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ABSTRACT

The inductive bias of a graph neural network (GNN) is largely encoded in its
specified graph. Latent graph inference relies on latent geometric representations
to dynamically rewire or infer a GNN’s graph to maximize the GNN’s predic-
tive downstream performance, but it lacks solid theoretical foundations in terms
of embedding-based representation guarantees. This paper addresses this issue
by introducing a trainable deep learning architecture, coined neural snowflake,
that can adaptively implement fractal-like metrics on Rd. We prove that any
given finite weighted graph can be isometrically embedded by a standard MLP
encoder, together with the metric implemented by the neural snowflake. Further-
more, when the latent graph can be represented in the feature space of a suffi-
ciently regular kernel, we show that the combined neural snowflake and MLP en-
coder do not succumb to the curse of dimensionality by using only a low-degree
polynomial number of parameters in the number of nodes. This implementation
enables a low-dimensional isometric embedding of the latent graph. We conduct
synthetic experiments to demonstrate the superior metric learning capabilities of
neural snowflakes when compared to more familiar spaces like Euclidean space.
Additionally, we carry out latent graph inference experiments on graph bench-
marks. Consistently, the neural snowflake model achieves predictive performance
that either matches or surpasses that of the state-of-the-art latent graph inference
models. Importantly, this performance improvement is achieved without requiring
random search for optimal latent geometry. Instead, the neural snowflake model
achieves this enhancement in a differentiable manner.

1 INTRODUCTION

Geometric deep learning (Bronstein et al., 2017; 2021) is a rapidly developing field that expands
the capabilities of deep learning to encompass structured and geometric data, such as graphs, point-
clouds, meshes, and manifolds. Graph neural networks (GNNs) derive their knowledge primarily
from the specific graph they operate on, but many real-world problems lack an accessible ground
truth graph for computation. Latent graph inference aims to address this by dynamically inferring
graphs through geometric representations. Existing models lack a strong theoretical foundation and
use arbitrary similarity measures for graph inference, lacking principled guidelines. A key challenge
is the absence of a differentiable method to deduce geometric similarity for latent graph inference.
Recently the concept of neural latent geometry search has been introduced (Sáez de Ocáriz Borde
et al., 2023a), which can be formulated as follows: given a search space R denoting the set of all
possible latent geometries, and the objective function LT,A(g) which evaluates the performance of
a given geometry g on a downstream task T for a machine learning model architecture A, the ob-
jective is to optimize the latent geometry: infg∈R LT,A(g). In the context of latent graph inference
R would denote the space of possible geometric similarity measures used to construct the latent
graphs. Previous studies have utilized random search to find the optimal geometry in R (Kazi et al.,
2022; Sáez de Ocáriz Borde et al., 2023c). However, these methods have their limitations as they
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cannot infer geometry in a differentiable manner, and the representation capabilities of Riemannian
manifolds are constrained by certain assumptions inherent in their geometry.

Contributions. We introduce a trainable deep learning architecture which we can adaptively im-
plement metrics on Rd spaces with a fractal-like geometry, called neural snowflakes. We prove that
together a neural snowflake and a simple MLP encoder are enough to discover any latent graph ge-
ometry. In particular, the neural snowflake implements a fractal geometry on Rd in which any given
finite latent weighted graph can be isometrically embedded and the elementary MLP implements
that embedding. We show that in cases where the latent weighted graph has favourable geometry,
the neural snowflake and MLP encoder break the curse of dimensionality by only requiring a poly-
nomial number of parameters in the graph nodes to implement the isometric embedding. We note the
contrast with universal approximation theorems, e.g. Yarotsky (2017); Lu et al. (2021); Shen et al.
(2022); Kratsios & Papon (2022), where the number of parameters required to implement a generic
approximation depend exponentially on the dimension of the ambient space. Our embedding results
exhibit no such exponential dependence on the dimension of the ambient space. We verify our theo-
retical guarantees experimentally with synthetic metric learning experiments and graph embedding
tasks. Additionally we show that the neural snowflake and MLP encoder combination beat or match
the state of the art across several latent graph inference benchmarks from the literature. This is
achieved by learning the latent geometry in a differentiable manner, utilizing a single model. Thus,
the neural snowflake eliminates the need to conduct costly combinatorial searches across numerous
combinations of potential embedding spaces.

2 BACKGROUND

Related Work. In the field of Geometric Deep Learning, most research has relied on human anno-
tators or simple preprocessing algorithms to generate the graph structure used in GNNs. However,
even when the correct graph is provided, it may not be optimal for the specific task, and the GNN
could benefit from a rewiring process (Topping et al., 2021). Latent graph inference allows models to
dynamically learn the intrinsic graph structure of problems where the true graph is unknown (Wang
et al., 2019; Kazi et al., 2022). This is particularly relevant in real-world applications where data
might only be available in the form of a pointcloud. There are several works in the literature ad-
dressing latent graph inference. In particular, we can think of graph rewiring (Arnaiz-Rodríguez
et al., 2022; Bi et al., 2022; Guo et al., 2023; Topping et al., 2021) as a subset of latent graph infer-
ence in which an input graph is provided to the network, whereas latent graph inference in its most
general form allows GNNs to infer a graph starting from only a pointcloud. When the underlying
connectivity structure is unknown, traditional architectures like transformers (Vaswani et al., 2017)
and attentional multi-agent predictive models (Hoshen, 2017) use a fully-connected graph. This as-
sumption, however, leads to challenges when training with large graphs. Generating sparse graphs
can offer computationally tractable solutions (Fetaya et al., 2018) and prevent over-smoothing (Chen
et al., 2020a). Various models have been proposed to tackle this problem, starting from Dynamic
Graph Convolutional Neural Networks (DGCNNs) (Wang et al., 2019), to approaches that sepa-
rate graph inference and information diffusion, such as the Differentiable Graph Modules (DGMs)
in Cosmo et al. (2020) and Kazi et al. (2022). Recent approaches have focused on generalizing the
DGM leveraging product manifolds (Sáez de Ocáriz Borde et al., 2023c;b). Latent graph inference
is also referred to as graph structure learning in the literature. A survey of similar methods can be
found in Zhu et al. (2021), and some classical methods include LDS-GNN (Franceschi et al., 2019),
IDGL (Chen et al., 2020b), and Pro-GNN (Jin et al., 2020). Moreover, recently generalizing latent
graph inference to latent topology inference (Battiloro et al., 2023) has also been proposed.

Graphs. A weighted graph can be defined as an ordered pair G = (V,E,W ), where V represents a
set of nodes (or vertices), E ⊆ {{u, v} : u, v ∈ V } forms the collection edges (or links) within the
graph, and W : E → (0,∞) weights the importance of each edge. An (unweighted) graph G is a
weighted graph for which W ({u, v}) = 1 for every edge {u, v} ∈ E. The neighborhood N (v) of a
node v ∈ V is the set of nodes sharing an edge with u; i.e. N (v)

def.
= {u ∈ V : {u, v} ∈ E}.

Graph Neural Networks. To compute a message passing Graph Neural Network (GNN) layer over
a graph G (excluding edge and graph level features for simplicity), the following equation is typically
implemented: x(l+1)

i = φ
(
x
(l)
i ,
⊕

j∈N (x
(l)
i )

ψ(x
(l)
i ,x

(l)
j )
)
. In the given equation, ψ ∈ Rd × Rd →
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Rh represents a message passing function. The symbol
⊕

denotes an aggregation function, which
must be permutation-invariant, e.g. the sum or max operation. Additionally, φ ∈ Rd × Rh → Rm

represents a readout function. We note that the update equation is local and relies solely on the
neighborhood of the node. Both ψ and φ can be Multi-Layer Perceptrons (MLPs). In our manuscript
all MLPs will use the ReLU(t)

def.
= max{0, t} activation function, where t ∈ R. Several special

cases have resulted in the development of a wide range of GNN layers: the most well-known being
Graph Convolutional Networks (GCNs) (Kipf & Welling, 2017) and Graph Attention Networks
(GATs) (Veličković et al., 2018).

Quasi-Metric Spaces. While Riemannian manifolds have been employed for formalizing non-
Euclidean distances between points, their additional structural properties, such as smoothness and
infinitesimal angles, impose substantial limitations, rendering the demonstration of Riemannian
manifolds with closed-form distance functions challenging. Quasimetric spaces, isolate the rele-
vant properties of Riemannian distance functions without requiring any of their additional structure
for graph embedding. A quasi-metric space is a setX with a distance function d : X×X → [0,∞)
satisfying for every x, y, z ∈ X: i) d(x, y) = 0 if and only if x = y, ii) d(x, y) = d(y, x), iii)
d(x, y) ≤ C

(
d(x, z) + d(z, y)

)
, for some constant C ≥ 1. When C = 1, (X, d) is called a

metric space, examples include Banach spaces and also, every (geodesic) distance on a Rieman-
nian manifold satisfies (i)-(iii). Conversely, several statistical divergences are weaker structures than
quasi-metrics since they fail (ii), and typically fail (iii); see e.g. (Hawkins et al., 2017, Proposition
A.2). Property (iii) is called the C-relaxed triangle inequality if C > 1; otherwise (iii), is called the
triangle inequality. Quasi-metric spaces typically share many of the familiar properties of metric
spaces, such as similar notions of convergence, uniform-continuity of maps between quasimetric
spaces, and compactness results for functions between quasimetric spaces such as Arzela-Ascoli
theorems (Xia, 2009). The next example of quasimetric spaces are called metric snowflakes.
Example 1 (Xia (2009)). Let p > 0 and (X, d) be a metric space. Then, (X, dp) is a quasimetric
space with C = 2p−1 if p > 1. When 0 < p ≤ 1, then (X, dp) is a metric space; whence, C = 1.

Snowflakes are a simple tool for constructing new (quasi) metric spaces from old ones with the
following properties. Unlike products of Riemannian manifolds, a snowflake’s geometry can be
completely different than the original untransformed space’s geometry. Unlike classical methods for
constructing new distances from old ones, e.g. as warped products in differential geometry (Chen,
1999; Alexander & Bishop, 1998), snowflakes admit simple closed-form distance functions.
Proposition 1 (Snowflakes are Metric Spaces - (Weaver, 2018, Proposition 2.50)). Let f : [0,∞)→
[0,∞) be a continuous, concave, monotonically increasing function with f(0) = 0, and let (X, d)
be a metric space; then, df : X×X → R is a metric onX df (x, z)

def.
= f(d(x, z)), for any x, z ∈ X .

3 ADAPTIVE GEOMETRIES VIA NEURAL SNOWFLAKES

We overcome one of the main challenges in contemporary Geometric Deep Learning, namely the
problem of discovering a latent graph which maximizes the performance of a downstream GNN by
searching a catalogue of combinations of products of elementary geometries (Gu et al., 2019); in
an attempt to identify which product geometry the latent graph can be best embedded in (Sáez de
Ocáriz Borde et al., 2023b;c). The major computational hurdle with these methods is that they
pose a non-differentiable combinatorial optimization problem with a non-convex objective, making
them computationally challenging to scale. Therefore, by designing a class of metrics which are
differentiable in their parameters, we can instead discover which geometry best suits a learning task
using backpropagation. Core to this is a trainable metric on Rd, defined for any x, y ∈ Rd by

∥x− y∥σα,β,γ,p,C

def.
=
(
C1 (1− e−γ∥x−y∥)︸ ︷︷ ︸

Bounded

+C2 ∥x− y∥α︸ ︷︷ ︸
Fractal

+C3 log(1 + ∥x− y∥)β︸ ︷︷ ︸
Irregular Fractal

)1+|p|
(1)

where 0 < α, β ≤ 1, 0 ≤ p, 0 ≤ C1, C2, C3, γ not all of which are 0 and C = (Ci)
3
i=1. The train-

able metric in equation 1, coined the snowflake activation, is the combination of three components,
a bounded geometry, a fractal geometry, and an irregular fractal geometry part; as labeled therein.
The first bounded geometry can adapt to latent geometries which are bounded akin to spheres, the
second fractal geometry component can implement any classical snowflake as in Example 1 (where
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0 < p ≤ 1) and the irregular fractal adapts to latent geometries much more irregular where the dis-
tance between nearby points grows logarithmically at large scales and exponentially at small scales1.
By Proposition 1, if p = 0, the distance in equation 1 is a metric on Rd. For p > 0 (Rd, ∥·∥σα,β,γ,p,C

)

is a quasi-metric space with 2p−1-relaxed triangle inequality, by Example 1.

3.1 NEURAL SNOWFLAKES

We leverage the expressiveness of deep learning, by extending the trainable distance function equa-
tion 1 to a deep neural network generating distances on Rd, called the neural snowflake.

We begin by rewriting equation 1 as a trainable activation function σa,b : R → [0,∞) which sends
on any vector u ∈ RJ , for J ∈ N+, to the J × 3 matrix σa,b(u) whose jth row is

σa,b(u)j
def.
=
(
1− e−|uj |, |uj |a, log(1 + |uj |)b

)
. (2)

The parameters 0 < a and 0 ≤ b ≤ 1 are trainable.

We introduce a neural network architecture leveraging the “tensorized” snowflake activation func-
tion in equation 2, which can adaptively perturb any metric. To ensure that the neural network
model always preserves the metric structure of its input metric, typically the Euclidean metric on
Rd, we must constrain the weighs of the hidden layers to ensure that the model satisfies the con-
ditions of Proposition 1. Building on the insights of monotone (Daniels & Velikova, 2010), “input
convex” (Amos et al., 2017) neural network architectures, and monotone-value (Weissteiner et al.,
2022) neural networks, we simply require that all hidden weights are non-negative and do not all
vanish. Lastly, the final layer of our neural snowflake model raises the generated metric to the
(1 + |p|)th power as in equation 1. This allows the neural snowflake to leverage the flexibility of
quasi-metrics, whenever suitable. They key point here is that by only doing so on the final layer, we
can explicitly track the relaxation of the triangle inequality discovered while training. That is, as in
Example 1, C = 2p−1 if p > 1 and C = 1 otherwise. Putting it all together, a neural snowflake is a
map f : [0,∞)→ [0,∞), with iterative representation

f(t) = t
1+|p|
I

ti = B(i) σai,bi(A
(i)ti−1)C

(i) for i = 1, . . . , I

t0 = t

(3)

where for i = 1, . . . , I , A(i) is a d̃i×di−1 matrix, B(i) is a di× d̃i-matrix, and C(i) is a 3×1 matrix
all of which have non-negative weights and at-least one non-zero weight, p ∈ R; furthermore, for
i = 1, . . . , I , 0 < ai ≤ 1, 0 ≤ bi ≤ 1, d1, . . . , dI ∈ N+, and d0 = 1 = dI . We will always treat
the neural snowflake as synonymous with the trainable distance function ∥x− y∥f

def.
= f(∥x− y∥),

where x, y ∈ Rd for some contextually fixed d and f is as in equation 3.

4 INFERABILITY GUARANTEES

This section contains the theoretical guarantees underpinning the neural snowflake graph inference
model. We first show that it is universal, in the sense of graph representation learning, which we
formalize. We then derive a series of qualitative guarantees showing that the neural snowflake graph
inference model requires very few parameters to infer any latent weighted graph. In particular, neural
snowflakes require a computationally feasible number of parameters to be guaranteed to work.

4.1 UNIVERSAL GRAPH EMBEDDING

Many graph inference pipelines depend on preserving geometry representations or encodings within
latent geometries when inferring the existence of an edge between any two points (nodes) in a
point cloud. Therefore, the effectiveness of any algorithm in this family of encoders hinges on its
capacity to accurately or approximately represent the geometry of the latent graph. In this work, we
demonstrate that the neural snowflake can infer any latent graph in this way. Thus, we formalize what

1Note that log(1 + ∥x− y∥) ≈ 1− e−∥x−y∥ when 0 ≈ ∥x− y∥.
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it means for a graph inference model to be able to represent any latent (weighted) graph structure in
RD based on a class of geometries R. For any D ∈ N+, we call a pair (E,R) a graph inference
model, on RD, if R is a family of quasi-metric spaces, and E is a family of maps with domain RD

and codomain in some member (R, dR) of R. Whenever RD is clear from the context, we do not
explicitly mention it.

4.1.1 UNIVERSAL RIEMANNIAN REPRESENTATION IS IMPOSSIBLE

Our primary qualitative guarantee asserts the universality of the graph inference model (E,R),
where E represents the set of MLPs into Rd with ReLU activation functions, and R comprises
all (Rd, | · |f ), where f is a neural snowflake; for integers d ∈ N+. We now formalized what is
meant by a universal graph embedding model.
Definition 1 (Universal Graph Embedding). A graph inference model (E,R) is universal if: for
every non-empty finite subset V ⊆ RD and every connected weighted graph G = (V,E,W ) there
is a (quasi-metric) representation space (R, dR) ∈ R and an encoder E : RD → R in E satisfying

dG(u, v) = dR(E(u), E(v)) ∀u, v ∈ V.

Our interest in universal graph inference models lies in their ability to infer graph edges. This is done
by first learning an embedding E ∈ E into some representation space (R, dR) ∈ R and subsequently
sampling edges based on nearest neighbors within the aforementioned embedding.

One technical point worth noting is that, when forming sets of nearest neighbors, ties between
equidistant points are broken arbitrarily. This is accomplished by indexing (possibly randomly) the
graph’s vertices and selecting the first few nearest points based on the ordering of that index, similar
to the approach in Fakcharoenphol et al. (2004).

The formalization of this reconstruction procedure, in Theorem 1, uses the following notation. For
every positive integer N , we denote the first N positive integers by [N ]

def.
= {1, . . . , N}. For every

quasi-metric (representation) space (R, dR) each point x ∈ R, and each radius r ≥ 0 the closed
unit ball about x of radius r is B̄R(x, r)

def.
= {u ∈ R : dR(x, y) ≤ r}.

Theorem 1 (Generic Graph Reconstruction via Universal Graph Inference Models). Fix D ∈ N+

and a latent graph inference model (E,R) on RD. For every non-empty finite subset V ⊆ RD, every
graph G = (V,E), and each index V = {vi}Ni=1 there exists: a quasi-metric (representation) space
(R, dR) ∈ R and an encoder E : RD → R in E such that: for each i ∈ [N ] there is a (number of
nearest neighbours) ki ∈ [N ] satisfying

{ui, uj} ∈ E ⇔ j ≤ i⋆ and dR
(
E(ui), E(uj)

)
≤ r(ki)

where r(ki)
def.
= inf

{
r ≥ 0 : #{v ∈ V : dR

(
E(ui), E(v)

)
≤ r} ≥ ki

}
and where i⋆ def.

= {j ∈ [N ] :

#(B̄R(ui, r(ki)) ∩ {us}js=1) ≤ ki}.

Theorem 1 shows that if a latent graph inference model is universal, then it can be used to reconstruct
the edge set of any latent graph structure by first embedding the vertices/point-cloud into a latent
representation space and then joining nearest neighbours. The next natural question is: “How does
one build a universal latent graph inference model which is differentiable?”

It is known that the family of Euclidean spaces R = {(Rd, ∥ · ∥)}d∈N+
are not flexible enough

to isometrically accommodate all weighted graphs; even if E is the family of all functions from
any RD into any Euclidean space (Rd, ∥ · ∥). This is because, some weighted graphs do not admit
isometric embeddings into any Euclidean space (Bourgain et al., 1986; Linial et al., 1995; Ma-
toušek, 1997). Even infinite-dimensions need not be enough, since for every n ∈ N+, there is
an n-point weighted graph which cannot be embedded in the Hilbert space ℓ2 with distortion less
than Ω(log(n)/ log(log(n)) (Bourgain, 1985, Proposition 2). In particular, it cannot be isometri-
cally embedded therein. For example, any l-leaf tree embeds in d-dimensional Euclidean space with
distortion at-least Ω(l1/d). In contrast, any finite tree can embed with arbitrary low-distortion into
the hyperbolic plane (Kratsios et al., 2023b), which is a particular two-dimensional non-flat Rie-
mannian geometry. Several authors (Sarkar, 2012) have shown that cycle graphs can be embedded
isometrically in spheres of appropriate dimension and radius (Schoenberg, 1942), or in the product
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of spheres (Guella et al., 2016), but they cannot be embedded isometrically in Euclidean space (En-
flo, 1976). These observations motivate geodesic deep learners (Liu et al., 2019; Chamberlain et al.,
2017; Chami et al., 2019; Sáez de Ocáriz Borde et al., 2023c;b) and network scientists (Verbeek &
Suri, 2014) to use families of Riemannian representation spaces R in which it is hoped that general
graphs can faithfully be embedded, facilitating embedding-based latent graph inference. Unfortu-
nately, 5 nodes and 5 edges are enough to construct a graph which cannot be isometrically embedded
into any non-pathological Riemannian manifold.
Proposition 2 (Riemannian Representation Spaces are Too Rigid to be Universal). For anyD ∈ N+

and any 5-point subset V of RD, there exists a set of edges E on V such that:

(i) the graph G def.
= (V,E) is connected

(ii) for every complete2 and connected smooth Riemannian manifold (R, g) there does not exist
an isometric embedding φ : (V, dG)→ (R, dR)

where dG and dR respectively denote the shortest path (geodesic) distances on G and on (R, g).

In other words, Proposition 2 shows that if R is any set of non-pathological Riemannian manifolds
and E any set of functions from RD into any Riemannian manifold (R, g) in R the graph inference
model (E,R) is not universal. Furthermore, the graph “breaking its universality” is nothing obscure
but a simple 5 node graph. Note that, no edge weights (not equal to 1) are needed in Proposition 2.

A B

C

D

E

Figure 1: Explanation of Proposition 2: The Graph of Proposition 2 cannot be isometrically embedded into
any complete and connected (smooth) Riemannian manifold. Briefly, the issue is that any isometric embedding
into such a Riemannian manifold must exhibit a pair of geodesics one of which travels from the embeddings of
node C to node A, while passing through the embedding of node D; and likewise, the other of which travels
from the embedding of node C to node B and again passes through the embedding of node D. However, this
would violate the local uniqueness of geodesics in such a Riemannian manifold, around the embedding of node
D (implied by the Picard-Lindelöf theorem for ODEs); thus no such embedding can exist.

Proposition 2 improves on (Kratsios et al., 2023a, Propositions 13 and 15) since the latter only
show that no compact connected Riemannian manifolds (e.g. products of spheres) and no connected
Riemannian manifold with bounded non-positive sectional curvatures (e.g. products of hyperbolic
spaces) can accommodate certain sequences of expander graphs (see (Kratsios et al., 2023a, Remark
14)). However, those results do not rule out more complicated Riemannian representation spaces;
e.g. the products of spheres, hyperbolic, and Euclidean spaces recently explored by Gu et al. (2019);
Tabaghi et al. (2021); Di Giovanni et al. (2022); Sáez de Ocáriz Borde et al. (2023c).

4.1.2 UNIVERSAL REPRESENTATION IS POSSIBLE WITH NEURAL SNOWFLAKE

Juxtaposed against Proposition 2, our first main result shows that together, neural snowflake and
MLPs, are universal graph embedding models.
Theorem 2 (Universal Graph Embedding). Let D ∈ N+ and G be a weighted graph with V ⊆ RD

with I ∈ N+ vertices. There exists an embedding dimension d ∈ N+, an MLP E : RD → Rd with
ReLU activation function, and a neural snowflake f such that

dG(u, v) = ∥E(u)− E(v)∥f ,
for each u, v ∈ V . The (Rd, ∥ · ∥f ) supports a 2O(log(1+ 1

I−1 )
−1)-relaxed triangle inequality. If G is

a tree then (Rd, ∥ · ∥f ) instead supports an 8-triangle inequality.

Comparison: State-of-the-Art Deep Embedding Guarantees. Recently, Kratsios et al. (2023a)
built on Andoni et al. (2018) and proposed a universal graph embedding model which uses the

2Here, complete is meant in the sense of metric spaces; i.e. all Cauchy sequences in a complete metric space
have a limit therein.
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transformer architecture of Kratsios (2021) to represent graphs in the order 2-Wasserstein space
on R3. The drawbacks of this approach are that the metric is not available in closed-form, it is
computationally infeasible to evaluate exactly for large graph embeddings, and it is still challenging
to evaluate approximately (Cuturi, 2013). In contrast, Theorem 2 guarantees that a simple MLP can
isometrically embedding any weighted graph into a finite-dimensional representation space with
closed-form distance function explicitly implemented by a neural snowflake.

Comparison: MLP without Neural Snowflake. We examine the necessity of the neural snowflake
in Theorem 2, by showing that the MLP alone cannot isometrically represent any weighted graph
into its natural output space; namely some Euclidean space.
Theorem 3 (Neural Snowflakes & MLPs Are More Powerful For Representation Learning Than
MLPs). Let d,D ∈ N+. The following hold:

(i) No Less Expressive Than MLP: For any weighted graph G = (V,E,W ) with V ⊆ RD,
if there is an MLP E : RD → Rd which isometrically embeds G then there is a neural
snowflake f and an MLP E : RD → Rd which isometrically embeds G into (Rd, ∥ · ∥f ).

(ii) Strictly More Expressive Than MLP: There exists a complete weighted graph G =
(V,E,W ) with V ⊂ RD by any MLP Ẽ : RD → Rd but for which there exists a neu-
ral snowflake f and an MLP E : RD → Rd that isometrically embeds G into (RD, ∥ · ∥f ).

4.2 ISOMETRIC REPRESENTATION GUARANTEES - BY SMALL NEURAL SNOWFLAKES

Theorem 2 offers a qualitative assurance that the neural snowflake can represent any finite weighted
graph. We now show that any weighted graph which can be isometrically represented in the latent
geometry induced by kernel regressors, can be implemented by a neural snowflake. We assume that
the latent geometry of the weighted graph is encoded in a low-dimensional space and the distances
in that low-dimensional space are given by a radially symmetric and positive-definite kernel.
Assumption 1 (Latent Radially-Symmetric Kernel). There are d,D ∈ N+, a feature map Φ :
RD → Rd, and a non-constant positive-definite function3 f : [0,∞)→ [0,∞) satisfying

dG(x, y) = f̄
(
∥Φ(x)− Φ(y)∥

)
,

for every x, y ∈ Rd; where f̄(t) def.
= f(0)− f(t).

Several satisfy Assumption 1, as we emphasize using two exotic examples (Appendix D).

Example 2. The map f(t) def.
= (1 +

∑K
k=1 |t|rk)−β satisfies Assumption 1 for any K ∈ N+ and

0 ≤ r1, . . . , rK , β ≤ 1.

Example 3. The map f(t) def.
= exp

(−a(t−1)
log(t)

)
satisfies Assumption 1, for all a > 0.

We find that the neural snowflake can implement an isometric representation of the latent geometry,
as in Theorem 2, using a small number of parameters comparable to Theorem 5.
Theorem 4 (Quantitative Embedding Guarantees for Bounded Metric Geometries). LetD, d ∈ N+,
G be a finite weighted graph with V ⊂ RD and suppose that Assumption 1 (or equation 2) holds.
Then, there is a neural snowflake (E , f) satisfying

∥Φ(v)− Φ(u)∥f = ∥E(v)− E(u)∥f̄
for every u, v ∈ V . Furthermore, the depth and width of E and f are recorded in Table 1.

4.3 REPRESENTATION GUARANTEES LEVERAGING DISTORTION

Theorem 2 shows the neural snowflake and an simple MLP are universal graph embedding models.
By allowing the neural snowflake and MLP some possible slack to distort the latent graph’s geom-
etry, either by stretching or contracting pairwise distances ever so slightly, we are able to derive
explicit bounds on the embedding dimension d and on the complexity of the neural snowflake and
MLP.

3A positive-definite function, is map f : R → C for which each
(
f(xi − xj)

)N
i,j=1

is a positive-definite
matrix, for every N ∈ N+ and each x1, . . . , xN ∈ R.
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Theorem 5 (Quantitative Approximately Isometric Embeddings for Weighted Graphs). Let G =
(V,E,W ) be a weighted graphN ∈ N+ nodes, a non-negative weighting functionW , and V ⊂ Rd.
For every 1 < p < 2, there exists an MLP with ReLU activation function E : Rd → RO(log(dim(G))

and a snowflaking network f : R→ R such that: for every x, u ∈ V
dG(x, u) ≤ ∥E(x)− E(u)∥f ≤ Dp dG(x, u),

where D ∈ O
( log(dim(G))2

p2

)
and (Rn, ∥ · ∥f ) is a quasi-metric space satisfying the 2p−1-triangle

inequality. The depth and width of E and f are recorded in Table 1.

Table 1: Complexity of the Neural Snowflake and MLPs. Here, O suppresses a constant depending only on D
and CG > 0 depends only on G (explicit constants are given in Appendix B).

Geometry Net. Hidden Layers (Depth −1) Width Theorem
General f Θ(1) Θ(1) 5
Bounded f Θ(1) O

(
I2
)

4

All E O
(
I
√
I log(I) log

(
I2 CG

))
O
(
DI + d

)
4 and 5

Discussion - Comparison with the Best Proven Deep Representation. The complexity of the
neural snowflake and MLP are reported in Table 1. Theorem 5 shows that the neural snowflake can
match the best known embedding guarantees by a deep learning model with values in a curved
infinite-dimensional space (Kratsios et al., 2023a, Theorem 4), both in terms of distortion and
the number of parameters. The neural snowflake’s adaptive geometry allows for the representa-
tions to be implemented in O(log(dim(G)) dimensions and the implemented representation space
(Rd, ∥ · ∥f ) has an explicit closed-form distance function making it trivial to evaluate; unlike the
distance function in the representation space of Kratsios et al. (2023a). Our guarantees show that
neural snowflakes can theoretically represent any weighted graph; either isometrically or nearly
isometrically with provable few parameters.

5 EXPERIMENTAL RESULTS

Next, we validate our embedding results through synthetic graph experiments, and we demonstrate
how the combined representation capabilities of neural snowflakes and MLPs can enhance existing
state-of-the-art latent graph inference pipelines.

Synthetic Embedding Experiments: Neural Snowflakes vs Euclidean Graph Embedding
Spaces. To assess the effectiveness of neural snowflakes as well as to compare their performance
with that of MLPs in approximating metrics using Euclidean space, we conduct synthetic graph
embedding experiments. Specifically, we focus on fully connected graphs, where the node coor-
dinates are randomly sampled from a multivariate Gaussian distribution within a 100-dimensional
hypercube in Euclidean space, denoted as R100. The weights of the graphs are computed accord-
ing to the metrics in Table 2. In the leftmost column, the MLP model projects the node features
in R100 to R2 and aims at approximating the edge weights of the graph using the euclidean dis-
tance ∥MLP(x) − MLP(y)∥ between the projected features. In the central column, the neural
snowflake f learns a quasi-metric based on the input Euclidean metric previously mentioned in R2,
f(∥MLP(x) − MLP(y)∥). Finally, in the rightmost column the neural snowflake learns based on
the Euclidean distance between features in R100: f(∥x− y∥). In order to demonstrate the superior
embedding capabilities of neural snowflakes compared to Euclidean spaces, we intentionally equip
the MLP in the first column with a significantly larger number of model parameters than the other
models. This is done to highlight the fact that, despite having fewer learnable parameters, neural
snowflakes outperform Euclidean spaces by orders of magnitude. Furthermore, the results of our
experiments reveal that neural snowflakes exhibit remarkable flexibility in learning metrics even in
lower-dimensional spaces such as R2. This is evident from the similarity of results obtained in the
rightmost column (representing R100) compared to those achieved in the case of learning the metric
in R2. Additional information regarding these embedding experiments can be found in Appendix I.

Graph Benchmarks. In this section, we present our findings on using Neural Snowflakes compared
to other latent graph inference models. Our objective is to evaluate the representation power offered

8
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Table 2: Results for synthetic graph embedding experiments for the test set. The Neural Snowflake models are
able to learn the metric better with substantially lesser number of model parameters.

MLP Neural Snowflake (+ MLP) Neural Snowflake
No. Parameters 5422 4169 847
Embedding space, Rn 2 2 100

Metric Mean Square Embedding Error

∥x− y∥0.5 log(1 + ∥x− y∥)0.5 1.3196 0.0034 0.0029

∥x− y∥0.1 log(1 + ∥x− y∥)0.9 1.2555 0.0032 0.0032

1− 1
(1+∥x−y∥0.5) 0.1738 0.00004 0.00004

1− exp −(∥x−y∥−1)
log(∥x−y∥) 0.3249 0.00008 0.00008

1− 1
(1+∥x−y∥)0.2 0.0315 0.00005 0.00005

1− 1
1+∥x−y∥0.2+∥x−y∥0.5 0.2484 0.00002 0.00002

by various latent space metric spaces, and thus, we contrast our results with the original DGM (Kazi
et al., 2022) and its non-Euclidean variants (Sáez de Ocáriz Borde et al., 2023b;c). We also introduce
a new variant of the DGM which uses a snowflake activation on top of the classical DGM, to equip
the module with a snowflake quasi-metric space. We ensure a fair evaluation, by conducting all
experiments using the same GCN model and only modify the latent geometries used for latent graph
inference. We take care to maintain consistency in the number of model parameters, as well as other
training specifications such as learning rates, training and testing splits, number of GNN layers, and
so on. This approach guarantees that all comparisons are solely based on the metric (or quasi-metric)
space utilized for representations. By eliminating the influence of other factors, we can obtain
reliable and trustworthy experimental results. A detailed and systematic analysis of the results is
provided in Appendix I.

We first present results from latent graph inference on the well-known Cora and CiteSeer homophilic
graph benchmarks. We use a consistent latent space dimensionality of 8 and perform the Gumbel
top-k trick for edge sampling with a k value of 7. The models all share the same latent space dimen-
sionality, differing solely in their geometric characteristics. In scenarios where a product manifold
is used, the overall manifold is constructed by amalgamating two 4-dimensional manifolds through
a Cartesian product. This yields a total latent space dimensionality of 8. This methodology ensures
an equitable comparison based exclusively on geometric factors. All other parameters, comprising
network settings and training hyperparameters, remain unaltered. For all DGM modules, GCNs
are employed as the underlying GNN diffusion layers. Table 3 displays the results for Cora and
CiteSeer, leveraging the original dataset graphs as inductive biases.

Table 3: Results for Cora and CiteSeer leveraging the original input graph as an inductive bias.

Cora CiteSeer
Model Metric Space Accuracy (%) ± Standard Deviation

Neural Snowflake Snowflake 87.07±3.45 74.76±1.74

DGM Snowflake 85.41±3.70 74.19±2.08

DGM Euclidean 85.77±3.64 73.67±2.30

DGM Hyperboloid 85.25±3.34 73.46±1.79

DGM Poincare 86.07±3.53 71.23±5.53

DGM Spherical 76.14±2.84 73.13±2.93

DGM Euclidean × Hyperboloid 84.33±2.56 73.29±2.18

DGM Hyperboloid × Hyperboloid 84.59±5.40 74.42±1.83

GCN Euclidean 83.50±2.00 70.03±2.04

Next we perform experiments on Cora and CiteSeer without considering their respective graphs,
that is, the latent graph inference models only take pointclouds as inputs in this case. We also in-
clude results for the Tadpole and Aerothermodynamics datasets used in Sáez de Ocáriz Borde et al.
(2023c). Note that in these experiments all models used GCNs and a fixed latent space dimension-
ality of 8, unlike in the original paper which uses a larger latent spaces and GAT layers. The effect
of changing the latent space dimensionality is further explored in Appendix I. For both Tadpole and
Aerothemodynamics, the Gumbel Top-k algorithm samples 3 edges per node. See Table 4.
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Table 4: Results for Cora and CiteSeer, and the real-world Tadpole and Aerothermodynamics datasets, without
leveraging the original input graph as an inductive bias.

Cora CiteSeer Tadpole Aerothermodynamics
Model Metric Space Accuracy (%) ± Standard Deviation

Neural Snowflake Snowflake 71.22±4.27 67.80±2.44 90.02±3.51 88.65±3.10

DGM Snowflake 69.51±4.42 66.86±2.82 91.61±4.38 88.55±2.35

DGM Euclidean 68.37±5.39 68.10±2.80 89.29±4.66 88.28±2.61

DGM Hyperboloid 70.00±4.08 68.34±1.59 88.75±5.11 88.29±2.85

DGM Poincare 65.74±4.02 64.63±2.98 86.96±5.30 89.00±2.34

DGM Spherical 37.03±14.33 20.00±4.13 82.32±11.74 88.37±3.00

DGM Euclidean × Hyperboloid 62.18±6.61 65.72±2.48 90.71±3.17 88.20±3.23

DGM Hyperboloid × Hyperboloid 67.14±4.19 64.33±9.44 89.64±5.57 89.55±2.52

MLP Euclidean 58.92±3.28 59.48±2.14 87.70±3.46 80.99±8.34

From the results, we can see that models using snowflake metric spaces are consistently amongst
the top performers for both Cora and CiteSeer. On the other hand, employing non-learnable metric
spaces necessitates conducting an exploration of various latent space geometries to achieve optimal
outcomes, since there is no metric space that consistently outperforms the rest regardless of the
dataset. In our synthetic experiments, we have clearly demonstrated the remarkable advantage of
neural snowflakes in learning metric spaces with enhanced flexibility, when compared to Euclidean
space. In the context of latent graph inference, this distinction is not as pronounced as observed in
the synthetic experiments. This can be attributed to the suboptimal nature of the Gumbel Top-k edge
sampling algorithm (Appendix E), a topic discussed in other research works (Kazi et al., 2022; Bat-
tiloro et al., 2023), which essentially introduces a form of “distortion” to the learned metric. Yet, it
is worth noting that the development of improved edge sampling algorithms to foster better synergy
between metric space learning and graph construction is not the primary focus of this paper. Instead,
our emphasis is on introducing a more comprehensive and trainable metric space and integrating it
with existing edge sampling techniques.

6 CONCLUSION

Our theoretical analysis showed that a small neural snowflake, denoted as f , can adaptively im-
plement fractal-like geometries | · |f on Rd, which are flexible enough to grant a small MLP the
capacity to isometrically embed any finite graph. We showed that the non-smooth geometry im-
plemented by the neural snowflake is key by showing that there are simple graphs that cannot be
isometrically embedded into any smooth Riemannian representation space. We then explored sev-
eral cases in which the combination of neural snowflakes and MLPs requires a small number of total
parameters, independent of ambient dimensions, to represent certain classes of regular weighted
graphs. We complemented our theoretical analysis by extensively exploring the best approaches to
implement neural snowflakes, ensuring stability during training, in both synthetic and graph bench-
mark experiments. We also introduced a snowflake activation that can easily be integrated into the
DGM module using a differentiable distance function, enabling the DGM to leverage a snowflake
quasi-metric. We conducted tests on various graph benchmarks, systematically comparing the effec-
tiveness of snowflake quasi-metric spaces for latent graph inference with other Riemannian metrics
such as Euclidean, hyperbolic variants, spherical spaces, and product manifolds of model spaces.
Our proposed model is consistently able to match or outperform the baselines while learning the
latent geometry in a differentiable manner and without having to perform random search to find the
optimal embedding space.

Note that our experiments were conducted in accordance with the differentiable graph module
framework for discrete edge sampling as proposed by Kazi et al. (2022). Our primary objective
was to compare the representation capabilities of various (quasi-)metric spaces, while keeping all
other model architecture choices constant. Recently, the NodeFormer (Wu et al., 2023) architecture
was introduced, enabling the scalability of latent graph inference to large graphs. However, this de-
velopment is slightly tangential to the research presented in this work, which focuses on analyzing
the geometric characteristics of different embedding spaces. We propose considering the incorpo-
ration of the geometric notions discussed in this work into new scalable architectures, such as the
NodeFormer, as part of future research.
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Grids, groups, graphs, geodesics, and gauges, 2021.

Benjamin P. Chamberlain, James R. Clough, and Marc Peter Deisenroth. Neural embeddings of
graphs in hyperbolic space. ArXiv, 2017.

Ines Chami, Rex Ying, Christopher Ré, and Jure Leskovec. Hyperbolic graph convolutional neural
networks, 2019.

Benjamin Charlier, Jean Feydy, Joan Alexis Glaunès, François-David Collin, and Ghislain Durif.
Kernel operations on the gpu, with autodiff, without memory overflows. Journal of Machine
Learning Research, 22(74):1–6, 2021.

11

https://doi.org/10.24033/asens.2363
https://doi.org/10.1007/BF02776078
https://doi.org/10.1007/BF02776078
https://doi.org/10.2307/2000132
https://doi.org/10.2307/2000132
https://doi.org/10.1017/CBO9780511804441
https://doi.org/10.1017/CBO9780511804441


Published as a conference paper at ICLR 2024

Chien-Hsiung Chen. Warped products of metric spaces of curvature bounded from above. Transac-
tions of the American Mathematical Society, 351(12):4727–4740, 1999.

Deli Chen, Yankai Lin, Wei Li, Peng Li, Jie Zhou, and Xu Sun. Measuring and relieving the over-
smoothing problem for graph neural networks from the topological view. In AAAI, 2020a.

Yu Chen, Lingfei Wu, and Mohammed J. Zaki. Iterative deep graph learning for graph neural
networks: Better and robust node embeddings. ArXiv, abs/2006.13009, 2020b.

Luca Di Cosmo, Anees Kazi, Seyed-Ahmad Ahmadi, Nassir Navab, and Michael M. Bronstein.
Latent-graph learning for disease prediction. In MICCAI, 2020.

Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. Advances in neural
information processing systems, 26, 2013.

Hennie Daniels and Marina Velikova. Monotone and partially monotone neural networks. IEEE
Transactions on Neural Networks, 21(6):906–917, 2010.

Ingrid Daubechies, Ronald DeVore, Simon Foucart, Boris Hanin, and Guergana Petrova. Nonlinear
approximation and (deep) relu networks. Constructive Approximation, 55(1):127–172, 2022.

M Deza and Hiroshi Maehara. Metric transforms and euclidean embeddings. Transactions of the
American Mathematical Society, 317(2):661–671, 1990.

Francesco Di Giovanni, Giulia Luise, and Michael Bronstein. Heterogeneous manifolds for
curvature-aware graph embedding, 2022.

Dennis Elbrächter, Dmytro Perekrestenko, Philipp Grohs, and Helmut Bölcskei. Deep neural net-
work approximation theory. IEEE Transactions on Information Theory, 67(5):2581–2623, 2021.

P. Enflo. Uniform homeomorphisms between Banach spaces. In Séminaire Maurey-Schwartz (1975–
1976), Espaces Lp, applications radonifiantes et géométrie des espaces de Banach,, pp. Exp. No.
18, 7. „ 1976.

Jittat Fakcharoenphol, Satish Rao, and Kunal Talwar. Approximating metrics by tree metrics. ACM
SIGACT News, 35(2):60–70, 2004.

T. Fetaya, Elias Wang, K. C. Welling, Michelle Zemel, Thomas Kipf, Ethan Fetaya, Kuan-Chieh
Wang, Max Welling, and Richard S. Zemel. Neural relational inference for interacting systems.
arXiv: Machine Learning, 2018.

Luca Franceschi, Mathias Niepert, Massimiliano Pontil, and Xiao He. Learning discrete structures
for graph neural networks. In ICML, 2019.

Luca Galimberti, Giulia Livieri, and Anastasis Kratsios. Designing universal causal deep learning
models: The case of infinite-dimensional dynamical systems from stochastic analysis. arXiv
preprint arXiv:2210.13300, 2022.

Albert Gu, Frederic Sala, Beliz Gunel, and Christopher Ré. Learning mixed-curvature representa-
tions in product spaces. In ICLR, 2019.

J. C. Guella, V. A. Menegatto, and A. P. Peron. An extension of a theorem of Schoenberg to products
of spheres. Banach J. Math. Anal., 10(4):671–685, 2016. ISSN 2662-2033. doi: 10.1215/
17358787-3649260. URL https://doi.org/10.1215/17358787-3649260.

Jiayan Guo, Lun Du, Wendong Bi, Qiang Fu, Xiaojun Ma, Xu Chen, Shi Han, Dongmei Zhang, and
Yan Zhang. Homophily-oriented heterogeneous graph rewiring. Proceedings of the ACM Web
Conference 2023, 2023.

Jeff Hawkins, Subutai Ahmad, and Yuwei Cui. A theory of how columns in the neocortex enable
learning the structure of the world. Frontiers in Neural Circuits, 11, 2017.

Yedid Hoshen. Vain: Attentional multi-agent predictive modeling. In NIPS, 2017.

12

https://doi.org/10.1215/17358787-3649260


Published as a conference paper at ICLR 2024

Wei Jin, Yao Ma, Xiaorui Liu, Xianfeng Tang, Suhang Wang, and Jiliang Tang. Graph structure
learning for robust graph neural networks. Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, 2020.

Jürgen Jost. Riemannian geometry and geometric analysis. Universitext. Springer, Cham, seventh
edition, 2017. ISBN 978-3-319-61859-3; 978-3-319-61860-9. doi: 10.1007/978-3-319-61860-9.
URL https://doi.org/10.1007/978-3-319-61860-9.

Anees Kazi, Luca Cosmo, Seyed-Ahmad Ahmadi, Nassir Navab, and Michael Bronstein. Differ-
entiable graph module (DGM) for graph convolutional networks. IEEE Transactions on Pattern
Analysis and Machine Intelligence, pp. 1–1, 2022.

Thomas Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
ArXiv, 2017.

Wouter Kool, Herke van Hoof, and Max Welling. Stochastic beams and where to find them: The
gumbel-top-k trick for sampling sequences without replacement, 2019.

Anastasis Kratsios. Universal regular conditional distributions. arXiv preprint arXiv:2105.07743,
2021.

Anastasis Kratsios and Leonie Papon. Universal approximation theorems for differentiable geomet-
ric deep learning. Journal of Machine Learning Research, 23(196):1–73, 2022.

Anastasis Kratsios, Valentin Debarnot, and Ivan Dokmanić. Small transformers compute universal
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A ADDITIONAL BACKGROUND

Many of the proofs or our paper’s results, and generalizations thereof contained only in the
manuscript’s appendix, rest on some additional technology from the theory of metric spaces. This
brief appendix overviews those tools. We also include formal definitions of the involved MLPs with
ReLU activation function which we routinely use.

A.1 METRIC SPACES

Suppose that (X, d) is a metric space; i.e. C = 1 in (iii) above. Topologically, (X, d) and its
snowflakes (X, dp) are identical but geometrically they are quite different. Geometrically, the latter
much more complex than the former. In this paper we quantify complexity, when required, using
the doubling dimension and aspect ratio of a metric space.

Denote a ball of radius r ≥ 0 in (X, d) about a point x ∈ X is the set B(x, r)
def.
= {u ∈ X :

d(x, u) < r}. The doubling dimension of (X, d), denoted by dim(X, d), is the smallest integer k
for which: for every ballB(x, r) about any point x ∈ X and radius r > 0 there are x1, . . . , x2k ∈ X
covering it by balls of half its radius; i.e. the metric ball B(x, r) ⊆

⋃2k

i=1B(xi, r/2). We emphasize
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that metric tools are finer then topological tools, for instance the dimension of many metric spaces4

Le Donne & Rajala (2015) is often by much greater than their topological dimension.

We make use of the aspect ratio of a weighted graph G = (V,E,W ), as the ratio of the largest
distance dG between any two nodes over the smallest possible distance between any two nodes,
with respect to the geodesic distance on G. This aspect ratio coincides with the aspect ratio used in
Kratsios et al. (2023a) and a metric variant of the aspect ratio of the measure theoretic aspect ratio
of Krauthgamer et al. (2005). Briefly, when #V > 1 we define

aspect(G) def.
=

maxv,u∈V dG(u, v)

minv,u∈V ;u ̸=v dG(u, v)
,

otherwise, we set aspect(G) = 1. In the case where V ⊂ RD, for some D ∈ N+, and W (u, v) =

∥u− v∥ we write aspect2(V )
def.
= aspect(G).

We often reply on the notion of a bi-Lipschitz embedding, which we now recall. Given any 0 < s ≤
L <∞, metric spaces (X, d) and (Y, ρ), and a map f : X → Y is called (s, L)-bi-Lipschitz if

s d(u, v) ≤ ρ(f(u), f(v)) ≤ Ld(u, v) (4)

for each u, v ∈ X . If, s = L = 1, then the map f is said to be an isometric embedding5.

A.2 MLPS WITH RELU ACTIVATION FUNCTION

We will often be using Multi-layer Perceptron (MLPs) based on the perceptron model of Rosenblatt
(1958), and typically called feedforward neural networks in the contemporary approximation theory
literature Mhaskar & Poggio (2016); Yarotsky (2017); Petersen & Voigtlaender (2018); Bolcskei
et al. (2019); Elbrächter et al. (2021); Galimberti et al. (2022); Daubechies et al. (2022); Marcati
et al. (2022); Adcock et al. (2020); Shen et al. (2022). Our MLPs will always use the ReLU(t)

def.
=

max{0, t} activation function, where t ∈ R. We will routinely apply the ReLU function component-
wise, any vector u ∈ Rd for any positive integer N , denoted by ReLU •u and defined by

σ • u
def.
= (σ(ui))

N
i=1. (5)

For any pair of positive integers D, d ∈ N+, a map f : RD → Rd is called an MLP if it admits the
recursive representation

f(x)
def.
= A(J) x(J) + b(J),

x(j+1) def.
= σ • (A(j) x(j) + b(j)) for j = 0, . . . , J − 1,

x(0)
def.
= A(0)x.

(6)

for positive integers d0, . . . , dJ , dJ+1, J with d0 = d and dJ+1 = D, dj × dj+1-matrices A(j),
and vectors b(j) ∈ Rdj+1 . The depth of (the representation equation 6 of) f is D + 1, the number
of hidden layers of (the representation equation 6 of) f is D, the width W (f) of (the representa-
tion equation 6 of) f is maxj=0,...,J+1 dj , and the number of trainable/non-zero parameters P (f)
of (the representation equation 6 of) f is

P (f)
def.
=

J+1∑
j=0

∥A(j)∥0 + ∥b(j)∥0 ≤W (f)2 (D + 1)

where ∥A(j)∥0 (resp. ∥b(j)∥0) counts the number of non-zero entries of A(j) (resp. of b(j)). We
remark that the estimate P (f) ≤ W (f)2 (D + 1) is often larger for several types neural networks
architectures, e.g. convolutional neural networks with downsampling layers Zhou (2020a;b).

B DETAILED MODEL COMPLEXITIES

This appendix contains a detailed version of Table 1 with fully explicit constants.
4This is true for several sub-Riemannian manifolds, for instance
5Some authors call the special case where s = 1

L
an L-quasi-isometry.
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Table 5: Details Complexity of the Neural Snowflakes and MLPs.

Geometry Net. Hidden Layers (Depth −1) Width Theorem
General f 1 3 5
Bounded f 1

⌈ I(I−1)+2
4

⌉
4

All E O

(
I

{
1 +

√
I log(I)

[
1 + log(2)

log(I)

(
CD +

log
(
I2 aspect2(V )

)
log(2)

)
+

]})
D(I − 1) + max{d, 12} 4 and 5

I = #V and the “dimensional constant” is CD
def.
=

2 log(5
√
2π)+ 3

2
log(D)− 1

2
log(D+1)

2 log(2)
> 0.

C PROOFS

This section contains derivations of our paper’s main results.

C.1 LEMMATA

We can generate functions satisfying the conditions of Proposition 1 using the following lemma.
Lemma 1 (Pinelis). A function f : [0,∞) → [0,∞) is continuous, concave, and monotonically
increasing if and only if there is a non-negative decreasing function g : R→ R satisfying

f(t) =

∫ t

0

g(s) ds

for each t ∈ [0,∞).
Example 4. For example, for any 0 < a ≤ 1 and 0 ≤ b ≤ 1 − a, the map f : [0,∞) → [0,∞)

given by f(t) def.
= ta ln(1 + t)b is continuous, concave, and monotonically increasing since

f(t) =

∫ t

0

f(s)

(
a

s
+

b

(1 + s) log(1 + s)

)
ds

and t 7→ f(t)
(
a
t +

b
(1+t) log(1+s)

)
is a non-negative decreasing function on R.

The following helpful lemma in constructing functions satisfying the conditions of Proposition 1
from more elementary ones.
Lemma 2 ((Boyd & Vandenberghe, 2004, page 102)). Let C ⊆ Rd be a non-empty convex set and
d ∈ N+. If f : C → [0,∞) is concave, and g : [0,∞) → [0,∞) is non-decreasing and concave,
then g ◦ f : C → R is concave. If C = [0,∞) and if f and g are increasing, then so is g ◦ f .
Lemma 3 (Exponential Transformations). Let a > 0. The real-valued map f on [0,∞) given for
each t ≥ 0 by f(t) = 1− e−a t satisfies the conditions of Proposition 1.

Proof of Lemma 3. Since ∂t f(t) = a e−at ≥ a > 0 and ∂2t f(t) = −a2 e−at, for every t ∈ [0,∞),
then f is strictly increasing and concave on [0,∞). Noting that f(0) = 1 − e0 = 0 completes the
proof.

Lemma 3 directly implies that conical combinations of functions satisfying the conditions of Propo-
sition 1 also satisfy the condition of Proposition 1.

Lemma 4. If N ∈ N+, A ∈ (0,∞)N , and f (1), . . . , f (N) satisfy the conditions of Proposition 1,
then f(t) def.

=
∑N

n=1 An f
(n)(t) satisfies the conditions of Proposition 1.

Lemma 5 (Classical Snowflaking Functions). Let 0 < α ≤ 1. The real-valued map f on [0,∞)
given for each t ≥ 0 by f(t) = tα satisfies the conditions of Proposition 1.

Proof of Lemma 5. The case where α is clear; therefore, suppose that α < 1. For every t ∈ (0,∞),
we have that ∂t f(t) = αtα−1 > 0 and ∂2t f(t) = (1−α)αtα−2 = (1−α2)tα−2 < (1−α)tα−2 < 0.
Therefore, f is strictly increasing and concave on [0,∞). Noting that f(0) = 0α = 0 completes the
proof.
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Lemma 6 (Logarithmic Snowflaking Functions). Let 0 < β ≤ 1. The real-valued map f on [0,∞)
given for each t ≥ 0 by f(t) = log(1 + |t|)β satisfies the conditions of Proposition 1.

Proof of Lemma 6. Suppose that β = 1. Since log(1 + |t|) = log(1) = 0 then f(0) = 0. For
every t ∈ (0,∞), we have that ∂t f(t) = 1

1+t0 and ∂2t f(t) = − 1
1+t2 < 0. Therefore, f is strictly

increasing and concave on [0,∞). By Lemma 3 t 7→ tβ is increasing and concave on (0,∞) and
since f was strictly increasing and concave, then Lemma 2 yields the conclusion.

C.2 PROOF OF THEOREM 1

Proof of Theorem 1.
Step 1 - Characterization of Edges by Cardinality of Geodesic Unit Balls
Let n def.

= #V . Fix any enumeration V = {vi}ni=1. For each i ∈ {1, . . . , n} set

ki
def.
= #{w ∈ V : {ui, w} ∈ E}.

Note that, by definition, ki ∈ {1, . . . , n}. Since G is unweighted, then W ({ui, uj}) = 1 for each
i, j ∈ [n]. Consequentially, for each i, j ∈ [n] if {ui, uj} ∈ E then (ui = x1, x2 = uj) is a minimal
path of length one, from ui to uj . Therefore, for each i, j ∈ [n] we have that

dG(ui, uj) = inf
(x1,...,xk)

k−1∑
i=1

W ({xi, xi+1}) (7)

= inf
(x1,...,xk)

k−1∑
i=1

1

= inf
(x1,...,xk)

(k − 1)

= 1 (8)

where the infimum is taken over all paths (ui = x1, . . . , xk = uj) on G from ui to uj . Thus, equa-
tion 7-equation 8 imply that: for each i ∈ [n]

#{w ∈ V : dG(ui, w) = 1} = #{w ∈ V : {ui, w} ∈ E} = ki. (9)

By construction, for each i ∈ [n], r(ki) = 1 and there exists exactly ki elements in
B(V,dG)(ui, r(ki))

def.
= {v ∈ V : dG(ui, v) ≤ r(ki)}. Consequentially,

{ui, uj} ∈ E ⇔ j ≤ i⋆ and dG
(
ui, uj

)
≤ 1 = r(ki). (10)

In particular, i⋆ = #(B(V,dG)(ui, r(ki)) ∩ V }; meaning that the condition j ≤ i⋆ can be dropped.
Thus, equation 10 simplifies to: for each i ∈ [n]

j ≤ i⋆ and dG
(
ui, uj

)
≤ r(ki) ⇔ dG

(
ui, uj

)
≤ r(ki) (11)

Incorporating equation 11 into equation 10 allows us to further simplify to: for all i, j ∈ [n]

{ui, uj} ∈ E ⇔ dG
(
ui, uj

)
≤ r(ki) (12)

Step 2 - Reformulation via Embeddings
Since the graph inference model (E,R) is universal, in the sense of Definition 1, then there exists a
quasi-metric space (R, dR) ∈ R and an encoder E : RD → R in E such that for each i, j ∈ [n]

dR
(
E(ui), E(uj)

)
= dG

(
ui, uj

)
. (13)

Combining equation 13 and equation 12 implies that: for each i, j ∈ [n] the pair {ui, uj} belongs
to E if and only if

dR
(
E(ui), E(uj)

)
= dG

(
ui, uj

)
≤ 1 = r(ki). (14)

Combining equation 14 with equation 11 yields: for each i, j ∈ [n]

{ui, uj} ∈ E ⇔ j ≤ i⋆ and dR
(
E(ui), E(uj)

)
≤ r(ki).

This concludes the proof.
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Proof of Theorem 2. Constructing The Isometric Embedding into a Euclidean Snowflake Since
(V, dG) is an I-point metric space. If I = 1, there is nothing to show; suppose, therefore, that I > 1.
Then, (Deza & Maehara, 1990, Corollary 3) implies that for ε⋆ def.

= log2(1 + 1
I−1 )/2 there exists

some d ∈ N+ and a map φ̃ε⋆ : V → Rdε⋆ satisfying

dG(u, v)
ε⋆ = ∥φ(v)− φ(u)∥. (15)

As shown in Schoenberg (1937), equation 15 implies that the statement holds (mutatis mondanis)
for any other ε ∈ (0, ε⋆] for some other map φ̃ε : V → Rdε into some Euclidean space Rdε . Fix
any such ε, set p def.

= 1/ε and let φ by any extension of φ̃ε defined on all of RD.

(Kratsios et al., 2023a, Lemma 20) implies that is an MLP with ReLU activation functionE : RD →
Rd satisfying E(u) = φ(u) for all u ∈ V . Whence, equation 15 implies that

dG(u, v) = ∥E(v)− E(u)∥p.
NB, in the special case where G is a tree (Maehara, 1986, Theorem 6) we may instead set ε⋆ = 1/2
and therefore p may be instead taken to be p = 4 in the above argument. Implementing The
Snowflaking Function We now implement the snowflaking map t 7→ tp using a neural snowflake
f ; i.e. with representation equation 3. Set I = 1, let p = 2/

(
log2(1 + 1

I−1 )
)
, and consider the

parameters

A(1) = (1), B(1) = (1), C(1) =

(
0
1
0

)
α = 1, β = 0.

Then, f defined by equation 3 satisfies f(t) = tp. Furthermore, f has 1 hidden layer, width 3, and
4 trainable parameters and equation 15 implies that

dG(u, v) = f
(
∥E(v)− E(u)∥

)
.

Since p = 2/
(
log2(1 +

1
I−1 )

)
then Example 1 show that f(∥ · − · ∥) is a quasi-metric space with

22/
(
log2(1+

1
I−1 )

)
−1-relaxed triangle inequality.

In the special case where G is a tree, we have p = 4. Thus, the neural snowflake supports an
8-relaxed triangle inequality.

Proof of Theorem 5. Existence and Memorization of the Snowflake Embedding Set ε def.
= 1−p−1

and note that ε ∈ (1/2, 1). By (Naor & Neiman, 2012, Theorem 2), there exists D,N > 0 and a
map φ : (V, d1−ε

G )→ RN satisfying: for every x, u ∈ V
dG(x, u)

1−ε ≤ f
(
∥φ(x)− φ(u)∥

)
≤ DdG(x, u)

1−ε, (16)

whereN = c1 log(dim(G)) andD = c2
log(dim(G))2

ε2 , for absolute constants c1, c2 > 0 independent

of G and of p. Set f(t) def.
= tp = t1/(1−ε). Since f is monotone increasing, then applying it through

the inequalities in equation 16 yields
dG(x, u) ≤ ∥φ(x)− φ(u)∥ ≤ Dp dG(x, u), (17)

for every x, u ∈ V .

By (Kratsios et al., 2023a, Lemma 20), there exists an MLP E : Rd → RD with ReLU activation
function such that, for every x ∈ V we have φ(x) = E(x). Therefore, equation 17 implies that

dG(x, u) ≤ ∥φ(x)− φ(u)∥ ≤ Dp dG(x, u), (18)
for each u, u ∈ V . Furthermore, the depth, width, and number of trainable parameters defining E
are as in (Kratsios et al., 2023a, Lemma 20) and a recorded in Table 5 (with abbreviated versions
recorded in Table 1).

Implementing The Snowflaking Function As in the proof of Theorem 2, we now implement the
snowflaking map t 7→ tp using a neural snowflake f ; i.e. with representation equation 3. Set I = 1,
let p in equation 3 be the as in equation 17, and consider the parameters

A(1) = (1), B(1) = (1), C(1) =

(
0
1
0

)
α = 1, β = 0.

Then, f defined by equation 3 satisfies f(t) = tp. Furthermore, f has 1 hidden layer, width 3, and
4 trainable parameters.
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C.3 BOUNDED COMPONENT

For the proof of the next result, we recall that a function f : [0,∞)→ [0,∞) is said to be completely
monotone if f is continuous on [0,∞), smooth on (0,∞), and its derivatives satisfy the following
alternating sum property

(−1)n∂nt f(t) ≥ 0 (19)
for every t > 0 and every n ∈ N+. See (Widder, 1941, Chapter IV) for a detailed study of com-
pletely monotone functions and several examples thereof.

In particular, this and Proposition 1 imply that −f is monotonically increasing and concave, there-
fore the map, f̄ , defined for t ≥ 0 by f̄(t) def.

= f(0) − f(t) produces a well-defined snowflake
metric df̄

def.
= f̄(∥ · − · ∥). Since f is completely monotone then it is monotonically decreasign

on [0,∞) and bounded below by 0; whence, f̄(t) is monotonically increasing and contained in
[0, f(0)]. Therefore, df̄ is bounded between [0, f(0)]. We will show that the neural snowflake can
generate a snowflake metric which interpolates any bi-Lipschitz embedding into such a space.

Before proving Theorem 4 we note that it holds under the following alternative assumption to As-
sumption 1. Intuitively, this assumptions state that the map f , in Assumption 1 can be taken to be
the moment-generating function (MGF) of some probability measure on [0,∞).
Assumption 2 (Alternative to Assumption 1: Latent MGD Geometry). There are d,D ∈ N+, a
latent feature map Φ : RD → Rd, and a Borel probability measure P on [0,∞) whose MGF
f(t) = EX∼P[e

−tX ] exists for all t ≥ 0, is non-constant, and satisfies

dG(x, y) = f̄
(
∥Φ(x)− Φ(y)∥

)
,

where f̄(t) def.
= f(0)− f(t).

Both Assumptions 1 and 2 are special cases of the following more general assumption.
Assumption 3 (Kernel or Moment-Generating Priors). Suppose that f : [0,∞) → [0,∞) is non-
constant and either:

(i) f(t) =
∫∞
0

e−t u µ(du) for some finite Borel measure µ on [0,∞),

(ii) For each k ∈ N+, the map Kf : (x, y) ∈ Rk × Rk 7→ f(x⊤y) ∈ R is a positive-definite
kernel on Rk.

Define f̄(t) def.
= f(0)− f(t).

The following result implies, and generalizes, Theorem 4, to bi-Lipschitz embeddings.
Proposition 3 (Embeddings into Bounded Metric Spaces - Bi-Lipschitz Version). Let D, d ∈ N+,
f satisfy Assumption 3, and G be a finite weighted graph with V ⊂ Rd. Then, ∥ · − · ∥f̄ defines a
bounded metric on Rd and for every (s, L)-bi-Lipschitz embedding Φ : (V, dG)→ (Rd, ∥ · ∥f̄ ) there
is a neural snowflake (E , f) satisfying

∥Φ(v)− Φ(u)∥f = ∥E(v)− E(u)∥f̄
for every u, v ∈ V . In particular, for each u, v ∈ V we have

s dG(v, u) ≤ ∥E(v)− E(u)∥f ≤ sL dG(v, u).

Furthermore, the depth, width, and number of trainable parameters of E and of f are as in Table 1.

Proof of Theorem 3. Rephrasing as completely monotone functions Suppose that Assumption 3
holds. The Hausdorff-Bernstein-Widder theorem, see (Widder, 1941, Theorem IV.12a), implies that
f is completely monotone. Alternatively, suppose that Assumption 3 (ii) holds then Schoenberg’s
theorem, see6 (Schoenberg, 1938, Theorem 3), implies that f is completely monotone.

Since f is defined on all of [0,∞) then equation 19 implies that f(t) ≥ 0 for all t whence takes
non-negative valued. Likewise equation 19 implies that ∂t f(t) ≤ 0 therefore f is non-increasing;

6See Phillips et al. (2019) for more general version.
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whence f̄ is bounded in [0, f(0)]. Finally, equation 19 implies that ∂2t f(t) ≥ 0 therefore f is
convex; thus f̄ is concave since ∂2t f̄ ≤ 0. Whence Proposition 1 implies that ∥ · − · ∥f̄ is a metric
on RD.

Interpolating E and f̄
Enumerate V = {xi}Ii=1 where I

def.
= #I . Consider an (s, L)-bi-Lipschitz embedding Φ :

(V, dG)→ (Rd, ∥ · ∥f ). By (Kratsios et al., 2023a, Lemma 20), there exists an MLP E : RD → Rd

with ReLU activation function satisfying
Φ(v) = E(v) (20)

for each v ∈ V . Moreover, the depth, width, and number of trainable parameters determining E are
as in (Kratsios et al., 2023a, Lemma 20) and are recorded in Table 5 (and abbreviated in Table 1).

Since Φ is bi-Lipschitz then it is injective; whence {∥Φ(xi) − Φ(xj)∥}Ii,j=1 has exactly as many
points as {∥xi − xj∥}Ii,j=1. By symmetry of the Euclidean metric, observe that the number Ĩ of
elements in set {∥Φ(xi) − Φ(xj)∥}Ii,j=1 ∪ {0} is at-most I(I − 1)/2 + 1 elements; which we sort

and enumerate {∥xi− xj∥}Ii,j=1 ∪ {0} by {ti}Ĩi=1. By the (McGlinn, 1978, Corollary on page 215)

there exists a unique exponential sum Y (t) =
∑⌈Ĩ/2⌉

i=1 βi e
−αi t satisfying

Y (ti) = f(ti) (21)

for every i = 0, . . . , Ĩ , and in particular Y (0) = f(0) since 0 ∈ {ti}Ĩi=1. Since f̄(t) = f(0)− f(t)
for all t ≥ 0, then equation 21 implies that

f̄(ti) =f(0)− f(ti) (22)
=Y (0)− Y (ti)

=

(⌈Ĩ/2⌉∑
i=1

βi e
−αi 0

)
−
(⌈Ĩ/2⌉∑

i=1

βi e
−αi ti

)

=

⌈Ĩ/2⌉∑
i=1

(
βi e

−αi 0 − βi e−αi ti
)

=

⌈Ĩ/2⌉∑
i=1

(
βi 1− βi e−αi ti

)

=

⌈Ĩ/2⌉∑
i=1

βi

(
1− e−αi ti

)
def.
= Ȳ (ti), (23)

for all i = 1, . . . , Ĩ . In particular, equation 22-equation 23, the definition of the ti, and the memo-
rization/interpolation guarantee in equation 20 implies that

f
(
∥Φ(xi)− Φ(xj)∥

)
= Ȳ

(
∥E(xi)− E(xj)∥

)
= Ȳ

(
∥E(xi)− E(xj)∥

)
(24)

for i, j = 1, . . . , I (note 0 = ∥E(x1) − E(x1)∥ so f(0) = Y (0) is implied by equation 24).
Therefore, for each i, j = 1, . . . , I we have

∥E(xi)− E(xj)∥f̄ =∥Φ(xi)− Φ(xj)∥f̄
def.
=f̄
(
∥Φ(xi)− Φ(xj)∥

)
=Ȳ
(
∥Φ(xi)− Φ(xj)∥

)
=∥Φ(xi)− Φ(xj)∥Ȳ .

It remains to show that Ȳ can be implemented by a map, which we denote by f̃ , with representa-
tion equation 3.

Implementing The Exponential Sum In the notation of equation 3, set I = 1 and consider

A(1) =

 α1

...
αM

 , B(1) = (β1 . . . βM ) , C(1) =

(
1
0
0

)
, d = (0) , α1 = 0 = β0. (25)
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Then, the map f̃ defined as in equation 3 with parameters equation 25 is

f̃(t) =
(
B(1) σ0,0(A

(1)t)C(1)
)1+|0|

=

M∑
i=1

βi (1− e−αi t) = Ȳ (t)

for every t ≥ 0. Tallying parameters in f̃ , shows that f̃ has 3M + 1 non-zero parameters, 1 hidden
layer, and width M ; as recorded in Table 5 (and abbreviated in Table 1).

C.4 DETAILED EUCLIDEAN COMPARISONS

Together, the following Propositions imply Theorem 3.
Proposition 4 (All Embeddings Implementable MLPs are Implementable by a Neural Snowflakes).
For any d,D, P ∈ N+, 0 ≤ s ≤ L. For any weighted finite graph G = (E, V,W ) with V ⊂ RD: if
there is an MLP Ẽ : RD → Rd with P non-zero parameters satisfying

s dG(v, u) ≤ ∥Ẽ(v)− Ẽ(u)∥ ≤ LdG(v, u)
for each v, u ∈ V . There is a pair of an MLP E : RD → Rd and a neural snowflake f satisfying

s dG(v, u) ≤ ∥Ẽ(v)− Ẽ(u)∥f ≤ LdG(v, u)
for each v, u ∈ V . Furthermore, the total number of non-zero parameters in E and f is P + 4.

Proof of Proposition 4. Set E def.
= Ẽ ; in particular, E is defined by P parameters.

It remains to show that f can implement the identity function. In the notation of equation 3, set
I = 1, and consider the parameters

A(1) = (1), B(1) = (1), C(1) =

(
0
1
0

)
α = 1, β = 0.

Then, f defined by equation 3 satisfies f(t) = t. Furthermore, f has 1 hidden layer, width 3, and 4

trainable parameters. The conclusion now follows since Ẽ was assumed to implement an (s, L)-bi-
Lipschitz embedding of (V, dG) into (Rd, ∥ · ∥).

Proposition 5 (Neural Snowflakes can Implement Isometric Embeddings which MLPs Cannot). For
any d,D ∈ N+ there exists a fully-connected weighted graph G = (V,E,W ) with V ⊂ RD which:

(i) Cannot be isometrically embedded into (Rn, ∥ · ∥) for any n ≤ d,

(ii) There exists a neural snowflake (E , f) with E : RD → Rd satisfying: for each x, u ∈ V
∥E(x)− E(u)∥f = dG(x, u).

Proof of Proposition 5. Fix d,D ∈ N+, α = 1/2, and p def.
= α. Then, (Le Donne et al., 2018,

Theorem 1.1) implies that there exists some N ∈ N+ such that for any metric space (V, dG) with
at-least N points, the 1/2-snowflake (V, d

1/2
G ) cannot be isometrically embedded in (Rd, ∥ · ∥). If

d > 1, suppose that for some n < d, (V, d1/2G ) admitted an isometric embedding φ1 : (V, d1/2) →
(Rn, ∥ · ∥) then, since the map φ2 : Rn → Rd given by z 7→ (z1, . . . , zn, 0, . . . , 0), and since the
composition of isometries is again an isometry, then φ def.

= φ2 ◦ φ1 would define an isometry from
(V, d

1/2
G ) to (Rd, ∥ · ∥); which is a contradiction. This, yields (i).

Let us now show (ii). Set p = 2 and let V be any finite subset of RD with N points. Consider the
fully-connected graph G = (V,E,W ) with edge weights given by

W (x, u)
def.
= ∥x− u∥1/2.

By construction the graph geodesic distance dG on G satisfies dG(x, u) =W (x, u) for every x, u ∈
V . Furthermore, again by construction, for every x, u ∈ V we have

dG(x, u) =W (x, u) = ∥x− u∥1/2 = ∥E(x)− E(u)∥f
where f(t) = |t|1/2 and E(x) = x. Applying (Kratsios et al., 2023a, Lemma 20), we find that there
exists an MLP with ReLU activation function Φ : RD → Rd with, depth, width, and number of
non-zero parameters specified therein, satisfying Φ(x) = (x) for every x ∈ V .
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C.5 PROOF OF IMPOSSIBILITY RESULTS - PROPOSITION 2

We now prove Proposition 2 by showing that the graph depicted in Figure 1 cannot be embedded
isometrically into any Riemannian manifold, as we now show.

Proof of Proposition 2. Fix D ∈ N+ and let V ⊆ RD be any 5-point subset; whose points we list
by V = {A,B,C,D,E}. Define the set of edges

E
def.
=
{
{A,E}, {A,D}, {E,B}, {B,D}, {D,C}

}
and consider the graph G def.

= (V,E). It is easy to see that G is connected; thus, the shortest path
(geodesic) distance dG on V is well-defined. Furthermore, there are unique shortest paths joining
C to A and C to B; which we denote by [C : A] and [C : B] respectively; these are given by the
ordered tuples (ordered pairs in this case)

[C : A]
def.
=
(
{C,D}, {D,A}

)
and [C : B]

def.
=
(
{C,D}, {D,B}

)
. (26)

We now argue by contradiction.

Suppose that there exists a complete and connected smooth Riemannian manifold (R, g) and an iso-
metric embedding φ : (V, dG) → (R, dg); where, dg denotes the shortest path (geodesic) distance
on (R, g). Since (R, g) is complete (as a metric space) and connected, then the Hopf-Rinow The-
orem (Jost, 2017, Theorem 1.7.1) implies that each pair of points in R can be joined by a distance
minimizing geodesic, i.e. it is geodesically complete (Jost, 2017, Definition 1.7.1). Therefore, there
exists a pair of geodesics γ[C:A] : [0, 1]→ R and γ[C:B] : [0, 1]→ R satisfying

γ[C:i](0) = φ(C) and γ[C:i](1) = φ(i) (27)

for i ∈ {A,B}. Since φ is an isometric embedding and {C,D} ∈ [C : A]∩[C : B] then equation 26
implies that there is some 0 < t2 < 1 for which

γ[C:A](t2) = γ[C:B](t2) = φ(D). (28)

Now, equation 27 and the local uniqueness of geodesics in (R, g) about any point, in particular about
φ(D) (see (Jost, 2017, Theorem 1.4.2)) imply that there is some ε > 0 such that

γ[C:A](s) = γ[C:B](s), (29)

for all t2 − ε ≤ s ≤ t2 + ε. Now since A ̸= B and since φ is injective then φ(A) ̸= φ(B).
However, equation 27 and equation 29 cannot simultaneously hold for t2 < s < t2 + ε; thus we
have a contradiction. Consequentially, a pair

(
φ, (R, dR)

)
cannot exist.

D DETAILS ON EXAMPLES

This appendix contains further details, explaining derivations of particular examples within the pa-
per’s main text.
Example - Details 1 (Details for Example 2). This follows from (Phillips et al., 2019, Proposition
3.2) and the Hausdorff-Bernstein-Widder theorem, see (Widder, 1941, Theorem IV.12a), together
states that f ◦ u satisfies Assumption 2 if f does and if u : t 7→ t

a+t is a Bernstein function,
i.e. a continuous function f : [0,∞) → [0,∞) which is smooth on (0,∞) and whose derivatives
satisfy (−1)k∂kt f(t) ≤ 0 for all t ≥ 0 and all k ∈ N+. A long list of Bernstein functions which
can be found in the several tables in (Schilling et al., 2012, Section 16.2). For instance, the map
t 7→ (1+

∑K
k=1 |t|rk)−1 is one a Bernstein function, see (Schilling et al., 2012, Corollary 6.3), and

f(t) = |t|β satisfies Assumption 2.

Example - Details 2 (Details for Example 3). This holds, by arguing as in the previous example,
since t 7→ e−b t satisfies Assumption 1 and since t 7→ −(t−1)

log(t) is a Bernstein function, by (Schilling
et al., 2012, Corollary 6.3).
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E DISCRETE EDGE SAMPLING AND THE DISCRETE DIFFERENTIABLE
GRAPH MODULE

Most latent graph inference models require generating a discrete graph based on a similarity mea-
sure between latent node representations. The discrete Differentiable Graph Module (dDGM) (Kazi
et al., 2022) has served as a source of inspiration for numerous studies in the field of latent graph in-
ference (Sáez de Ocáriz Borde et al., 2023c;b; Battiloro et al., 2023). It generates a sparse k-degree
graph using the Gumbel Top-k trick (Kool et al., 2019), a stochastic relaxation of the kNN rule, to
sample edges from the probability matrix P(l)(X(l);Θ(l), T ), where each entry corresponds to

p
(l)
ij = exp(−φ(x̂i, x̂j , T )). (30)

where T is a learnable temperature parameter, x̂ are latent node feature representation, and φ is
some similarity measure. In practice, the main similarity measure used in Kazi et al. (2022) was to
compute the distance based on the features of two nodes in the graph embedding space, which was
assumed to be Euclidean. Based on

argsort(log(p(l)
i )− log(− log(q))) (31)

where q ∈ RN is uniform i.i.d in the interval [0, 1], we can sample the edges

E(l)(X(l);Θ(l), T, k) = {(i, ji,1), (i, ji,2), ..., (i, ji,k) : i = 1, ..., N}, (32)

where k is the number of sampled connections using the Gumbel Top-k trick. This sampling ap-

proach follows the categorical distribution
p
(l)
ij

Σrp
(l)
ir

and E(X(l);Θ(l), T, k) is represented by the un-

weighted adjacency matrix A(l)(X(l);Θ(l), T, k). Note that including noise in the edge sampling
approach will result in the generation of some random edges in the latent graphs which can be
understood as a form of regularization.

F GRAPH LEARNING ALGORITHMS: TRAINING AND BACKPROPAGATION

The optimization of the baseline node feature learning component in the architecture, that is, the
standard GNN part relies on the loss of the downstream task. In particular, for classification, the
cross-entropy loss is utilized. However, it is also necessary to update the parameters of graph learn-
ing modules such as the DGM (Kazi et al., 2022), the DCM (Battiloro et al., 2023), and the neural
snowflake. To accomplish this, we implement a compound loss that provides incentives for edges
contributing to accurate classification while penalizing edges that lead to misclassification. We in-
troduce a reward function

δ (yi, ŷi) = E(aci)− aci.

The aforementioned disparity is calculated as the difference between the mean accuracy of the ith
sample and the present accuracy of the prediction. Here, yi and ŷi represent the true and predicted
labels, respectively, while aci is assigned a value of 1 if yi = ŷi, and 0 otherwise. The loss function
for graph learning is formulated in terms of the reward function:

LGL =

N∑
i=1

δ (yi, ŷi) l=L∑
l=1

∑
j:(i,j)∈φ̂(l)

log p
(l)
ij

 , (33)

and it approximates the gradient of the expectationE(G(1),...,G(L))∼(P(1),..,P(L))

∑N
i=1 δ (yi, ŷi) . The

expectation E(aci)(t) is calculated based on
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E(aci)
(t) = βE(aci)

(t−1) + (1− β)aci, (34)

with β = 0.9 and E(aci)(t=0) = 0.5. For further details refer to Kazi et al. (2022) and Sáez de
Ocáriz Borde et al. (2023c).

G NEURAL SNOWFLAKE FOR LATENT GRAPH INFERENCE ALGORITHMS

This appendix includes Algorithm 1, 2, and 3. They summarize how learned latent graphs are in-
corporated into a standard GNN pipeline, how the dDGM samples graph edges, and how the neural
snowflake architecture computes similarities between latent node representations, respectively. Su-
perscripts are employed to denote layer-specific quantities, while subscripts are utilized for indices.

Algorithm 1: Node Level Prediction leveraging Inferred Latent Graph (Forward Pass)
Require: X,A ▷ Node Features and Adjacency Matrix

return Y ▷ Predicted Node Labels
X(0) ← X
Â← DGM(X(0),A) ▷ Refer to Algorithm 2
For l = 1 to L
X(l) ← GNN(l)(X(l−1), Â) ▷ GNN diffusion layers

end
Y ← MLP(X(L)) ▷ Node level prediction

Algorithm 2, is a mild modification of the differentiable graph model of Kazi et al. (2022). Briefly,
it allows the GNN to update its graph in a differentiable manner.

Algorithm 2: Discrete Differentiable Graph Module (modified based on Kazi et al. (2022))
Require: X,A ▷ Node Features and Adjacency Matrix

return Â ▷ Latent Graph
X̂← f(X,A) ▷ Transform node features
sij ← Neural Snowflake(x̂i, x̂j) ▷ Compute similarity measures. Refer to Algorithm 3
pij ← g(sij) ▷ Compute edge sampling probabilities based on similarities
For i = 1 to N
q ∼ U(0, 1) ▷ Uniform i.i.d.
j{k} = argtopk(logpi − log(− log(qi)))

âij =

{
1 j ∈ j{k}
0 otherwise

end
Â← âij ▷ Discrete Latent Unweighted Graph Prediction

Algorithm 3 describes how the neural snowflake processes node-level features to distances.

H COMPUTATIONAL IMPLEMENTATION DETAILS

In this appendix, we present additional information regarding the practical implementation of train-
able snowflake activations and neural snowflakes, beyond the theoretical foundation discussed in
the main text. We address certain instabilities encountered during the training process and propose
methods to mitigate them. Our objective is to provide a deeper understanding of our findings, hoping
that this will contribute to the advancement of neural snowflakes in future iterations.

Hardware and Symbolic Matrices. In line with previous work, for most of the experiments, we
utilized GPUs such as the NVIDIA Tesla T4 Tensor Core with 16 GB of GDDR6 memory, NVIDIA
P100 with 16 GB of CoWoS HBM2 memory, or NVIDIA Tesla K80 with 24 GB of GDDR5 memory.
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Algorithm 3: Neural Snowflake Processing
Require: x̂i, x̂j ▷ Two Node Features Vectors

return sij ▷ Distance similarity measure
t← ||x̂i − x̂j||2 ▷ Euclidean Distance
t(0) ← t
For l = 1 to I
t̂(l−1) ← A(l)t(l−1) ▷ Linear Projection
Σ(l) ← σ(l)(t̂(l−1)) ▷ Trainable Snowflake Activation (Equation 2)
t(l) ← B(l)Σ(l)C(l) ▷ Linear Projections

end
sij ← t

1+|p|
I ▷ Quasi-metric

These GPUs have limited memory capacities that are easily surpassed during backpropagation when
dealing with datasets other than Cora and CiteSeer. One of the primary computational limitations
of the Differentiable Graph Module and other latent graph inference techniques is the necessity
to compute distances between latent representations for all nodes in order to generate the latent
graph. While the discrete graph sampling method utilized by dDGM offers improved computational
efficiency compared to its continuous counterpart, cDGM, due to the creation of sparse graphs that
lighten the burden on convolutional operators, we encounter memory constraints when dealing with
graph datasets containing a large number of nodes, on the order of 104 nodes. To determine whether
a connection should be established, we must calculate distances between all points starting from a
pointcloud. However, this poses a challenge as the computational complexity scales quadratically
with the number of nodes in the graph. Consequently, as the graph size increases, the computation
quickly becomes intractable. To address the issue of potential memory overflows, we adopt Kernel
Operations (KeOps) (Charlier et al., 2021), as recommended by previous studies on latent graph
inference. KeOps enables us to perform computations on large arrays by efficiently reducing them
based on a mathematical formula.

Trainable Snowflake Activation Preliminary Experiments: Stability and Initialization. Al-
though in equation 1 the α, β and γ parameters are introduced as trainable parameters for the sake
of generality, we find that during backpropagation this exponential learnable terms can lead to in-
stabilities, hence, we set them all to α = β = γ = 1. In future research it could be explored how to
stabilize these and whether this additional flexibility proves advantageous empirically. We run some
initial experiments to assess the stability of the trainable snowflake activation. In particular we work
with the homophilic benchmarks Cora and Citeseer and we incorporate the snowflake activation to
dDGM with Euclidean space and which feeds its infered latent graph to a Graph Convolutional Net-
work of 3 layers with ELU activation functions. That is, the snowflake activation takes as input the
euclidean distance between latent graph nodes computed by the dDGM.

We observe that in this particular configuration the p parameter that controls how much the quasi-
metric deviates from being a metric can be a problematic parameter during training. Interestingly,
this does not seem to be the case, when running synthetic experiments with a full neural snowflake
(see Appendix I). This could be attributed to the fact that in the literature in this setup the dDGM is
trained with a learning rate of 10−2, which is too aggressive to update the p parameter. For Cora the
dDGM leveraging Euclidean space and using the original dataset graph as inductive bias achieves an
accuracy of 82.40± 3.22 (mean ± standard deviation), using the off-the-shelf snowflake activation
we obtain 40.33 ± 11.62 which presents a clear drop in performance. The observed large standard
deviation indicates that the model frequently becomes trapped in local minima during optimization.
This can be mitigated by either setting p = 0 and learning a metric, or by using a different optimizer
with a lower learning rate (10−4, for example) to update the parameter p. This configurations lead
to accuracies of 85.48 ± 2.74 and 86.11 ± 3.72 respectively for Cora, which clearly surpass the
performance using Euclidean space. In the case of Citeseer using the original dDGM we get an
accuracy of 73.40 ± 1.64, using a snowflake activation with p = 0 we obtain 73.85 ± 2.34, and
using a learnable p with a learning rate of 10−4 we achieve 74.40± 2.08. Note that for the cases in
which we learn p with a different optimizer, p is initialized at p = 10−8 to start from a metric and
slowly learn a quasi-metric. These experiments show that the quasi-metric relaxation can provide
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the snowflake activation with additional representation capabilities and flexibility but should be used
with care. For all the rest of experiments in this paper we learn a quasi-metric when implementing
the snowflake activation but use a slower optimizer for the p parameter. In these experiments the
coefficients C1, C2, and C3 were initialized to 1. We use the absolute value function during training
to ensure they stay non-negative. Note that these experiments were conducted using the Gumbel
Top-k trick edge sampling algorithm with k = 7 and an embedding dimensionality of 4.

Neural Snowflakes. From a computational perspective, it is more reliable to assign fixed coeffi-
cients a and b, instead of backpropagating through them. Specifically, we set a = 1 and b = 1
for all experiments. Matrices A, B, and C weights are initialized by sampling from a uniform dis-
tribution ranging from 0 to 1 and normalized by the matrix dimensions. For example, in the case
of A, the weights are sampled from a distribution between 0 and 1/(dA1dA2), where dA1 is the
number of rows and dA2 is the number of columns of the matrix. We experimentally observe that
other initializations such as drawing the weights from a Gaussian or using Xavier initialization can
lead to instabilities and exploding numbers in the forward pass. To guarantee non-negativity of all
weights throughout training, we apply an absolute function activation to the weights. p is initialized
to p = 1e − 8 ≈ 0 , so that we start from a metric space and gradually learn a quasi-metric space.
Furthermore, it should be noted that the learnable coefficient p is exclusively applied in the last layer
of the neural snowflake model. This design choice allows us to track the coefficient C, which rep-
resents the relaxation of the triangle inequality. In our synthetic experiments, we employ a readily
available neural snowflake model, while for latent graph inference, we utilize a weighted skip con-
nection. The neural snowflake model takes the Euclidean distance between latent representations as
input. We observe that employing a skip connection and initiating training with an almost Euclidean
metric proves beneficial, particularly during the early stages of training.

I EXPERIMENTAL RESULTS SUPPLEMENTARY MATERIAL

Within this appendix, we provide supplementary information regarding the experimental results dis-
cussed in the main text. This encompasses details about the train and test splits, the precise training
configurations applied, as well as supplementary visual representations illustrating the evolution of
the model training process, along with additional experiments and their corresponding results.

Synthetic Experiments. All models are trained using the Adam optimizer with a learning rate of
1 × 10−4, for 40 epochs and with a batch size of 1,000. After approximately 20 epochs, we notice
a tendency for learning to reach a plateau, particularly when dealing with neural snowflakes. As
mentioned in the main text, for our experimental analysis, we concentrate on fully connected graphs.
In this setup, the node coordinates are sampled randomly from a multivariate Gaussian distribution
within a 100-dimensional hypercube in Euclidean space, represented as R100. The graph weights
are determined based on the metrics outlined in Table 2. The training sets have 4,000,000 data points
and the test sets 10,000. We observe very little discrepancy between the performance of the models
for training and testing sets.

The MLP model, which works in isolation and aims at approximating the metrics using Euclidean
space ∥MLP(x) −MLP(y)∥, has a total of 5422 parameters, and its composed of 10 linear layers
with 20 hidden dimensions and ReLU activation functions. The neural snowflake learning the metric
on R2: f(∥MLP(x) −MLP(y)∥), is composed of 2 layers with hidden dimension of 20. Note that
in Section 3.1 we define A(i) as a d̃i × di−1 matrix, B(i) as a di × d̃i-matrix. However, in this
experiments we set d̃i = di = 20. The MLP used alongside the neural snowflake to project the node
features in R100 to R2 consists of 5 layers with hidden dimension 20 with a total of 3,322 model
parameters and also uses ReLU activations. Lastly, for the third case in which the neural snowflake
learns directly in R100: f(∥x− y∥) we reuse the same neural snowflake architecture as before with
a total of 847 learnable parameters.

Additionally, we provide some plots of the training loss function evolution during learning for the
synthetic graph embedding experiments in Figure 2. As we can observe from the plots the neural
snowflakes learning in R100 converge faster, whereas neural snowflakes in R2 tend to get stuck in
local minima at the beginning of training and eventually achieve comparable performance to their
higher-dimensional counterparts. On the contrary, MLPs operating in R2 demonstrates significantly
poorer performance, they achieve a higher loss with a higher variance during the training process. In
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the main text we provided results for the synthetic experiments in terms of the test set performance;
we additionally provide results for the training set in Table 6.
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Figure 2: Training losses for synthetic graph embedding experiments. We compare using Euclidean space for
encoding the weighted graphs to using snowflake quasi-metric spaces.

Table 6: Results for synthetic graph embedding experiments, mean square error for training set. The Neural
Snowflake models are able to learn the metric better with substantially lesser number of model parameters.

MLP Neural Snowflake (+ MLP) Neural Snowflake
No. Parameters 5422 4169 847
Embedding space, Rn 2 2 100

Metric Mean Square Error

∥x− y∥0.5 log(1 + ∥x− y∥)0.5 1.3299 0.0037 0.0029

∥x− y∥0.1 log(1 + ∥x− y∥)0.9 1.2242 0.0032 0.0031

1− 1
(1+∥x−y∥0.5) 0.0777 0.00004 0.00004

1− exp −(∥x−y∥−1)
log(∥x−y∥) 0.1649 0.00009 0.00008

1− 1
(1+∥x−y∥)0.2 0.0314 0.00005 0.00005

1− 1
1+∥x−y∥0.2+∥x−y∥0.5 0.2420 0.00002 0.00002

Snowflake activation. Before working with neural snowflakes, we evaluate the performance of
snowflake activations. This is a straightforward way of augmenting existing latent graph inference
algorithms with additional representation power. In appendix H, we have already covered the details
regarding the activation function’s computational implementation. We intend to adhere to the speci-
fications outlined in that section. We start by running some preliminary studies in which we compare
the performance of a GCN equipped with a dDGM module using different latent embedding metric
spaces. To ensure a fair comparison in terms of latent space geometry, we have set the dimension-
ality of the latent embedding space to 4. By keeping the dimensionality fixed, we ensure that we
only modify the manifold used for embedding the representations, without altering the dimension-
ality of the embedding space itself. We start by evaluating the different algorithms on benchmark
homophilic graph datasets such as Cora, CiteSeer, CS, and Physics. We start by comparing our
model to previous metric spaces used in the literature such as Euclidean space (Kazi et al., 2022).
In Table 7 we can observe that the snowflake activation helps achieve higher accuracies, leading to
improvements between 1%− 5%.
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Table 7: Latent graph inference results across a variety of benchmark homophilic graph datasets. For all
experiment the latent space dimensionality used to infer latent graphs is fixed to 4, and the Gumbel top-k trick
is used with k = 7.

Cora CiteSeer CS Physics
Model Metric Space Input Graph Accuracy (%) ± Standard Deviation

DGM Euclidean Yes 82.40±3.22 73.40±1.64 85.45±2.23 95.91±0.51

DGM Snowflake Yes 86.11±3.72 74.40±2.08 89.54±2.48 96.08±0.46

DGM Euclidean No 62.03±6.20 65.15±4.84 84.37±1.20 95.11±0.33

DGM Snowflake No 67.33±4.10 64.63±9.24 87.63±5.25 95.32±0.45

MLP Euclidean No 58.92±3.28 59.48±2.14 87.80±1.54 94.91±0.30

Next, we increase the dimensionality of the latent space from 4 to 8 and evaluate whether this
trend still persists. In Table 8, we can observe that as we increase the dimensionality of the latent
space used for inferring the latent graph the performance increases when using both Euclidean or
snowflake quasi-metric spaces. We can also see that the difference between the two becomes less
significant, except for the CS dataset in which the snowflake activation still performs substantially
better.

Table 8: Latent graph inference results with latent space dimensionality fixed to 8, and the Gumbel top-k trick
is used with k = 7.

Cora CiteSeer CS Physics
Model Metric Space Input Graph Accuracy (%) ± Standard Deviation

DGM Euclidean Yes 85.77±3.64 73.67±2.30 90.50±1.89 96.08±0.41

DGM Snowflake Yes 85.41±3.70 74.19±2.08 92.98±0.66 96.15±0.54

DGM Euclidean No 68.37±5.39 68.10±2.80 88.17±2.64 95.27±0.41

DGM Snowflake No 69.51±4.42 66.86±2.82 88.67±3.21 95.36±0.23

MLP Euclidean No 58.92±3.28 59.48±2.14 87.80±1.54 94.91±0.30

In the specific scenario presented in Table 9, we observe a contrasting effect. As the latent space
dimension is reduced to only 2, the performance of both models deteriorates. Nonetheless, it is
notable that the use of the snowflake metric space demonstrates greater resilience compared to its
Euclidean counterpart. In fact, we can observe performance discrepancies of up to 20% between
the two. This is in line with previous synthetic experiments, and demonstrates that snowflake quasi-
metric spaces are more efficient at compressing the same information in low-dimensional spaces.

Table 9: Latent graph inference results with latent space dimensionality fixed to 2, and the Gumbel top-k trick
is used with k = 7.

Cora CiteSeer CS Physics
Model Metric Space Input Graph Accuracy (%) ± Standard Deviation

DGM Euclidean Yes 59.25±14.60 70.00±2.15 62.15±2.92 92.01±2.74

DGM Snowflake Yes 79.44±6.50 69.51±3.95 79.75±2.57 94.29±2.91

DGM Euclidean No 42.40±8.20 60.93±4.07 69.93±2.17 86.05±2.77

DGM Snowflake No 64.18±3.46 64.61±6.14 81.70±5.35 93.45±2.93

MLP Euclidean No 58.92±3.28 59.48±2.14 87.80±1.54 94.91±0.30
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