy (Frenchl [1999; McCloskey & Cohen, |1989).

In light of these challenges, the necessity of task arithmetic in multitask learning has become increas-
ingly evident. Task arithmetic offers a cost-effective and efficient alternative by enabling training-
free combinations in the weight space of pre-trained models without sacrificing the model’s original
capabilities (Ilharco et al., 2023). Central to this approach is the concept of a task vector, which
represents a set of weight adjustments specifically calibrated for a given task through fine-tuning,
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Table 1: Task arithmetic performance comparison between different methods. The task arith-
metic performance (the average accuracy of the unified model over all the tasks) of our method
outperforms the state-of-the-art due to both good performance of individual models and good kernel
behavior (weight disentanglement).

Performance of Kernel Behavior Task Arithmetic
Individual Models (Weight Disentanglement)  Performance
Ilharco et al.| (2023) v - 70.00%
Ortiz-Jimenez et al.[(2024) - v 76.26%
Ours | v v 78.37%
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Figure 1: Illustration of the concepts of task arithmetic and weight disentanglement. On the
left-hand side, in task arithmetic, we first finetune the pre-trained model 6y and get the finetuned
individual model 6y + a7 where 7; is the tth task vector. We eventually obtain the unified model
by adding all the task vectors to the pre-trained model: 6y + Zthl ayT¢. On the right-hand side,
weight disentanglement means that the prediction of the unified model on a specific task will not be
affected by other tasks.

obtained by subtracting the task-specific weights from the original pre-trained weights (Ilharco et al.,
2023)). Each task vector encodes a unique representational signature tailored to a particular task.

As illustrated in Figure 1| (left), 6 is the pretrained model and 74, ¢t = 1,--- ,T is the tth task
vector. The individual model on each task is derived by 6y + ;7. Task arithmetic is to add all
the task vectors to the pre-trained model to obtain the unified model 6y + T:1 a¢T¢. A main goal
in task arithmetic is to achieve weight disentanglement as shown in Figure |1| (right) which means
the prediction performance of the unified model such as the accuracy on a specific task will not be
affected by other tasks. In other words, the unified model has nearly equal performance with the
individual model.

The reason that we aim to achieve weight disentanglement is because task arithmetic primarily
focuses on competing tasks rather than synergistic ones (Ilharco et al., |2023), as the challenge lies
in balancing and optimizing performance across tasks that may have conflicts or require different
model behaviors. This emphasis on competing tasks is crucial for developing robust multi-task
models that can effectively handle a diverse range of applications without performance degradation.

However, weight disentanglement remains the most formidable challenge in task arithmetic. Recent
research (Ortiz-Jimenez et al.,[2024) has shown that constraining models to fine-tune within the tan-
gent space significantly improves weight disentanglement, thanks to the inherent kernel behavior of
models during early fine-tuning stages. This kernel behavior, formalized by the Neural Tangent Ker-
nel (NTK) theory (Jacot et al.| [2018)), refers to neural networks updating primarily around pre-trained
parameter initializations. While NTK linearization is effective, it compromises the performance of
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Figure 2: Logic flow of our work.

individual models and demands two to three times more computational resources, conflicting with
task arithmetic’s original efficiency goals.

To tackle this problem, we hypothesize that a combination of non-linear fine-tuning and weight dis-
entanglement is necessary. This hypothesis motivates us to investigate the following question: Does
there exist a sub-module within neural networks where non-linear fine-tuning can exhibit weight dis-
entanglement? We demonstrate that attention modules in transformer models exhibit kernel behavior
(see Figure [3) which is crucial for weight disentanglement. This finding is supported by empirical
evidence using post-hoc linearization (Ortiz-Jimenez et al.l 2024)), a technique that approximates
the change in network output after training using a first-order Taylor expansion. Building upon the
insights above, we propose to fine-tune the attention modules only, which will improve the per-
formance of individual models and efficiency while maintaining the weight disentanglement. This
logic flow is illustrated in Figure 2}

By focusing on fine-tuning only the attention modules, our approach significantly improves weight
disentanglement and accuracy of the unified model compared to non-linear fine-tuning and NTK
linearization (see Table [2)), while substantially reducing computational burden and memory usage.
This method offers a balanced alternative that maintains strong performance of individual models
while enhancing weight disentanglement capabilities, providing a practical solution for improving
task arithmetic performance without sacrificing efficiency or accuracy.

To further understand how our method improves the weight disentanglement of task arithmetic, we
present a study by differentiating the role of the representation module and task-specific module,
while existing literature (Ortiz-Jimenez et al.,|2024) formulated task arithmetic using a single model
without clearly differentiating them. We conduct a comprehensive study of task arithmetic on pre-
trained Vision Transformer (ViT) models like the Contrastive Language-Image Pre-Training (CLIP)
(Radford et al., 2021), providing new insights into its fundamental mechanisms and proposing novel
methods to improve the performance of pre-trained models through task arithmetic. Specifically, we
illustrate that the representation module plays an important role in improving weight disentangle-
ment whereas this has been constrained by task-specific modules, such as classification heads.

In particular, our main contributions are as follows:

* We propose a simple yet effective and efficient method that only fine-tunes attention mod-
ules, which improves weight disentanglement and the average accuracy of the unified
model on all the tasks up to 2.38% improvement compared to the state-of-the-art meth-
ods and 8.37% over the non-linear baseline on several vision-language benchmarks.

* We demonstrate that the attention module exhibits kernel behavior, suggesting that focusing
on fine-tuning these modules could enhance the weight disentanglement capabilities in task
arithmetic while maintaining efficiency.

* We reformulate the architecture of task arithmetic by separating the representation module
from task-specific modules, revealing that while weight disentanglement mostly comes
from the representation module, the effectiveness of task arithmetic is constrained by task-
specific components like classification heads.

2 PRELIMINARIES: TASK ARITHMETIC AND WEIGHT DISENTANGLEMENT

We begin by introducing the necessary mathematical notations. Let F' : X x © — ) be a neural
network taking inputs € X and parameterized by a set of weights ©J € ©, which consists of a
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representation module f(-; 8) and a task-specific module g(-; w) where ¢ = {6, w}. We assume X C
RY,© C R™ and Y C R®. Consider T tasks, with every task ¢ consisting of a triplet (Dy, j, F}"),
where D; C X is a data support (e.g., ImageNet (Deng et al.| 2009) images), (; an input distribution
such that supp(u:) = Dy, and F}* : D; — ) a target function (e.g., labels). In practice, each task is
identified with a training set {(x,, F{" (7)) }ve[n) Where ;' (2,,) = g(f(2y;07);ws) with 2 ~ g,
that is used to fine-tune the representation modules starting from the pre-trained weights 6, and to
obtain the fine-tuned weights 0, while the task-specific modules are fixed at wy.

Having established this context, we can now introduce the key concepts of this work: task vectors
and task arithmetic.

Definition 1 (Task Vector and Task Arithmetic) Let 0y denote the parameters of the pre-trained
representation modules and 0, denote the parameters after fine-tuning on task t. The task vector T4
for task t is defined as: 7 = 0, — 6. Task arithmetic is an operation of adapting a pre-trained model
to T different tasks by modifying the pre-trained parameters 0y to the unified parameters Oypifeq as
follows:

T
BOunifica = B0 + E T,
=1

where oy are scalar coefficients.

To distinguish from the concept of a unified model, we refer to the model fy, fine-tuned on a specific
task T" as an individual model. 1t is worth noting that adding a single task vector 7, to a pre-trained
model with a coefficient o = 1 yields a model equivalent to this individual model fo, .

Non-linear Fine-Tuning. The initial idea of task arithmetic was introduced by |[lharco et al.
(2023). They demonstrated that performance of the unified model on multiple tasks could be im-
proved simultaneously through task arithmetic. However, the performance of the model still lagged
behind that of individual models specifically fine-tuned for particular tasks. In the remainder of this
paper, we refer to this baseline method as non-linear fine-tuning, as the task vectors 7 are obtained
through this approach.

Accuracy Gap. We define the accuracy gap as the difference in accuracy on task ¢ between the
unified model and the corresponding individual model. A plausible hypothesis for this accuracy gap
is that the task vectors for different tasks exhibit implicit conflicts with one another. To address the
limitations of non-linear fine-tuning, Ortiz-Jimenez et al.| (2024) proposed that weight disentangle-
ment is an important and potentially necessary condition for effective task arithmetic.

Definition 2 (Weight disentanglement) Given T different tasks and their corresponding supports
D = {D;}ieir)- We say a set of task vectors T = {T; }1¢(r) is weight disentangled with respect to a
parametric function f : X x © — Y and the initial weights 0y, if

T T
f (x;@o + Zatn> = Zf(x;@o +au)l(x € Dy) + f(x;00)1 | x ¢ U D.,]. (1
=1 =1

te[T]

where f is the representation module.

Remark. Although the concept of weight disentanglement was originally proposed by |Ortiz-
Jimenez et al.|(2024), our Deﬁnitiondiffers from theirs in several key aspects.

Firstly, our definition characterizes weight disentanglement as a property of a set of task vectors
w.r.t. the function f, whereas it was originally defined as a property of the function f w.r.t. the task
vectors. There are two reasons for our reversed formulation. 1) The term “weight disentanglement”
corresponds to 7' different weights (i.e., task vectors), rather than f. 2) Both |Ortiz-Jimenez et al.
(2024))’s and our approach aim to find better task vectors 7T, rather than finding better f.

Secondly, our definition applies specifically to the representation module, whereas the original def-
inition encompasses the entire neural network. This is primarily motivated by the fact that task
arithmetic is performed exclusively on the representation module. We will show later in Section ]
that this definition is well-defined: weight disentanglement emerges from the representation module.
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NTK Linearization Fine-tuning. Inspired by studies of NTK showing that very wide neural net-
works behave similarly to linear functions around their initialization 6, |Ortiz-Jiménez et al.| (2021
proposed fine-tuning the task vectors 7 on a post-hoc linear function, denoted as fji,, of f at 8y:

fin(@;00 +7) = f(x:00) + 7" Vo f(x;00).

The obtained task vectors are denoted as 7j;,. The authors further demonstrated empirically that this
approach yields an important property: Ty, is weight disentangled w.r.t. fii, at 6q.

To conclude this section, we define good task arithmetic performance as characterized by three key
factors: high accuracy, computational efficiency, and good weight disentanglement.

3 TASK ARITHMETIC IN ATTENTION MODULES

3.1 MAIN CHALLENGE OF TASK ARITHMETIC

Based on our previous definition, the performance of the unified model on each task ¢ can be simply
decomposed as follows:

Accuracy of unified models = Accuracy of individual models - Accuracy Gap.

Unfortunately, existing studies reveal a trade-off between these factors. Non-linear fine-tuning can
achieve high accuracy for individual models, but the resulting task vectors are less weight disentan-
gled, leading to a larger accuracy gap in the unified model. Conversely, linear fine-tuning guarantees
weight disentanglement and thus a lower accuracy gap, but the linearly fine-tuned individual models
tend to be less accurate, as linear approximation brings error to the models. This trade-off presents
a significant challenge in task arithmetic.

To this aim, we hypothesize that a combination of non-linear fine-tuning and weight disentangle-
ment is necessary. This hypothesis motivates us to investigate the following question: Does there
exist a sub-module within neural networks where non-linear fine-tuning can exhibit weight disen-
tanglement? Our investigation reveals that the attention module is a promising candidate.

3.2 ACCURACY GAP: KERNEL BEHAVIOR AND WEIGHT DISENTANGLEMENT OF
ATTENTION MODULE

As per the study of NTK studies and the dis-

cussion in [Ortiz-Jimenez et al.| (2024), if a pre- & 10
trained network f(-; 0y) exhibits kernel behav- 3¢
ior during fine-tuning — that is, if the neu- £ A
ral network updates primarily around its pre- ~ $0.8 R
trained parameter initialization and can be ap- 2 o7 N .\
proximated by its first-order Taylor expansion S
— then the resulting task vectors are weight dis- T o.6
entangled. Directly examining whether kernel 5 . . A
behavior can be challenging; however, it canbe £ 9 4 Post-hoc vs. Non-linear (ViT)

. . 2 | Post-hoc vs. Non-linear (Attention)
approximated by the following test. S04l . Equal Accuracy Line

. . . 04 05 06 07 08 09 10
Kernel Behavior Test. Given a function f Non-linear Finetuning Accuracy(%)

with initial parameters 6, and a task ¢ with task
vector ¢, we define the Kernel Behavior Testas  Figure 3: Accuracy of non-linear and post-hoc
follows. If the equation models by tasks. The diagonal dashed line indi-
cates post-hoc performance meets non-linear.
(@600 + 1) = fiin(x:; 600 +72), P P

holds for all z in the dataset of task ¢, we say that f(-; #) exhibits kernel behavior during fine-tuning
using the given approach on task ¢, or more simply, that the given approach exhibits kernel behavior.

In our experiments, we compare the average accuracy across 7' tasks of the non-linear function
(f(+)) and the post-hoc linear function (fji,), fune-tuning on (1) all the parameters and (2) only on
the attention modules. Specifically, we fine-tune several CLIP pre-trained ViTs (Dosovitskiy et al.,
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Figure 4: Three types of fine-tuning paradigms. (a) Non-linear fine-tuning where all the parame-
ters will be updated. (b) Full-model linearization. (c) Attention modules only fine-tuning where only
Wy, Wy, Wy, and W, will be updated. In this paper, we explore attention modules only fine-tuning.

2021)) of different sizes following the same setup as |[lharco et al.| (2023)) on 8 tasks: Cars (Krause
et al.,2013), DTD (Cimpoi et al.| 2014}, SUN397 (Xiao et al.,[2016), EuroSAT (Helber et al.,|2019),
GTSRB (Stallkamp et al.,2011), MNIST (LeCun, 1998), SVHN (Netzer et al.,[201 1)) and RESISC45
(Cheng et al., [2017).

The results in Figure [3]indicate that the attention module demonstrates kernel behavior. The triangle
dots show the comparison of the kernel behavior test between the attention modules (yellow) and
the whole models (blue), respectively. The proximity of dots to the diagonal dashed line indicates
kernel behavior. The post-hoc of attention module, represented by yellow dots, consistently appears
closer to the diagonal dashed line than the whole ViT (blue dots), suggesting superior performance.

This indicates that attention modules demonstrate stronger kernel behavior compared to the full
model, suggesting that focusing on fine-tuning these modules could enhance the weight disentan-
glement, finally resulting in a low accuracy gap.

3.3 ACCURACY OF INDIVIDUAL MODELS WITH FINE-TUNING ATTENTION MODULES

Based on the kernel behavior of attention modules, we propose focusing on fine-tuning only the
attention modules. The comparison of our fine-tuning paradigms with the non-linear fine-tuning
paradigm and the NTK linearization fine-tuning paradigm is demonstrated in Figure 4} Next, we
will show that fine-tuning attention modules also achieves high accuracy for individual models.

Non-Linear Advantage. We will first introduce a crucial concept referred to as non-linear advan-
tage. For a given approach, the non-linear advantage is defined as the difference in accuracy of
individual models between non-linear fine-tuning and the approach in question. Since non-linear
fine-tuning typically achieves the highest accuracy for individual models, the non-linear advantage
is always non-negative, i.e., non-linear advantage > 0.

Accuracy of Individual Models. In Figure 5| we demonstrate that fine-tuning attention mod-
ules can reduce the non-linear advantage—essentially improving the accuracy of individual mod-
els—compared to NTK linearization ﬁne—tunindﬂ The figure presents two comparisons: 1) Round
markers represent the comparison between our method and non-linear fine-tuning. 2) Triangular
markers show the comparison between NTK linearization and non-linear fine-tuning.

The proximity of markers to the diagonal dashed line indicates a non-linear advantage equal to zero.
Our method, represented by round markers, consistently appears closer to the diagonal dashed line
than the NTK linearization (triangular markers), indicating a smaller non-linear advantage. This
visual representation demonstrates that our approach of fine-tuning attention modules achieves per-

?Please see Appendix [B|for performance on each task.
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Table 2: Comparison of performance for task arithmetic across various visual models. This
table presents the average accuracy (%) and normalized accuracy (%) of various ViTs after incor-
porating the sum of task vectors from eight different tasks. We report results for the non-linear
fine-tuning and NTK linearized models normalizing performance by their single-task accuracy.

Method ViT-B-32 ViT-B-16 ViT-L-14
Abs.(1)  Norm.() | Abs.(t) Norm.(1) | Abs.(1) Norm.(T)
Pre-trained 48.40 - 55.25 - 66.40 -
Non-linear Fine-tuning  70.00 77.04 74.75 80.59 84.40 89.47
NTK Linearization 76.26 85.82 79.01 86.32 85.53 91.44
Ours 78.37 87.42 | 80.44 87.25 | 87.91 93.66

Table 3: Comparison of performance for task arithmetic across different language models.
This table presents the average accuracy (%) of Flan-T5-base models on GLUE benchmark.

\glue—cola glue-mnli glue-mrpc glue-qqp glue-rte glue-sst2 glue-stsb avg

Non-linear Fine-tuning| 79.87 80.94 59.31 82.19 50.54 89.33 70.55 73.25
NTK Linearization 75.93 83.19 76.72 87.88 62.09 92.09 66.51 77.77

Ours | 80.63 86.25 86.76 89.69 7220 9392 87.67 85.30

formance closer to that of non-linear fine-tuning compared to NTK linearization, thus reducing the
non-linear advantage more effectively.

3.4 ACCURACY OF UNIFIED MODELS WITH FINE-TUNING ATTENTION MODULES

We have demonstrated that our method has achieved both high accuracy for individual models and
solved the accuracy gap. Then we will validate that our method has achieved high accuracy for
unified models in terms of average accuracy and normalized accuracy.

To obtain the task vectors, we use the fine-tuned weights of different ViTs from before and use the
same mixing coefficient for all tasks, i.e., « = a1 = --- = g to ensure a fair comparison with
Ortiz-Jimenez et al.|(2024). We provide all the details of this experiment in Appendix [A]

Normalized Accuracy. The normalized accuracy
is calculated by the individual accuracy achieved by
the model fine-tuned on each task. Mathematically,

g
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o
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Accuracy of Unified Models. We employ the
benchmark proposed by [Ilharco et al.| (2023) to
evaluate the task arithmetic ability of a pre-trained
model, which consists of the 8 tasks described in
Section [3.2] In particular, Table [2] shows that
our method significantly outperforms its non-linear
counterparts (Ilharco et al.,[2023) and achieves state- Figure 5: Averaged accuracy of non-linear
of-the-art results on the task addition benchmarks. and linear models. The diagonal dashed
Our model achieves higher accuracy of the unified [ine indicates linear fine-tuning performance
model through task addition (up to 2.38%). Addi- meets non-linear.

tionally, our method not only outperforms on averaged accuracy but also on normalization accuracy.
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For Natual Language Processing (NLP) tasks, we utilize the Flan-T5 (Chung et al., 2022) as our
pre-trained language model. For fine-tuning, we employ the Flan-T5-base models on seven tasks
derived from the General Language Understanding Evaluation (GLUE) benchmark (Wang et al.,
2018)) with the same random seed 42 to initialize the models. These tasks are CoLA, MNLI, MRPC,
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Table 4: Efficiency comparison in terms of parameters, size, and training time. The NTK
linearization requires two to three times more computational resources and doubles the memory
footprint compared to its non-linear counterpart. Our method outperforms NTK linearization in
accuracy with only a quarter of the costs.

. Computational . . .
‘ Total Params Trainable Params Cost (MB) Training Time (Min)
Non-linear Fine-tuning 222 M 222 M 891.614 17:38
NTK Linearization 470 M 222 M 1,881.926 40:59
Ours 222 M 63.7M 891.614 10:15

QQP, RTE, SST2, and STSB. We report accuracy for all tasks and an average accuracy in Table [3]
our method outperforms both non-linear fine-tuning and NTK linearization in vision and NLP tasks.

Ablation Study. To investigate whether we

can enhance weight disentanglement perfor- Taple 5: Ablation study. Single-task and perfor-

mance by fine-tuning the Multiple-Layer Per-  mance of unified model (%) on 4 different settings.
ceptron (MLP) modules in addition to atten-

tion modules, we conduct an ablation exper-

iment with four paradigms: (1) fine-tuning  Paradigm ASingle-task Ab Multi-;lask
only attention weights (Q, K, V, and O ccuracy(T) s.(T) orm.(T)
projections) (ours), (2) fine-tuning attention @ 89.55 78.37 87.42
weights and biases, (3) fine-tuning both at- 2) 89.48 77.71 86.79
tention and MLP weights, and (4) fine-tuning 3) 88.95 76.52 86.11
attention and MLP weights along with bi- 4) 8943 77.80 86.93

ases. Remarkably, all four paradigms outper-
formed NTK linearization in terms of both performance and weight disentanglement, indicating that
ViT models exhibit strong kernel behavior within the attention modules and MLP. However, per-
formance varied based on whether bias parameters were fine-tuned, with the best results aligning
closely with settings used in LoRA. This suggests that further exploration of these configurations
could yield valuable insights into optimizing task arithmetic.

Efficiency Comparison. Besides superior accuracy, our method is much more efficient than non-
linear fine-tuning and NTK linearization as shown in Table ] due to fine-tuning fewer parameters.

Our fine-tuning method significantly enhances the appeal of task arithmetic for practical applica-
tions. By improving the performance of individual models, our approach demonstrates the superior-
ity of task arithmetic in achieving good accuracy of the unified model efficiently. Additionally, we
have observed that kernel behavior within attention modules fosters greater task disentanglement.
In the subsequent section, we will delve deeper into this concept, exploring its implications and
potential for future advancements.

4 ROBUSTNESS OF TASK ARITHMETIC WITH RESPECT TO COEFFICIENT «

In previous sections, we discuss how to find a good 7 in task arithmetic. Yet the robustness of task
arithmetic (i.e., the effect of o) on weight disentanglement has not been explored. To this end, in
the following section, we first propose a metric to evaluate the weight disentanglement performance
called “disentanglement error” on the representation module and prove that weight disentanglement
emerges from the representation module. Then, we illustrate that our method has great weight
disentanglement for a wider choice of « for both representation and classification modules, which
demonstrates the robustness of the task arithmetic of our method.

4.1 WEIGHT DISENTANGLEMENT EMERGES FROM REPRESENTATION MODULE

To explore the robustness of task arithmetic and its effect on weight disentanglement, we propose a
metric called “disentanglement error” to evaluate weight disentanglement performance. Unlike pre-
vious work that focused on task-specific modules, we investigate whether the representation module
can satisfy Definition [2| (Weight Disentanglement) without relying on task-specific components.
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Figure 6: Visualization of weight disentanglement. The heatmaps show the disentanglement error
&(ay, ag) (see Eq. @)) of a single representation module CLIP ViT-B/32 (top) and a combination
of representation module and classification module on DTD - SUN397 task pair. We use prediction
error for classification task as Ortiz-Jimenez did (Ortiz-Jimenez et al. 2024). Three fine-tuning
paradigms are used from left to right: non-linear fine-tuning, NTK linearization, and ours. The blue
regions denote areas of the weight space where weight disentanglement is stronger.

Our hypothesis is that pre-trained models can demonstrate task arithmetic properties independently
of downstream tasks, maintaining consistent representations through task arithmetic. By focusing
on the representation module alone, we aim to show that the inherent properties of pre-trained mod-
els are sufficient to support task arithmetic, potentially simplifying the process and broadening its
applicability.

To visualize the level of weight disentanglement, we measure the discrepancy with Eq. (I using the
disentanglement error (Ortiz-Jimenez et al., 2024):

2

(ag, ) = ZEQENM [dist (f(z;00 + auTt), f(x;00 + @171 + am2))], 2)
t=1

where “dist” denotes any distance metric between output vectors. As we are dealing with represen-
tation distributions, in what follows we use the Kullback—Leibler divergence as the distance metric.
In general, the smaller the value of £(a, ao) the more weight disentangled a model is at («v, ).

4.2 WEIGHT DISENTANGLEMENT RESULTS

Figure [6] displays the disentanglement error of a CLIP ViT-B/32 model concerning several task
vector pairs from different fine-tuning paradigms. We observe a minimal disentanglement error
within a small region surrounding 8y, which enables task arithmetic. Different from disentanglement
error at downstream tasks, it remains relatively small even for a1, as > 1, which indicates the power
of task arithmetic has been limited by the performance of task-specific modules (classification head).

Disentanglement Error Comparison. Our method demonstrates greater weight disentanglement
than its counterparts, as evidenced by the more extensive regions with low disentanglement errors
in Figure [§ (right). This explains the higher normalized accuracy achieved (cf. Table [2) when
fine-tuning attention modules only. The combination of greater weight disentanglement and better
performance of individual models results in higher performance of the unified model.
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These results demonstrate that our method achieves great weight disentanglement for a wider choice
of a for both representation and classification modules, illustrating the robustness of task arithmetic
in our approach.

5 RELATED WORK

Existing model merging techniques can be broadly categorized into two main types (Yang et al.,
2024): (i) Pre-Merging Methods: These methods focus on enhancing the conditions necessary for
effective model merging by optimizing the fine-tuning process of individual models. (ii) During
Merging Methods: These approaches address task conflicts and interference through various strate-
gies before executing the parameter merging operations.

Pre-Merging Methods. To establish better conditions for model merging, a significant body of
work has focused on the fine-tuning processes of independent models. For instance, |Ortiz-Jimenez
et al.| (2024)) propose fine-tuning within the tangent space of the pre-trained model, leveraging the
NTK framework to enhance performance during the fine-tuning stage. However, fine-tuning all
parameters in the linearized model can be computationally intensive compared to nonlinear fine-
tuning. To mitigate this issue, some studies advocate for selectively linearizing only certain layers;
for example, Tang et al.[(2023) suggest partially linearizing Adapter modules prior to merging them.
Additionally, TAFT (Liu et al., 2024)) introduces an efficient linearization method specifically for
Transformer architectures, deriving closed-form linearized solutions that facilitate smoother inte-
gration of models. Overall, fine-tuning in the tangent space aids in disentangling both input and
weight spaces, thereby reducing potential interference during subsequent model merging.

During Merging Methods. In the context of multi-task learning (MTL), model merging can be
effectively achieved by employing various strategies to resolve task conflicts and perform parameter
merging operations. Traditional methods often involve averaging or combining weights from multi-
ple models to create a unified system, as demonstrated in prior works (Garipov et al.| 2018} [[lharco
et al.} 2023} [Wortsman et al.} 2022)). However, these basic merging techniques frequently underper-
form, particularly when tasks interfere with one another. Advanced methods have been developed to
address this challenge by incorporating weighted-based strategies that assign different importance
levels to task vectors during merging (Matena & Raftel, [2021} |Ainsworth et al., |2023}; Stoica et al.,
2023} |Yang et al., 2023)). Furthermore, some approaches transform models into sparse subspaces be-
fore merging, effectively mitigating task interference and allowing for the removal of insignificant
neurons from individual models while enabling the combination of multiple sparse models within a
parameter subspace (Yadav et al.l 2023} [Tam et al.| 2023} [Li et al.| 2023} [Zhang et al., 2023; |Huh
et al.,|2024; |[Huang et al.}[2024)). This innovative perspective opens new avenues for model merging,
enhancing overall performance and flexibility in multi-task applications.

Our method falls into the Pre-Merging category, focusing on the fine-tuning process and achieving
superior performance in task arithmetic with high efficiency.

6 DISCUSSION

In this work, we conducted a comprehensive analysis of task arithmetic in deep neural networks, un-
covering its fundamental mechanisms and enhancing its performance. Our findings reveal that atten-
tion modules exhibit kernel behavior, leading to improved weight disentanglement when fine-tuned
exclusively, without compromising individual accuracy or efficiency. Crucially, we demonstrated
that weight disentanglement emerges primarily from the representation module, while task-specific
modules can limit the effectiveness of task arithmetic. This insight opens up new possibilities for
applying task arithmetic in unsupervised learning scenarios and broadens its potential applications.

While our approach significantly advances the field of task arithmetic, several limitations and op-
portunities for future research remain. Current task vectors are constrained to models with identical
architectures and initializations due to their reliance on element-wise weight operations. Future stud-
ies could explore integrating task arithmetic with partial fine-tuning techniques, focusing on varying
numbers of attention blocks. Additionally, investigating the relationship between the sparsity of
attention modules and their kernel behavior may provide insights into learnable tasks. Understand-
ing the nuanced impact of fine-tuning bias on model performance and weight disentanglement also
presents an important avenue for future research. These investigations could lead to more robust
and efficient methods for adapting pre-trained models to various tasks, significantly enhancing their
applicability and effectiveness in real-world scenarios.
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A EXPERIMENTAL DETAILS

All our experiments are performed using the same hardware consisting of four 3090 NVIDIA GPUs
with 24GB of memory each, which can be reproduced in less than 150 GPU hours. The details of
each experiment are the following.

Datasets. We evaluate task arithmetic on a set of popular benchmark datasets from various domains.
The dataset collection includes:

e SVHN (Netzer et al.,[2011): The Street View House Numbers dataset is a real-world image
dataset for developing machine learning and object recognition algorithms with minimal
requirements on data preprocessing and formatting.

* MNIST (LeCunl|1998): A database of handwritten digits, with 60,000 training images and
10,000 testing images.

* EuroSAT (Helber et al., 2019): A dataset based on Sentinel-2 satellite images covering 13
spectral bands, with 10 classes and a total of 27,000 labeled and geo-referenced images.

* RESISC45 (Cheng et al., [2017): The remote sensing image scene classification dataset,
consisting of 31,500 images in 45 scene classes.

» Cars (Krause et al.| |2013): This dataset contains images of cars categorized into various
fine-grained classes. It is widely used for fine-grained image classification tasks, providing
arich set of vehicle images for training and evaluation.

e DTD (Describable Textures Dataset) (Cimpoi et al., 2014): This dataset is designed for
texture recognition and categorization. It consists of texture images organized into 47 cate-
gories, each labeled with attributes describing the texture patterns. It is commonly used to
evaluate texture recognition algorithms.

* SUN397 (Xiao et al., 2016): The Scene UNderstanding (SUN) dataset is a large-scale
dataset for scene recognition, containing 397 categories with a total of over 100,000 images.
It is used to evaluate scene understanding models and to benchmark scene classification
algorithms.

* GTSRB (German Traffic Sign Recognition Benchmark) (Stallkamp et al., 2011): This
dataset comprises images of German traffic signs, classified into over 40 categories. It is
used to develop and evaluate traffic sign recognition systems, particularly in the context of
autonomous driving and intelligent transportation systems.

Fine-tuning. All the fine-tuning experiments follow the same training protocol specified in Ilharco
et al. (Ilharco et al., [2022)) with minor modifications to the training code to use linearized models
when needed. In particular, we fine-tune all datasets starting from the same CLIP pre-trained check-
point downloaded from the open_c1ip repository (Cherti et al.,|2023). We fine-tune for 2,000 iter-
ations with a batch size of 128, a learning rate of 10~° and a cosine annealing learning rate schedule
with 200 warm-up steps and the AdamW optimizer (Loshchilov & Hutter, 2019). As introduced in
Ilharco et al. (Ilharco et al. [2022), during fine-tuning, we freeze the weights of the classification
layer obtained by encoding a standard set of zero-shot template prompts for each dataset. Freezing
this layer does not harm accuracy and ensures that no additional learnable parameters are introduced
during fine-tuning (Ilharco et al[2022)). We use this exact same protocol to fine-tune the non-linear
and linearized models.

Tuning of « in Task Arithmetic Benchmarks. As in Ilharco et al. (Ilharco et al.| [2022), we use
a single coefficient « to tune the size of the task vectors used to modify the pre-trained models.
This is equivalent to setting « = a1 = ... = ap in Eq. In the task addition benchmarks, after
fine-tuning, we evaluate different scaling coefficients o € {0.0,0.05,0.1,...,1.0} and choose the
value that achieves the highest target metric on a small held-out proportion of the training set as
specified in Ilharco et al. (Ilharco et al.l |2022). Namely, maximum normalized average accuracy,
and minimum target accuracy on each dataset that still retains at least 95% of the accuracy of the pre-
trained model on the control task. The tuning of « is done independently for non-linear fine-tuning,
linearized fine-tuning, and post-hoc linearization.

Disentanglement Error. To produce the weight disentanglement visualizations of Figure [6] we
compute the value of £(aq,az) on a 15 x 15 grid of equispaced values in [—2,2] x [-2,2]. To
estimate the disentanglement error, we use a random subset of 2,048 test points for each dataset.
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B FURTHER EXPERIMENTAL RESULTS

We now present additional experiments that expand the findings discussed in the main text.

Fine-tuning Accuracy. In Figure[7] we report the single-task accuracy achieved by different CLIP
models after fine-tuning with different approaches (referred to as non-linear, NTK linearization, and
our method).

Weight Disentanglement on Different Task Pairs. In Figure[§] we illustrate weight disentangle-
ment on different task pairs.

Non-linear Fine-tuning NTK Linearization Ours

0.200

0.175

0.150
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0.100

0.075

Representation

0.050

0.025

0.000

Classification

0.0

Figure 8: Visualization of weight disentanglement. The heatmaps show the disentanglement error
&(au, ap) of a single representation module of CLIP ViT-B/32 (top) and a combination of represen-
tation module and classification module (bottom) on Cars - RESISC45 task pair. Three fine-tuning
paradigms are used from left to right: non-linear fine-tuning, NTK linearization, and ours. The light
regions denote areas of the weight space where weight disentanglement is stronger.

Parameter Sensitivity Analysis. In our experiments, we replicate the experimental setup used by
[Ortiz-Jimenez et al.| (2024) to evaluate the impact of varying « coefficients on model performance.
The results are summarized in Figure[9] which demonstrates that our method exhibits greater robust-
ness across different choices of oz compared to both non-linear fine-tuning and NTK linearization.
As illustrated, our method consistently outperforms both non-linear fine-tuning and NTK lineariza-
tion across a wide range of « values, indicating its robustness in maintaining performance even with
varying coefficients.

Similarity between Task Vectors. Figure [10] shows the cosine similarity between task vectors
from ViT for three types of fine-tuning (cf. Figure ) on image classification tasks. Vectors from at-
tention modules only fine-tuning are closer to orthogonal than those from both non-linear fine-tuning
and NTK linearization, indicating that models fine-tuned with full parameters are more independent.
This finding aligns with discussions in (Tlharco et al.} 2023} [Tang et al,[2023)) and is supported by
the experimental results in Table[2] The experimental details are described in Appendix [A]
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Figure 7: Single-task accuracy of different models obtained using different strategies on each of the
tasks.
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Figure 9: Performance comparison across different methods with varying o values.

Non-linear Fine-tuning NTK Linearization Ours

0.04 003 004 003 003 003 003 Cars 0.03 003 003 003 003 003

0.01 000 001 000 0.02

004 004 003 004 DTD- 0. 004 003 004 003 004 oTD- 001 001 001 000 003

EuroSAT- 0.03 0.07 0.05 003  EuroSAT- 0.04 004 007 005 003 EuroSAT- 0. 0.00 000 003 001 001

GTSRB- 0.04 004 008 003  GTsRB- 0.03 004 004 SR 007 004 009 0.03 GTSRB- 0.01  0.01  0.00 004 001 007 001 °
MNIST- 0.03 004 016 0.03 MNIST- 0.03  0.03 0.04 MNIST- 0.00 001 000 004 JENGE 001 013 001 |
RESISC45- 0.03 0.04 0.07 0.04 0.04 0.03 0.04 RESISC45- 0.03 0.04 0.07 RESISCA45 -
SUN397- 0.03 0.03 005 008 016 003 003  SUN397- 0.03 003 0.05 SUN397- 0. -
SVHN- 0.03 004 003 0.03 003 004 003 KN SVHN- 0.03 0.04 003 R
&£ e@»’&‘ (S’&‘ & j,c‘" %Q&“ﬂ‘ = & & &.,e"&‘ & & éjc"‘ f‘*«‘ S

Figure 10: Similarity heatmaps. These figures show heatmaps of the cosine similarity between task
vectors from task-specific CLIP models (Radford et al, 2021)) fine-tuned on different tasks. Three
fine-tuning paradigms from left to right: non-linear fine-tuning, NTK linearization, and Attention
modules only fine-tuning (Ours).
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C IMPACT STATEMENT
This paper presents work whose goal is to advance the field of Machine Learning. There are many

potential societal consequences of our work, none of which we feel must be specifically highlighted
here.
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