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APPENDIX A: OUR APPROACH UNDER THE DEFINITION OF DISENTANGLEMENT

Our method follows from a prior definition of disentanglement (Shu et al., 2019), which decomposes
disentanglement into two components, restrictiveness and consistency. Restrictiveness over a set of
latent dimensions zI = zj:k is met when changes to zI correspond to only changes to the factors of
variation sI . Consistency is met when changes to the set of factors sI is only controlled by changes
to the latent dimensions zI . This decomposition allows for statistically dependent factors of variation
si to exist, which is often present in naturally occurring data. For a model to be fully disentangled
requires every index of the model to be disentangled.

We approach consistency and restrictiveness from measuring manifold topology. We first assume
the manifold X of a generative model is equipped with an atlas gj : Zj → X , where Zj is an open
subset of Rn and n is the dimension of the manifold. Additionally, we have factors of variation
si : X → Rn. We would like to drive only one of these maps si, while leaving the others s\i fixed. Of
course, we now have the composite maps si ◦ gj : Zj → Rn, which can be thought of as a map from
a small ball in Zj ∈ Rn into Rn. Our goal to find maps αj : Rn → Rn so that the map si ◦ gj ◦ αj
has the form (z1, . . . , zn)→ (f1(z1), . . . , fn(zn)) and the i-th output depends only on the i-th input.
Because zi → fi(zi) is topologically distinct, we can use this to evaluate disentanglement.

We derive measures of failure on this diagonalization, and our idea is to study the submanifolds
(si◦gj)−1(z\i), in particular the persistent homology of these submanifolds, to generate an evaluation
metric which is guiding us towards the disentangled situation. We believe that under a perfectly
disentangled model, perturbing the value of zi should not change the topology of the manifold (si ◦
gj)
−1(zi) (restrictiveness) or (s\i ◦gj)−1(z\i) (consistency). From this, we measure disentanglement

through its decomposition of consistency and restrictiveness, by comparing the persistence barcodes
of these submanifolds.

We also cluster latent dimensions, so our evaluation metric rewards disentangled clusters, and
moreover rewards maximizing the number of disentangled clusters, which would be interpreted as
products of tangled manifolds.

Assumptions. We make the following assumptions:

• Assumption A. Each map zi → fi(zi) is topologically distinct.
• Assumption B. We can measure the persistent homology of the generated space.
• Assumption C. If a set of mappings zj → fj(zj) are not topologically distinct, then we can

treat their shared zi or si dimension as the same dimension.
• Assumption D. In the supervised case, each si can be observed for each x ∈ X .

With our method, we can evaluate the degree to which a set of latent dimensions zI corresponds to
a single si. This is a stronger form of restrictiveness that disentanglement necessitates. In order to
identify zI , we cluster topologically similar latent dimensions. We penalize intra-cluster variance,
which discourages having a set of latent dimensions zI correspond to distinct factors of variation and
which denotes higher restrictiveness.

Furthermore, we can evaluate the degree to which a single factor si is affected by different clusters
of latent dimensions {zI ,zJ ,...}, which also control other factors of variation. Removing shared
factors increases consistency, by increasing the distance between distinct clusters. As a result, distinct
clusters cannot be similar if they are consistent. This corresponds to a stronger form of consistency
that disentanglement necessitates. Thus, we penalize extra-cluster similarity, which encourages
topological variation between clusters and which denotes higher consistency.

Additional note on other definitions of disentanglement. As noted in a foundational paper on dis-
entanglement (Bengio et al., 2013), disentanglement constitutes a bijective mapping between factors
of variation in the data to dimensions in the latent space Z, e.g. ∀izi = e(g(zi)). Using homology,
we can determine whether this bijective mapping holds along different factors, by observing the
topological similarity of their conditional submanifolds and measuring the extent to which they con-
tinuously deform into each other. Aligned with newer definitions of disentanglement (Higgins et al.,
2018; Duan et al., 2020), our framing permits multiple valid factorizations, where different clusters
of likely homeomorphic submanifolds conditioned on factors can compose alternate factorizations.
Our supervised variant is meant to consider a target factorization corresponding to factors on the real
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manifold. In this variant, we follow the existing definition of supervised disentanglement (Shu et al.,
2019) that allows different subsets of dimensions to contribute to a target factor and for target factors
to exhibit statistical dependence. Additionally, based on the motivating description of MIG-sup (Li
et al., 2020), Mutual Information Gap (MIG) (Chen et al., 2018b) and MIG-sup (Li et al., 2020)
correspond, respectively, to the disentanglement concepts of restrictiveness and consistency.

APPENDIX B: ADDITIONAL BACKGROUND

In addition to the background section of our paper, we would like to point out related work, some
reiterated for ease of cohesively examining the related literature.

Disentanglement metrics. Existing disentanglement metrics depend on an external model such as
an encoder or classifier to be applicable across datasets, or dataset-specific preprocessing. Several
metrics train classifiers to detect separability of the data, generated by conditioning on different latent
dimensions (Eastwood and Williams, 2018; Kim and Mnih, 2018; Karras et al., 2019). These are
reliant on hyperparameters and the architecture of the classifiers. Recently, the mutual information
gap MIG was proposed as an information-theoretic metric, yet relies on a readily available encoder in
order to estimate latent entropy (Chen et al., 2018b). Many state-of-the-art GANs do not have an
encoder readily available, and this has even been cited as a barrier to use (Karras et al., 2019). Finally,
the perceptual path length was proposed to measure disentanglement without relying on an external
model, but the method is specific to face datasets such as CelebA, as it crops out the background
prior to evaluation (Karras et al., 2019). To address these limitations in a metric’s applicability and
scope, we propose a method that focuses on only using the generative model’s decoder g : Z→ X
and can be applied across datasets. Additionally, because the utility of disentanglement is often with
respect specific subsets of factors that are human-interpretable, we include a supervised variant of
our metric that compares the real data manifold with the generated one. Finally, there is a difference
between evaluating disentanglement and learning a disentangled representation, the latter of which
requires constructing a valid loss function for learning and guaranteeing disentanglement, a process
that requires at least weak supervision (F. Locatello et al., 2019).

The factors of a generating dataset such as dSprites, and their values, are provided with the dataset.
Features in the dSprites dataset include shape, orientation, x-position, and y-position. An example
image (a data point) is a heart rotated 90 degrees in the top right corner. The values of each
feature (factor) are provided in this generating dataset and, in this case, discretized. In generating a
submanifold, we would hold a factor, such as orientation, constant, while varying the others (sampling
different values for the others) to create a subsample that we then use in the RLT procedure. In a
non-toy dataset, such as CelebA, where the factors and their values are not known to high accuracy,
we can only estimate a possible subset. In this case, we follow prior precedent and use the binary
attributes provided in the dataset, such as wearing sunglasses or black hair color. This type of
selection of factors and values are common in disentanglement literature; we do not introduce a novel
protocol with the factor selection here.

For a generated manifold, we do not know the factors corresponding to the latent dimensions upfront.
As a result, we hold latent dimensions constant and randomly sample values from the latent prior
(spherical normal) within a dimension to hold constant while varying the values of others through
random sampling. Each set of latent dimension values correspond to a point in the data manifold,
which we use the corresponding generative model to generate. These points on the generative model’s
data manifold are then embedded using an ImageNet-pretrained VGG16 network as a feature extractor
(these details are currently in Appendix G). These embeddings produce point clouds from which the
persistence barcodes are computed and vectorized using the RLT procedure.

Geometry of deep generative models. Prior work has explored applying Riemannian geometry to
deep generative models (Shao et al., 2018; Chen et al., 2018a; Rieck et al., 2018; Horak et al., 2020).
One work approximates the geodesics of the latent manifold to visually inspect deep generative
models as an alternative to linear interpolation (Chen et al., 2018a). Another work also explores
computing geodesics efficiently and shows that style between interpolations can be transferred with
the approach (Shao et al., 2018). Horak et al. (2020) use persistent homology for comparing GAN
evaluation metrics FID, KID, IS, and the geometry score from (Khrulkov and Oseledets, 2018).
One of the closest work to ours has explored the geometry, specifically the normalized margin and
tangent space alignment, of latent spaces in disentangling VAE models (Shukla et al., 2018). This
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Figure 8: Comparison of each factor’s topological signatures in dSprites derived from the Euclidean
mean on the left (a) and (b) (Khrulkov and Oseledets, 2018) to our method of deriving them from
taking the Wasserstein barycenters on the right (c) and (d). Notice visually that the Euclidean
mean collapses geometric information, rendering the two topological signatures (a) and (b) more
indistinct, while the Wasserstein barycenters exhibit much smoother distributions and construct
distinct topological signatures for each factor, (c) and (d).

work is interesting in that it leverages the lower dimensionality of latent spaces to enable more
computationally feasible calculations, such as singular value decomposition. However, they do not
propose an disentanglement evaluation method and do not explore the learned data manifold or
homology. Another recent study that relates closely to our work examines holonomy on disentangling
data manifolds in synthetic manifolds and 3D objects Pfau et al. (2020). While they explore exciting
differential geometry methods, our work examines the topology, specifically homology, a topological
invariant, (and not to be confused with holonomy) of data manifolds, offer an evaluation metric (with
unsupervised and supervised variants) based on this examination, and finally observe this property in
practice on both toy and realistic datasets.

Persistent homology: barcodes and Wasserstein distance. Carlsson (2019) presents a survey of
persistent homology and its applied uses. Specifically, there are multiple methods for vectorizing
persistence barcodes, including persistence landscapes, persistence images, symmetric polynomials
(Carlsson, 2019; Bubenik, 2015; Adcock et al., 2013). Additionally, Wasserstein distance defines a
metric on barcode space, as detailed by Carlsson (2019):

Wp(B1, B2) = inf
θ∈D(B1,B2)

(
∑
I∈B′

1

π(I, θ(I))p)
1
p

where p > 0 or p = ∞, B1 and B2 are two barcodes, D(B1, B2) denotes the set of all bijections
θ : B1 → B2 for which π(I, θ(I)) 6= 0 for only infinitely many I ∈ B′1, π refers to the penalty
function between barcodes. Thus, we use Wasserstein distance where p = 2, which underlies
Wasserstein barycenters, on our barcodes, over prior work using Euclidean distance and Euclidean
means (Khrulkov and Oseledets, 2018).

Geometry score implementation of persistent homology. The method for computing the relative
living times (RLTs) originates from the Geometry Score paper (Khulkov et al. 2018) and we include
the requested details on their method in the Appendix. Specifically, they use the Gudhi library
and compute persistence intervals in a dimension by constructing witness complexes. The witness
complex is computed for all filtration values at once to compute a persistence diagram, which
summarizes the homology for all ε. Topological features are usually not computationally tractable in
high dimensions, so we do not use high-dimensional features there — specifically, we are only using
k=1 dimension, per the Geometry Score implementation.

APPENDIX C: WASSERSTEIN MEAN RLTS VS. EUCLIDEAN MEAN RLTS

We show visual comparisons of our method (Wasserstein Relative Living Times) against the
prior method using the Euclidean mean to obtain the average distribution across Relative Living
Times (Khrulkov and Oseledets, 2018) in Figure 8.
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We empirically evaluate the use of Euclidean distance compared to W. distance and Euclidean mean
compared to W. mean on the real dSprites dataset in Table 2. The table also indicates that the
Wasserstein distance between Wasserstein barycenters is the most capable of differentiating similar
and dissimilar topologies.

RLT Distance
Metric

Wasserstein
RLTs

Wasserstein
Distance

Difference
Ratio

Geometry Score – – 1.60x
(W. RLT) X – 1.75x

(W. Distance) – X 2.14x
Ours X X 2.93x

Table 2: Wasserstein distance: empirical study and ablation. We evaluate the ratio between the
mean distance between homeomorphic RLTs and non-homeomorphic RLTs with an ablation of our
proposed use of W. distance and W. RLTs on real images in dSprites, compared to the Geometry
Score evaluation metric proposed in Khrulkov and Oseledets (2018). A higher ratio on known factors
of variation indicates a distance metric on RLTs that is better at identifying similar topologies and
distinguishing different topologies.

APPENDIX D: ADDITIONAL HOMEOMORPHIC AND NON-HOMEOMORPHIC
WASSERSTEIN RELATIVE LIVING TIMES

An extended figure, from Figure 4 in the main text is shown here in Figure 9, illustrating that likely
homeomorphic clusters of submanifolds conditioned on factors based on their W. RLTs look visually
similar.

Wasserstein Relative Living Times on Factors in CelebA

Figure 9: Additional Wasserstein RLTs from several more factors in the CelebA dataset. As before,
factors whose conditional submanifolds are homeomorphic to each other are shown on top, and
factors which are not homeomorphic to each other are shown below.

APPENDIX E: TOPOLOGICAL SIGNATURES OF DSPRITES

We show topological signatures for each factor from the real dSprites dataset in Figure 10. In the
supervised variant, we discover that similar topological signatures in the generated manifold match
the ones in the reals for corresponding latent interpretations that semantically adapt these factors.

APPENDIX F: TOPOLOGICAL SIMILARITY MATRIX OF dSprites

In Figure 11, we display the topological similarity matrix for the dSprites dataset, showing every
value of each factor. A visible diagonal can be seen for each factor. Observe that the first three
squares in the top left corner correspond to shape, the next six to scale, the next forty to orientation,
the next thirty-six to x-position, and finally the last thirty-six to y-position. Note that this grid uses
our method (W. distance) and is not spectrally coclustered.
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Shape Scale Orientation Position-x Position-y

Figure 10: Topological signatures of each dSprites factor. Each graph illustrates an overlay of
different topological signatures (W. RLTs), produced when holding a given value of that factor
constant while varying others. For example, in the first graph, the three curves indicate three shapes:
ellipse, heart, and square. Notably, these sets of topological signatures present distinguishing features
in aggregate.

Figure 11: Topological similarity matrix on dSprites (reals), across values of every factor.

APPENDIX G: HYPERPARAMETERS AND EXPERIMENT DETAILS

For all models, we used open-sourced PyTorch implementations and model checkpoints that imple-
ment prior work using default hyperparameters. We use pretrained model checkpoints and do not tune
them further. For VAE variants, these from the disentangling-vae library 1 to examine loss differences
with network parity. One exception, in which we use TensorFlow instead of PyTorch, is the InfoGAN
variants, where we could not reproduce results from any open-sourced PyTorch implementations, a
known issue for InfoGAN (Higgins et al., 2017; Kim and Mnih, 2018). For these, we trained to the
default number of epochs and hyperparameters based on the papers, because pretrained checkpoints
were not available on these tasks. Additionally, we use default hyperparameters and functions for
spectral co-clustering (scikit-learn, Pedregosa et al. (2011)) and Geometry Score implementations.
The Geometry Score implementation used a gamma of 1

128 and an n of 100. Following the suggestion
in Khrulkov and Oseledets (2018), we also used a pretrained VGG16 (Simonyan and Zisserman,
2015) with the last 3 layers removed as a feature extractor to embed high-dimensional images into
64 feature dimensions. All of these hyperparameters were constant across all datasets, models, and
experiments.

In addition, based on our preliminary experiments with MIG-sup, as indicated in the VAE results in
Li et al. (2020), MIG and MIG-sup are highly correlated under VAE architectures. Over ten runs of
VAE, β-VAE, and β-TCVAE, represented in Figure 12, we found that the two metrics were strongly
correlated (R2 = 0.952). We note that these results are meant to explore MIG-sup and demonstrate
preliminary results in a contained study, for which further investigation should be pursued. As the
metric is similar to MIG, it does not correspond particularly closely to either alternative supervised
metric in Figure 7.

1https://github.com/YannDubs/disentangling-vae
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Figure 12: Supplementary comparison of MIGsup evaluations across various three models.

APPENDIX H: COMPUTATIONAL COMPLEXITY

Let n be the number of RLTs per latent dimension, L0 be the number of RLT landmarks, N be the
number of images sampled per latent dimension, Dz be the number of latent dimensions, Ds be the
number of factors of variation, and B be the number of bins for the probability distribution histogram:

(a) Calculating the nDz RLTs per Dz latent dimensions is O(nDzDsNL0) (Khrulkov and
Oseledets, 2018).

(b) Calculating Dz W. barycenters is O(nDzB
2m), with Maxiter m from Dognin et al. (2019).

(c) Calculating W. distances between all Dz barycenters is O(D2
zB

2/ε2) by the Sinkhorn algo-
rithm with tolerance ε (T. Lin et al., 2019).

(d) Spectral coclustering can be computed in O(D2
z) (M. Vlachos et al., 2014), and we optimize

over the number of biclusters, of which there are at most Dz , so this is O(D3
z). Calculating

the bicluster scores has the same runtime.

Treating ε and m as constants, and noting B ≤ L0 ≤ N , then this is O(nDzDsNL0 +D2
zB

2 +D3
z).

Note that many of these subprocedures can be substantially parallelized.

APPENDIX I: ALGORITHM

The following are additional algorithms of this paper:

Algorithm 2: Procedure for producing Wasserstein RLTs on real images: Given a dataset D with
Ds factors of variation s and nd possible (or sampled) values per factor d ∈ Ds, returns a W.
RLT for each dimension. RLT is the RLT procedure from Khrulkov and Oseledets (2018).

for latent dimension d in 1 : Ds do
for k in 1 : nd do

Set x, s← sample({x, s ∈ D|sd = k})
Compute ez ← embedding(x) {e.g. using VGG16}
Compute rlt[d, k]← RLT (ez, γ = 1/128, L0 = 64, n = 100)

end for
Compute WB[d]←W.Barycenter(rlt[d, k])

end for
return WB
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Algorithm 3: Procedure for calculating µ: Given W. RLTsWB1,WB2, withD1, D2 dimensions
respectively, finds a similarity matrix M with the µ-maximizing c clusters and returns M, c, µ.

for d1 in 1 : D1 do
for d2 in 1 : D2 do

Compute M [d1, d2]←W.Distance(WB1[d1],WB2[d2])
end for

end for
for c in 1 : D2 do

Apply spectral coclustering to matrix M using c biclusters
Compute µ based on in-group and out-group similarities

end for
Select c which minimizes total variance if unsupervised else real c
return M , c, µ

APPENDIX J: ETHICAL CONSIDERATIONS

This research can aid in alleviating bias in deep generative models and more generally, unsupervised
learning. Disentanglement has been shown to help with potentially reducing bias or identifying
sources of bias in the underlying data by observing the factors of variation. Those who will benefit
from this research will be users of generative models, who wish to disentangle or evaluate the
disentanglement of particular models for downstream use. This may include artists or photo editors
who use generative models for image editing. For negative consequences, this research broadly
advances research in deep generative models, which have been shown to have societal consequences
when applied maliciously, e.g. mimicking a political figure in DeepFakes.
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