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Self-supervised representation learning

Learn representations from unlabelled data
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Self-supervised representation learning

Learn representations from unlabelled data
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LFR (Learning From Randomness)

Domain agnostic representation learning without augmentations

o A good representation should capture useful information that supports
various downstream predictive tasks

o Use random data projections to simulate arbitrary downstream tasks
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LFR (Learning From Randomness)

Domain agnostic representation learning without augmentations

o A good representation should capture useful information that supports
various downstream predictive tasks

o Use random data projections to simulate arbitrary downstream tasks
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LFR (Learning From Randomness)

Domain agnostic representation learning without augmentations

o A good representation should capture useful information that supports
various downstream predictive tasks

o Use random data projections to simulate arbitrary downstream tasks
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Random data projectors

e Initialization | Randomly initialized neural networks
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encoder and no CPU-intensive augmentations
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Random data projectors

Initialization | Randomly initialized neural networks

Training | Projectors are fixed during training

o LFR can train faster than standard methods like SImCLR with only one pass through the
encoder and no CPU-intensive augmentations

Diversity | Diverse projections benefit the learned representations
o Use determinantal point process to select diverse projectors from larger candidate pool

Query datapoint  Five nearest neighbours after projection
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Diverse projectors focus on different aspects Similar projectors use redundant features
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Linear evaluation performance on downstream tasks

HAR

57.5 £ N/A
96.0+ 0.6
80.7+2.3
77.2+0.7
88.6+1.3
90.7+0.4
65.1+0.8
87.8+0.4

91.2+0.8
93.1+0.5

Time series

Epilepsy
80.9 £ N/A
98.3+0.1
89.1+0.1
90.8+1.3
96.8+0.3
97.5+15
97.4+0.0
97.4+0.2

97.6+0.2
97.9+0.2

Results for image modality also available, see preprint on arXiv: 2310.07756

MIMIC-III

47.8 + N/A
48.8 +0.0
424 +1.1
449 + 0.5
33.8+5.2
40.9+0.6
41.0+1.9
441 +0.1

38.5+1.3
46.6 £ 0.3

Income

84.8 £ N/A
81.5+0.2
83.1+0.2
85.0+0.1
82.2+04
79.8+0.7
79.2+1.9
84.2+0.1
84.2+0.3

85.2+0.1

Tabular
Theorem
45.3 £ N/A
53.8+0.5
449+ 0.8
50.0+0.4
47.1+0.5
47.6+1.0
40.9+0.9
485+ 1.0
50.7 £ 0.7

51.6+0.7

HEPMASS
90.7 £ N/A
91.5+0.0
84.3+1.3
90.7+0.0
88.7+0.8
85.3+3.1
90.1+0.1
83.6+1.7

90.1+0.2


https://arxiv.org/abs/2310.07756
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