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Self-supervised representation learning
Learn representations from unlabelled data
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Effective augmentations are not always available
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LFR (Learning From Randomness)
Domain agnostic representation learning without augmentations

○ A good representation should capture useful information that supports 
various downstream predictive tasks

○ Use random data projections to simulate arbitrary downstream tasks
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Five nearest neighbours after projectionQuery datapoint

Diverse projectors focus on different aspects Similar projectors use redundant features 
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Time series Tabular

HAR Epilepsy MIMIC-III Income Theorem HEPMASS

Log Reg 57.5 ± N/A 80.9 ± N/A 47.8 ± N/A 84.8 ± N/A 45.3 ± N/A 90.7 ± N/A

Supervised 96.0 ± 0.6 98.3 ± 0.1 48.8 ± 0.0 81.5 ± 0.2 53.8 ± 0.5 91.5 ± 0.0

Random Init 80.7 ± 2.3 89.1 ± 0.1 42.4 ± 1.1 83.1 ± 0.2 44.9 ± 0.8 84.3 ± 1.3

Autoencoder 77.2 ± 0.7 90.8 ± 1.3 44.9 ± 0.5 85.0 ± 0.1 50.0 ± 0.4 90.7 ± 0.0

DIET 88.6 ± 1.3 96.8 ± 0.3 33.8 ± 5.2 82.2 ± 0.4 47.1 ± 0.5 -

DACL 90.7 ± 0.4 97.5 ± 1.5 40.9 ± 0.6 79.8 ± 0.7 47.6 ± 1.0 88.7 ± 0.8

SimSiam 65.1 ± 0.8 97.4 ± 0.0 41.0 ± 1.9 79.2 ± 1.9 40.9 ± 0.9 85.3 ± 3.1

SimCLR 87.8 ± 0.4 97.4 ± 0.2 44.1 ± 0.1 - - -

SCARF - - - 84.2 ± 0.1 48.5 ± 1.0 90.1 ± 0.1

STab - - - 84.2 ± 0.3 50.7 ± 0.7 83.6 ± 1.7

TS-TCC 91.2 ± 0.8 97.6 ± 0.2 38.5 ± 1.3 - - -

LFR (Ours) 93.1 ± 0.5 97.9 ± 0.2 46.6 ± 0.3 85.2 ± 0.1 51.6 ± 0.7 90.1 ± 0.2

Results for image modality also available, see preprint on arXiv: 2310.07756
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