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A RELATED WORK
There have been extensive researches on recommendation (Aggarwal, 2016). Besides the basic
user-based and item-based collaborative filtering (Deshpande & Karypis, 2004), the full rank linear
autoencoder approaches include SLIM (Ning & Karypis, 2011), HOLISM (Christakopoulou &
Karypis, 2014), EASE (Steck, 2019), DLAE (Denoising linear autoencoder) Steck (2020), whereas
low-rank approaches include (Kabbur et al., 2013; Sedhain et al., 2016; Steck, 2020). All the
customized recommendation has been enforcing zero diagonal constraints for generalization purpose,
whereas we show an approximate closed-form solution for a two-term Tikhonov regularization
without the zero diagonal constraint can be as effective as these models.

Matrix factorization has been been widely studied in practice, partially due to Netflix competition Ko-
ren et al. (2009). Methods like SVD++ Koren (2008) and implicit Alternating Least Square (ALS)
method Hu et al. (2008) (also weighted matrix factorization) have been very influential. (Jin et al.,
2021) shows the relationship between linear autoencoders and matrix factorization, and pointed
out a potential advantage of linear autoencoders. In this work, we take a step further to reveal a
deeper relationship between Tikhonov regularized linear autoencoders and a few other regularizations
including matrix factorization, and show the potential limitation of the class of regularization. We also
utilize the linear variational autoencoders (LVAE) to study how the deep VAE based recommendation
approaches (Li & She, 2017; Liang et al., 2018; Shenbin et al., 2020) relate to linear autoencoders
and matrix factorization.

Outside recommendation, there have been a few recent studies on regularization landscapes of linear
(variational) autoencoders (Kunin et al., 2019; Bao et al., 2020; Lucas et al., 2019a). They do not
provide the general weighted `2 regularization and thus did not find the inherent limitation on the
regularization (for MF). Our LVAE inspired regularization is also never studied before.

Nuclear norm regularizers can recover low-rank matrices in the vector regression setting (Negahban
& Wainwright, 2011). Its weighted generalization can be applied in the area of image processing (Gu
et al., 2014). Because weighted nuclear-norm is usually not convex or differentiable, finding optimal
solutions is difficult except for a few special cases (Chen et al., 2013).

B PROOFS

B.1 PROOF OF LEMMA 1

The Linear Variational AutoEncoder (LVAE) is defined in the same way as (Lucas et al., 2019b):

p(x | z) = N
(
Wz + µ, σ2I

)
q(z | x) = N (V (x− µ), D)

(16)

For simplification, we set µ = 0 in following context. And the ELBO of LVAE is known as:

Lx = −KL(q(z|x)||p(z)) + Eq(z|x)[log p(x|z)]
KL(q(z|x)||p(z)) = − log |D|+ xTV TV x+ tr(D)− k

Eq(z|x)[log p(x|z)] = − 1

2σ2

(
tr(WDWT ) + xTV TWTWV x− 2xTWV x+ xTx

)
− n

2
log 2πσ2

(17)

Again, the (maximizing) ELBO can be written as:

Lx = −1

2

(
− log |D|+ xTV TV x+ tr(D)− k

)
− n

2
log 2πσ2

− 1

2σ2

(
tr(WDWT ) + xTV TWTWV x− 2xTWV x+ xTx

)
= −1

2
||V x||22 −

1

2σ2

(
||W
√
D||2F + ||x−WV x||22

)
+ f(D,σ)

(18)
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Table 3: Investigating the closed/analytic solutions of linear models. dMat(·) denotes a diagonal
matrix, diag(X) is the vector on the diagonal of X .

Model regularization solution

Frobenius norm

1. EASE(full rank) (Steck, 2019)
min
W
||X −XW ||2F + λ · ||W ||2F

s.t. diag(W ) = 0

C = (XTX + λI)−1

W = I − C · dMat(diag(1� C))

2. DLAE(full rank) (Steck, 2020)
min
W
||X −XW ||2F + ||Λ1/2 ·W ||2F

Λ =
p

1− p
dMat(diag(XTX))

W = (XTX + Λ)−1XTX

3. EDLAE(full rank) (Steck, 2020)

min
W
||X −XW ||2F + ||Λ1/2 ·W ||2F

Λ =
p

1− p
dMat(diag(XTX))

s.t. diag(W ) = 0

C = (XTX + Λ)−1

W = I − C · dMat(diag(1� C))

4. EDLAE-ADMM (Steck, 2020)
min
A,B
||X −XABT ||2F + ||Λ1/2 ·ABT ||2F

s.t. diag(W ) = 0
ADMM update A,B

5. LRR (Jin et al., 2021) min
rank(W )≤k

||X −XW ||2F + ||ΓW ||2F Y
∗

= XW ∗
SVD
= UΣV

Ŵ = (XTX + ΓTΓ)−1XTX(VkV
T
k )

6. LR-DLAE(this paper)
min

rank(W )≤k
||X −XW ||2F + ||Λ1/2 ·W ||2F

Λ =
p

1− p
dMat(diag(XTX))

W ∗ = (XTX + Λ)−1XTX

Y
∗

= XW ∗
SVD
= UΣV T

Ŵ = W ∗(VkV
T
k )

7. LR-EDLAE-1(this paper)

min
rank(W )≤k

||X −XW ||2F + ||Λ1/2 ·W ||2F

Λ =
p

1− p
dMat(diag(XTX))

s.t. diag(W ) = 0

C = (XTX + Λ)−1

W ∗ = I − C · dMat(diag(1� C))

Y
∗

= XW ∗
SVD
= UΣV T

Ŵ = W ∗(VkV
T
k )

8. LR-EDLAE-2(this paper)

min
rank(W )≤k

||X −XW ||2F + ||Λ1/2 ·W ||2F

Λ =
p

1− p
dMat(diag(XTX))

s.t. diag(W ) = 0

C = (XTX + Λ)−1

W ∗ = I − C · dMat(diag(1� C))

W ∗
SVD
= UΣV T

Ŵ = UkΣkV
T
k

Nuclear Norm

9. Regularized PCA (Zheng et al., 2018)
min
P,Q
||X − PQT ||2F + λ · (||P ||2F + ||Q||2F )

X
SVD
= UΣV T

P ∗ = Uk
Q∗ = VkΩ

Ω =
√

(σi − λ)+

10. MF dropout (Cavazza et al., 2018)
min
P,Q,d

||X − PQT ||2F + d
1− p
p
·
d∑
k=1

||Pk||22 · ||Qk||22

min
Y
||X − Y ||2F +

1− p
p
||Y ||2∗

X
SVD
= UΣV T

Y ∗ = P ∗ · (Q∗)T

= U · Sµ(Σ) · V T

11. LAE (Bao et al., 2020) min
W1,W2

‖X −XW1W2‖2F + ‖W1Λ
1
2 ‖2F + ‖Λ 1

2W2‖2F ,
W ∗1 = P (I − ΛS−2)

1
2UT

W ∗2 = U(I − ΛS−2)
1
2PT

12. LVAE(this paper)

min
P,Q
||X − PQ||2F + ||Λ1/2Q||2F + ||PΛ1/2||2F

min
A,B
||X −XAB||2F + ||ΛB||2F + ||XA||2F

min
rank(W )≤k

||X −W ||2F + 2||W ||w,∗

X
SVD
= UΣV T

P ∗ = Uk · diag(
√
σ1 − λ(k), . . . ,

√
σ1 − λ(1)) · Ω

Q∗ = ΩT · diag(
√
σ1 − λ(k), . . . ,

√
σ1 − λ(1)) · V Tk

A∗ = X†P ∗Λ
1
2 B∗ = Λ−

1
2Q∗

where f(D,σ) = 1
2 log |D| − 1

2 tr(D) + k
2 −

n
2 log 2πσ2, x ∈ Rn and z ∈ Rk.

For whole data, it is equivalent to minimize:

L = ||X −WVX||2F +N ||W
√
D||2F + σ2||V X||2F + g(D,σ)

= ||XT −XTV TWT ||2F +N ||
√
DWT ||2F + σ2||XTV T ||2F + g(D,σ)

(19)

where g(D,σ) = −σ2N
(

log |D| − tr(D) + k − n log 2πσ2).

B.2 PROOF OF PROPOSITION 1

Note that when σi ≤ λ(k−i), the new singular value shrinks to zero, and can be removed. Basically,
for any λ(1) ≥ · · · ≥ λ(k), we can build the corresponding Tikhonov regularized instance by setting

σ2
i

σ2
i + λ′i

=
σi − λ(k−i)

σi
, i.e.,λ′k =

σ3
i

σi − λ(k−i)
− σ2

i . (20)
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Discussion of Proposition 1: Further, the same observation holds true for the regularization (2), and
the weighted-nuclear norm regularization in when the weights are in the non-ascending order. This
observation suggests a potentially limitation of the earlier regularization as they will always try to
maintain the larger singular values: when a singular value is large, the shrinkage will be small.Such
regularization has shown to work well in the areas such as image processing Gu et al. (2014). But it
has not been studied or confirmed if it will work for the recommendation. In Section 5, we report our
experimental study which shows such regularization could be too restrictive for recommendation.

B.3 PROOF OF PROPOSITION 2

By slightly abusing the notation, we shall let OPT1 (OPT2) be the value of the optimal solution for
OPT1 (OPT2). We need to show that OPT1 = OPT2. We need two directions.

OPT2 ≥ OPT1: Let W ∗ be an optimal solution for OPT2. Let the SVD of W ∗ be U∗Σ∗(V ∗)T.
Recall that W ∗ needs to satisfy the rank constraint rank(W ∗) ≤ k so U∗ ∈ Rm×k, Σ∗ ∈ Rk×k,
and V ∗ ∈ Rn×k. Let π be a permutation on [k] such that λπ(1) ≤ λπ(2) ≤ · · · ≤ λπ(k). Let also Ω

be the corresponding permutation matrix. Specifically, Ω ∈ {0, 1}k×k and there is exactly one entry
in each row of Ω is 1:

Ωi,j =

{
1 if j = π(i).
0 otherwise.

For example, consider a case in which λ1 > λ2 > · · · > λk. Then we set π = (k, k − 1, . . . , 1), and
correspondingly,

Ω =

 0 ... 0 1
0 ... 1 0

...
1 ... 0 0

 .

Next, let P = U∗(Σ∗)
1
2 Ω and Q = ΩT(Σ∗)

1
2 (V ∗)T. We have W ∗ = PQ and f(W ∗) = f(PQ).

In addition,

‖Λ 1
2Q‖2F + ‖PΛ

1
2 ‖2F = 2‖Λ 1

2 Ω(Σ∗)
1
2 ‖2F = 2

∑
i≤k

λπ(i)σi = 2‖W ∗‖ω,∗,

where σi is the i-th largest singular value of W ∗. In other words, we have found a (P,Q) pair such
that

f(PQ) + ‖Λ 1
2Q‖2F + ‖PΛ

1
2 ‖2F = f(W ∗) + 2‖W ∗‖ω,∗ = OPT2,

which shows that OPT1 ≤ OPT2.

OPT2 ≤ OPT1. Let P ∗ and Q∗ be an optimal solution for OPT1. Let the singular values of P ∗
be σ1(P ∗) ≥ σ2(P ∗) ≥ · · · ≥ σk(P ∗) and those of Q∗ be σ1(Q∗) ≥ σ2(Q∗) ≥ · · · ≥ σk(Q∗). Let
also σ∗1 ≥ · · · ≥ σ∗k be the singular values of P ∗Q∗.

We shall find a lower bound of ‖Λ 1
2Q‖2F + ‖PΛ

1
2 ‖2F expressed in terms of σ∗i ’s. In fact, we shall

show that
‖Λ 1

2Q‖2F + ‖PΛ
1
2 ‖2F ≥ 2‖P ∗Q∗‖ω,∗. (21)

One can see that if Eq. 21 were true, we have

OPT2 ≤ f(P ∗Q∗) + 2‖P ∗Q∗‖ω,∗ ≤ f(P ∗Q∗) + ‖Λ 1
2Q∗‖2F + ‖P ∗Λ 1

2 ‖2F = OPT1.

Thus, it remains to prove Eq. 21. Let λ(1) ≥ λ(2) ≥ · · · ≥ λ(k) be a sorted sequence of λi’s i.e.,
λ(k) = λπ(1), λ(k−1) = λπ(2), . . . , λ(1) = λπ(k).

First, we show that ‖PΛ
1
2 ‖2F ≥

∑k
i=1 λ(k−i+1)×σ2

i (P ∗) and ‖Λ 1
2Q‖2F ≥

∑k
i=1 λ(k−i+1)×σ2

i (Q∗).
We need the following Lemma (see e.g., Theorem 2 in Yue (2020)):
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Lemma 3. Let A and B be two positive definite matrices in Rk×k. Then it holds that

k∑
i=1

σi(A)σk−i+1(B) ≤ tr(B
1
2AB

1
2 ). (22)

Let the SVD of P ∗ be UP∗ΣP∗V T
P∗ and that of Q∗ be UQ∗ΣQ∗V T

Q∗ . We have

‖P ∗Λ 1
2 ‖2F = ‖UP∗ΣP∗V T

P∗Λ
1
2 ‖2F = ‖ΣP∗V T

P∗Λ
1
2 ‖2F = tr(ΣP∗V T

P∗ΛVP∗ΣP∗). (23)

We now apply Lemma 3 by setting A = V T
P∗ΛVP∗ and B = Σ2

P∗ , and obtain that

‖P ∗Λ 1
2 ‖2F = tr(ΣP∗V T

P∗ΛVP∗ΣP∗) ≥
k∑
i=1

λ(k+1−i) × σ2
i (P ∗). (24)

We may similarly prove that ‖Λ 1
2Q∗‖2F ≥

∑k
i=1 λ(k−i+1) × σ2

i (Q∗). Therefore,

‖Λ 1
2Q∗‖2F + ‖P ∗Λ 1

2 ‖2F ≥
k∑
i=1

λ(k+1−i) × (σ2
i (P ∗) + σ2

i (Q∗)) (25)

(25) provides a lower bound of ‖Λ 1
2Q∗‖2F + ‖P ∗Λ 1

2 ‖2F in terms of σi(P ∗) and σi(Q∗). We next aim
to express the lower bound in terms of σ∗i ’s (singular values of P ∗Q∗) directly.

The following program gives a lower bound for ‖Λ 1
2Q∗‖2F + ‖P ∗Λ 1

2 ‖2F :

min : ‖Λ 1
2Q∗‖2F + ‖P ∗Λ 1

2 ‖2F (26)
subject to W = P ∗Q∗

σi(W ) = σ∗i for i ≤ k.

Write the SVD of W be UWΣWV
T
W . Also, let P̃ = UT

WP
∗ and Q̃ = Q∗VW . Noting that the

columns in P ∗ are in the column space of W and the rows in Q∗ are in the row space of W , we
have (i) σi(P ∗) = σi(P̃ ) and σi(Q∗) = σi(Q̃) for i ≤ k, and (ii) ‖Λ 1

2Q∗‖2F + ‖P ∗Λ 1
2 ‖2F =

‖Λ 1
2 Q̃‖2F + ‖P̃Λ

1
2 ‖2F .

Therefore, (26) can be equivalently written as

min : ‖Λ 1
2 Q̃‖2F + ‖P̃Λ

1
2 ‖2F (27)

subject to ΣW = P̃ Q̃

(ΣW )i,i = σ∗i for i ≤ k.

Now P̃ Q̃ is positive definite. Using a similar technique developed in (Bao et al., 2020) (Theorem 1),
one can see that P̃ = Q̃T. See also Lemma 4. This implies that P̃ = Σ

1
2

WΩ for some unitary matrix
Ω and σi(P ∗) = σi(P̃ ) = σi(Q

∗) = σi(Q̃) =
√
σ∗i for i ≤ k. Together with (25), we have

‖Λ 1
2Q∗‖2F + ‖P ∗Λ 1

2 ‖2F ≥ 2
∑
i≤k

λ(k+1−i) × σ2
i (P ∗) = 2

∑
i≤k

λ(k+1−i) × σ∗i = 2‖P ∗Q∗‖ω,∗.

B.4 PROOF OF COROLLARY 1

We first find an optimal solution for (9). Let the SVD of X be X = UXΣXV
T
X , where UX ∈ Rm×n,

ΣX ∈ Rn×n, and VX ∈ Rn×n. Let ŪX be an arbitrary basis for the subspace that is orthogonal to
X’s column space so ŪX ∈ Rm×(m−n) and [UX , ŪX ] form a basis for Rm. We have

‖X − PQ‖2F + ‖PΛ
1
2 ‖2F + ‖Λ 1

2Q‖2F

=

∥∥∥∥( UT
X

ŪT
X

)
XVX −

(
UT
X

ŪT
X

)
PQVX

∥∥∥∥2

F

+

∥∥∥∥( UT
X

ŪT
X

)
PΛ

1
2

∥∥∥∥2

F

+ ‖Λ 1
2QVX‖2F .
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Let P̃ =

(
UT
X

ŪT
X

)
P and Q̃ = QVX . Then our objective becomes

min
P̃ ,Q̃

∥∥∥∥( ΣX
0(m−n)×n

)
− P̃ Q̃

∥∥∥∥2

F

+ ‖P̃Λ
1
2 ‖2F + ‖Λ 1

2 Q̃‖2F . (28)

Let W̃ = P̃ Q̃ and the singular values of W̃ be σ∗1 ≥ σ∗2 ≥ · · · ≥ σ∗k. Let also Σ̃ =

(
ΣX

0(m−n)×n

)
.

Recall also that σi is the i-th largest singular value of X . We next show that∥∥∥∥( ΣX
0

)
− P̃ Q̃

∥∥∥∥2

F

= ‖Σ̃− P̃ Q̃‖2F ≥
k∑
i=1

(σi − σ∗i )2 +

n∑
i=k+1

σ2
i .

Note first that

‖Σ̃− W̃‖2F = ‖Σ̃‖2F + ‖W̃‖2F − 2〈Σ̃, W̃ 〉. (29)

Next, we have ((Zheng et al., 2018)):

|〈Σ̃, W̃ 〉| = |tr(Σ̃W̃T)‖ ≤ |tr(Σ̃ΣW̃ )| =
k∑
i=1

σiσ
∗
i .

Therefore, 〈Σ̃, W̃ 〉 is maximized when

W̃i,j =

{
σ∗i if i = j ≤ k
0 Otherwise.

When we plug in this optimized W̃ to Eq. 29, we get

‖Σ̃− W̃‖2F ≥
k∑
i=1

(σi − σ∗i )2 +

n∑
i=k+1

σ2
i .

Next, from Proposition 2, we have

‖P̃ V 1
2 ‖2F + ‖Λ 1

2 Q̃‖2F ≥
k∑
i=1

λ(k−i+1)σ
∗
i .

Therefore, we can find a lower bound for Eq. 5 in terms of σ∗i ’s:

L(σ∗1 , . . . , σ
∗
k) =

k∑
i=1

(σi − σ∗i )2 + 2

k∑
i=1

λ(k−i+1)σ
∗
i +

m∑
i=k+1

σ2
i (σ∗1 ≥ · · · ≥ σ∗k ≥ 0). (30)

We next find a minimal value of L (by treating σ∗i ’s as decision variables). This will give us a lower
bound (and is independent of σ∗i ) on our optimization problem. We then show that this lower bound
can be achieved by carefully constructing W̃ (as well as P̃ and Q̃). This means such W̃ is optimal.

Specifically, we need to find an optimal solution for the following program:

minimizeσ∗
1 ,...,σ

∗
k
L(σ∗1 , . . . , σ

∗
k) (31)

subject to: σ∗i ≥ 0

σ∗1 ≤ σ∗2 ≤ · · · ≤ σ∗k (Ordering constraint)

We shall first find an optimal solution for

17



Under review as a conference paper at ICLR 2022

minimizeσ∗
1 ,...,σ

∗
k
L(σ∗1 , . . . , σ

∗
k) (32)

subject to: σ∗i ≥ 0

Note here, the ordering constraint is removed so the optimal value for (32) should be no more than
that for (31). We shall see that the optimal solution for (31) also satisfies the ordering constraint so
indeed optimal solutions for (31) and (32) are the same.

The problem (32) boils down to finding

min
σ∗
i≥0

(σi − σ∗i )2 + 2

k∑
i=1

λ(k−i+1)σ
∗
i .

We note that σ∗i ’s do not interact with each other so we can optimize each σ∗i ’s independently. We get
σ∗i = (σi − λ(k−i+1))

+.

We can check that σ∗1 ≥ · · · ≥ σ∗k. Therefore, the optimal value for (31) is
k∑
i=1

(σi − (σi − λ(k−i+1))
+)2 + 2

k∑
i=1

λ(k−i+1)(σi − λ(k−i+1))
+ +

n∑
i=k+1

σ2
i .

This is also a lower bound for (9). One can check that when we set P and Q as

P ∗ = Ukdiag(
√

(σ1 − λ(k))+), . . . ,
√

(σk − λ(1))+)Ω, (33)

Q∗ = ΩTdiag(
√

(σ1 − λ(k))+), . . . ,
√

(σk − λ(1))+)V T
k ,

the lower bound is achieved so (33) gives an optimal solution. Here, Uk and Vk are leading left and
right singular vectors of X .

Now we move to analyze (10). Our goal is to reduce (10) to (9). Let

P = XAΛ−
1
2 Q = Λ

1
2B.

Then (10) becomes

minimizeP,Q ‖X − PQ‖2F + ‖PΛ
1
2 ‖2F + ‖Λ 1

2Q‖2F (34)

subject to P = XAΛ−
1
2 (Constraint P)

Q = Λ
1
2B (Constraint Q).

Here, X and Λ are given, whereas P , Q, A, andB are decision variables. The (Constraint P) says that
each column of P needs to be in a column space of X (it is a necessary and sufficient condition for A
to exist). The (Constraint Q) simply says Q and B are linearly related and does not have tangible
impact to the optimization problem.

But we note that when we put aside the constraints, an optimal (P,Q) is specified by (33). The
columns of the optimal P indeed is in the column space of X . So (P,Q) is also an optimal solution
for (34). We may find the corresponding A and B:

A∗ = X†P ∗Λ
1
2 and B∗ = Λ−

1
2Q∗,

B.5 SYMMETRIC LEMMA

Lemma 4. Let P̃ , Q̃ ∈ Rk×k be full rank, Λ be a diagonal matrix, and ΣW be a diagonal matrix so
that (ΣW )i,i = σ∗i , where σ∗i ’s are sorted in descending order. Consider the optimization problem:

min : ‖Λ 1
2 Q̃‖2F + ‖P̃Λ

1
2 ‖2F (35)

subject to ΣW = P̃ Q̃

(ΣW )i,i = σ∗i for i ≤ k.
There is an optimal solution such that P̃ = Q̃T

18
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Proof. Let P̂ = P̃Λ
1
2 and Q̂ = Λ−

1
2 Q̃. The program (36) is equivalent to

min : ‖ΛQ̂‖2F + ‖P̂‖2F (36)

subject to ΣW = P̂ Q̂

(ΣW )i,i = σ∗i for i ≤ k.

Let the SVD of Q̂ be UQ̂ΣQ̂V
T
Q̂

so Q̂−1 = VQ̂Σ−1

Q̂
UT
Q̂

. We can also see that P̂ = ΣW Q̂
−1.

Therefore, the objective term becomes

‖ΛUQ̂ΣQ̂V
T
Q̂
‖2F + ‖ΣWVQ̂Σ−1

Q̂
UT
Q̂
‖2F = ‖ΛUQ̂ΣQ̂‖

2
F + ‖ΣWVQ̂Σ−1

Q̂
‖2F .

Let us consider the stationary points UQ̂ and VQ̂ when ΣQ̂ is fixed. We can see that they need to be
permutation matrices to minimize both terms in the objective (using the rearrangement inequality
again). Therefore, we can see Q̂ = Σ1ΣQ̂Σ2 for two permutation matrices Σ1 and Σ2. This implies

that Q̃ = Λ
1
2 Σ1ΣQ̂Σ2, i.e., each row (column) of Q̃ has exactly one non-zero entry. We may similarly

show that each row (column) of P̃ has exactly one non-zero entry. In addition, the locations of
non-zero entries of P̃ and Q̃T are identical because P̃ Q̃ is a diagonal matrix. We may thus write

P̃ = Σ(1)ΣP̃Σ(2) Q̃ = ΣT
(2)Σ(Q̃)Σ

T
(1),

where (ΣP̃ )i,i = σi(P̃ ) and (Σ(Q̃))i,i = στ(i)(Q̃), where τ is a permutation on [k]. The set of
(possibly unsorted) singular values for P̃ Q̃ thus is σi(P̃ )στ(i)(Q̃). Thus, we can see that there exists
a permutation π̄ such that

‖Λ 1
2 Q̃‖2F + ‖P̃Λ

1
2 ‖2F =

∑
i≤k

(
σ2
i (P ∗)λπ̄(i) + σ2

τ(i)(Q
∗)λπ̄(i)

)
≥
∑
i≤k

2σi(P
∗)σ∗τ(i)(Q)λπ̄(i)

≥ 2‖P ∗Q∗‖ω,∗.

One can see that we can set P̃ = Q̃T to make all inequality becomes equality so there is an optimal
solution such that P̃ = Q̃T.

C EXPERIMENTAL DETAILS

C.1 ANONYMOUS CODE

https://anonymous.4open.science/r/ICLR-2022-Anonymous-Demo-Code-B9FF/
README.md

C.2 DLAE HYPERPARAMETERS TUNING

This section presents the hyperparameter tuning process on the validation data over three (ML-20M,
Netflix, MSD) datasets for the full rank DLAE formula, which was introduced by Steck (2020) yet
not investigated:

min
W
||X −XW ||2F + ||Λ1/2 ·W ||2F

Λ =
p

1− p
dMat(diag(XTX))

Ŵ = (XTX + Λ)−1XTX

In practical, l2 regularization is also imposed:

Ŵ = (XTX + Λ + λ)−1XTX

The tables 4 to 6 show the results of nDCG@100 over three datasets respectively. And the optimal
parameters are highlighted.
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Table 4: ml-20m, DLAE full rank, parameter tuning on validation dataset by nDCG@100
λ

800 900 1000 1100 1200 1300

p

0.1 0.42024 0.42063 0.42073 0.42102 0.42131 0.4212
0.2 0.43132 0.43139 0.43154 0.4314 0.43147 0.43136
0.3 0.43203 0.43211 0.43214 0.43206 0.43203 0.43196
0.4 0.43001 0.43001 0.42995 0.42996 0.42984 0.42978
0.5 0.42754 0.42745 0.42729 0.42718 0.42715 0.42704

Table 5: netflix, DLAE full rank, parameter tuning on validation dataset by nDCG@100
λ

800 900 1000 1100 1200 1300 1400

p

0.2 0.3904 0.3904 0.39027 0.39024 0.3902 0.3903 0.39018
0.25 0.39247 0.39252 0.39248 0.39249 0.3925 0.3925 0.39256
0.3 0.39359 0.39359 0.39366 0.39358 0.39362 0.39368 0.39369

0.35 0.39402 0.39403 0.394 0.39405 0.39399 0.39403 0.39397
0.4 0.39399 0.39393 0.39395 0.39393 0.39389 0.39388 0.39387

0.45 0.39346 0.3935 0.39343 0.39344 0.39338 0.3933 0.39329
0.5 0.39249 0.39241 0.39247 0.39241 0.39242 0.3923 0.39224

C.3 MATRIX FACTORIZATION WITH DROPOUT HYPERPARAMETERS TUNING

Cavazza et al. (2018) shows that optimization with dropout (allowing rank optimizing) is equivalent
to solving a matrix approximation problem with nuclear norm:

min
P,Q,d

||X − PQT ||2F + d
1− p
p
·
d∑
k=1

||Pk||22 · ||Qk||22

min
Y
||X − Y ||2F +

1− p
p
||Y ||2∗

and the solution is given by:

X
SVD
= UΣV T

Y ∗ = P ∗ · (Q∗)T

= U · Sµ(Σ) · V T

Sµ(σ) = max(σ − µ, 0)

µ =
1− p

p+ (1− p)d̄

d̄∑
i=1

σi(X)

where d̄ denotes the largest integer such that:

σd̄(X) >
1− p

p+ (1− p)d̄

d̄∑
i=1

σi(X)

Hence, there is only one parameter p to tuning. We present the tuning process on the validation set
below, see tables 7 to 9. Optimal parameters as well as induced rank d̄ are highlighted.

Table 6: msd, DLAE full rank, parameter tuning on validation dataset by nDCG@100
λ

10 20 30 40 50 60

p

0.3 0.38514 0.38515 0.38517 0.38505 0.38492 0.38474
0.4 0.38596 0.38599 0.38602 0.386 0.38597 0.38592
0.5 0.38556 0.38555 0.38553 0.38557 0.38553 0.38549
0.6 0.38382 0.3838 0.38381 0.38374 0.38373 0.38366
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Table 7: ml-20m, matrix factorization with dropout, hyper parameter tuning by nDCG@100 on
validation dataset and its induced rank .

p 0.9 0.99 0.995 0.996 0.997
induced rank d̄ 10 200 385 467 602
nDCG@100 0.29723 0.39369 0.40045 0.40046 0.39925

Table 8: netflix, matrix factorization with dropout, hyper parameter tuning by nDCG@100 on
validation dataset and its induced rank .

p 0.9 0.99 0.996 0.997 0.998
induced rank d̄ 9 209 524 653 883
nDCG@100 0.26026 0.35462 0.36453 0.36495 0.36406

Table 9: msd, matrix factorization with dropout, hyper parameter tuning by nDCG@100 on validation
dataset and its induced rank .

p 0.99 0.999 0.9995 0.9999 0.99995
induced rank d̄ 249 2054 3783 11380 19308
nDCG@100 0.18986 0.28532 0.307 0.32634 0.30995

C.4 RESOURCES

Our code are mainly implemented in Numpy 1.19, Pytorch 1.7.1 on CUDA 11.0. Our experiments
are performed on nodes with two sockets, each containing a 24-core Intel(R) Xeon(R) Platinum 8268
CPU @ 2.90GHz and 4 GeForce RTX 3090 24GB memory GPU.
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