Self-supervised representation learning from random data projectors

Yi Sui, Tongzi Wu, Jesse C. Cresswell, Ga Wu, George Stein, Xiao Shi Huang, Xiaochen Zhang, Maksims Volkovs

Spotlight talk TRL@NeurIPS 2023 arXiv: <u>2310.07756</u> Code: <u>github.com/layer6ai-labs/LFR</u>

FACULTY OF COMPUTER SCIENCE

Self-supervised representation learning

Learn representations from unlabelled data

Self-supervised representation learning

Learn representations from unlabelled data

Self-supervised representation learning

Learn representations from unlabelled data

Effective augmentations are not always available

Mass	Velocity	Momentum		
2	8	16		

- A good representation should capture useful information that supports various downstream predictive tasks
- Use **random data projections** to simulate arbitrary downstream tasks

- A good representation should capture useful information that supports various downstream predictive tasks
- Use **random data projections** to simulate arbitrary downstream tasks

- A good representation should capture useful information that supports various downstream predictive tasks
- Use **random data projections** to simulate arbitrary downstream tasks

- A good representation should capture useful information that supports various downstream predictive tasks
- Use **random data projections** to simulate arbitrary downstream tasks

• Initialization | Randomly initialized neural networks

- Initialization | Randomly initialized neural networks
- Training | Projectors are fixed during training
 - LFR can train faster than standard methods like SimCLR with only *one* pass through the encoder and no CPU-intensive augmentations

- Initialization | Randomly initialized neural networks
- Training | Projectors are fixed during training
 - LFR can train faster than standard methods like SimCLR with only *one* pass through the encoder and no CPU-intensive augmentations
- **Diversity** | Diverse projections benefit the learned representations
 - Use determinantal point process to select diverse projectors from larger candidate pool

- Initialization | Randomly initialized neural networks
- Training | Projectors are fixed during training
 - LFR can train faster than standard methods like SimCLR with only *one* pass through the encoder and no CPU-intensive augmentations
- **Diversity** | Diverse projections benefit the learned representations
 - Use determinantal point process to select diverse projectors from larger candidate pool

Diverse projectors focus on different aspects

Similar projectors use redundant features

Linear evaluation performance on downstream tasks

		Time series			Tabular		
		HAR	Epilepsy	MIMIC-III	Income	Theorem	HEPMASS
	Log Reg	57.5 ± N/A	80.9 ± N/A	47.8 ± N/A	84.8 ± N/A	45.3 ± N/A	90.7 ± N/A
	Supervised	96.0 ± 0.6	98.3 ± 0.1	48.8 ± 0.0	81.5 ± 0.2	53.8 ± 0.5	91.5 ± 0.0
	Random Init	80.7 ± 2.3	89.1 ± 0.1	42.4 ± 1.1	83.1 ± 0.2	44.9 ± 0.8	84.3 ± 1.3
Domain- agnostic baselines	Autoencoder	77.2 ± 0.7	90.8 ± 1.3	44.9 ± 0.5	85.0 ± 0.1	50.0 ± 0.4	90.7 ± 0.0
	DIET	88.6 ± 1.3	96.8 ± 0.3	33.8 ± 5.2	82.2 ± 0.4	47.1 ± 0.5	-
	DACL	90.7 ± 0.4	97.5 ± 1.5	40.9 ± 0.6	79.8 ± 0.7	47.6 ± 1.0	88.7 ± 0.8
	SimSiam	65.1 ± 0.8	97.4 ± 0.0	41.0 ± 1.9	79.2 ± 1.9	40.9 ± 0.9	85.3 ± 3.1
Domain- specific baselines	SimCLR	87.8 ± 0.4	97.4 ± 0.2	44.1 ± 0.1	-	-	-
	SCARF	-	-	-	84.2 ± 0.1	48.5 ± 1.0	90.1 ± 0.1
	STab	-	-	-	84.2 ± 0.3	50.7 ± 0.7	83.6 ± 1.7
	TS-TCC	91.2 ± 0.8	97.6 ± 0.2	38.5 ± 1.3	-	-	-
L L	LFR (Ours)	93.1 ± 0.5	97.9 ± 0.2	46.6 ± 0.3	85.2 ± 0.1	51.6 ± 0.7	90.1 ± 0.2

Results for image modality also available, see preprint on arXiv: 2310.07756