
A PRELIMINARIES

Markov Decision Process (MDP). A standard MDP can be represented as a tuple:
(S,A,P,R, γ, T), where S denotes the state set, A denotes an action set, P is the transition func-
tion: S × A × S → [0, 1] and R is the reward function: S × A → R. γ ∈ [0, 1) is a discount
factor and T is the decision horizon. The target of the agent is to optimize its policy to maximize
the expected discounted cumulative reward.

Frameskip. Frame-skipping may be viewed as an instance of (partial) open-loop control, under
which a predetermined sequence of (possibly different) actions is executed without heed to inter-
mediate states. Aiming to minimize sensing, Kalyanakrishnan et al. (2021) proposes a framework
for incorporating variable-length open-loop action sequences in regular (closed-loop) control. The
primary challenge in general open-loop control is that the number of action sequences of some given
length d is exponential in d. Consequently, the main focus in the area is on policies to prune cor-
responding data structures (Braylan et al., 2015). Since action repetition restricts itself to a set of
actions with size linear in d, it allows for d itself to be set much higher in practice. With frame-
skipping, the agent is only allowed to sense every d state: that is, if the agent has sensed a state st at
time step t >= 0, it is oblivious to statesst+1, st+2, ..., st+d−1, and next only observes st+d.

Variational Auto-encoder. The variational auto-encoder (VAE) is a directed graphical model with
certain types of latent variables, such as Gaussian latent variables. A generative process of the VAE
is as follows: a set of latent variable z is generated from the prior distribution pθ(z) and the data x is
generated by the generative distribution pθ(x|z) conditioned on z : z ∼ pθ(z), x ∼ pθ(x|z). In gen-
eral, parameter estimation of directed graphical models is often challenging due to intractable poste-
rior inference. However, the parameters of the VAE can be estimated efficiently in the stochastic gra-
dient variational Bayes (SGVB) framework, where the variational lower bound of the log-likelihood
is used as a surrogate objective function. In this framework, a proposal distribution qθ(x|z), which
is also known as a “recognition” model, is introduced to approximate the true posterior pθ(x|z). The
multilayer perceptrons (MLPs) are used to model the recognition and the generation models. Assum-
ing Gaussian latent variables, the first term of Equation (2) can be marginalized, while the second
term is not. Instead, the second term can be approximated by drawing samples z(l)(l = 1, ..., L)
by the recognition distribution qθ(x|z), and the empirical objective of the VAE with Gaussian latent
variables is written as follows:

LV AE(ϕ, ψ) =
1

L

∑
θ

(x|z(l))−KL
(
qϕ(z|x)||N(0, I)

)
(1)

B EXPERIMENTAL DETAILS

B.1 NETWORK STRUCTURE

Layer Actor Network Critic Network

Fully Connected (state dim, 256) (statedim + η dim + latent space dim, 128)
Activation ReLU ReLU

Fully Connected (256, 128) (256, 128)
Activation ReLU ReLU

Fully Connected (128,latent space dim) and η dim (128, 1)
Activation Tanh None

Table 1: Network Structures for DRL Methods

Our codes are implemented with Python 3.7.9 and Torch 1.7.1. All experiments were run on a single
NVIDIA GeForce GTX 2080Ti GPU. Each single training trial ranges from 4 hours to 17 hours,
depending on the algorithms and environments. For more details of our code refer to the HyAR.zip
in the supplementary results. And will open source code in the near future.

Our codes are implemented with Python 3.7.9 and Torch 1.7.1. All experiments were run on a single
NVIDIA GeForce GTX 2080Ti GPU. Each single training trial ranges from 4 hours to 17 hours,
depending on the algorithms and environments. For more details of our code refer to the HyAR.zip
in the supplementary results. And will open source code in the near future.

1

Our TD3 is implemented with reference to github.com/sfujim/TD3 (TD3 source-code).
DDPG and PPO are implemented with reference to https://github.com/sweetice/
Deep-reinforcement-learning-with-pytorch. For a fair comparison, all the baseline
methods have the same network structure (except for the specific components of each algorithm)
as our MARS-TD3 implementation. As shown in Tab.1, we use a two-layer feed-forward neural

Model Component layer dimension

Conditional Encoder Network

Fully Connected (encoding) (Rx, 256)
Fully Connected (condition) (stae dim + η dim, 256)

Element-wise Product ReLU (encoding), ReLU(condition)
Fully Connected (256, 256)

Activation ReLU
Fully Connected (mean) (256, latent space dim)

Activation None
Fully Connected (log std) (256, latent space dim)

Activation None

Conditional Decoder, Prediction Network

Fully Connected (latent) (latent space dim, 256)
Fully Connected (condition) (stae dim +η dim, 256)

Element-wise Product ReLU (encoding), ReLU(condition)
Fully Connected (256, 256)

Activation ReLU
Fully Connected (η) (256, action dynamic transition)

Activation None
Fully Connected (reconstruction) (256, multi-step action dim)

Activation None
Fully Connected (256, 256)

Activation ReLU
Fully Connected (prediction) (256, state dim)

Activation None

Table 2: Network structures for the Multi-step action representation (MARS).

network of 256 and 256 hidden units with ReLU activation (except for the output layer) for the actor
network for all algorithms. For DDPG the critic denotes the Q-network. For PPO, the critic denotes
the V-network. All algorithms (TD3, DDPG, PPO) output two heads at the last layer of the actor
network, one for latent action and another for dynamic transition potential.

The structure of MARS is shown in Tab.2. We use element-wise product operation (Mahmood et al.,
2018) and cascaded head structure (Fuchs et al., 2021) to our model.

B.2 HYPERPARAMETER

For all experiments, we use the raw state and reward from the environment, and no normalization or
scaling is used. No regularization is used for the actor and the critic in all algorithms. An exploration
noise sampled from N(0, 0.1) (Dong et al., 2009) is added to all baseline methods when selecting an
action. The discounted factor is 0.99 and we use Adam Optimizer (Li et al., 2016) for all algorithms.
Tab.3 shows the common hyperparameters of algorithms used in all our experiments.

Hyperparameter TD3-frameskip TD3-advance MARS-PPO MARS-TD3 MARS-DDPG

Actor Learning Rate 1e−4 1e−4 1e−4 1e−4 1e−4 1e−4

Critic Learning Rate 1e−3 1e−3 1e−3 3e−4 3e−4 1e−3

Representation Model Learning Rate None None None 1e−4 5e−3 5e−3

Discount Factor 0.99 0.99 0.99 0.99 0.99 0.99
Batch Size 128 128 128 128 128 128
Buffer Size 1e5 1e5 1e5 1e5 1e5 1e5

Table 3: A comparison of common hyperparameter choices of algorithms. We use ‘None’ to denote
the ‘not applicable’ situation.

B.3 ADDITIONAL IMPLEMENTATION DETAILS

For PPO, the actor network and the critic network are updated every 2 and 10 episode respectively
for all environments. The clip range of the PPO algorithm is set to 0.2 and we use GAE (Sutton

2

github.com/sfujim/TD3
https://github.com/sweetice/Deep-reinforcement-learning-with-pytorch
https://github.com/sweetice/Deep-reinforcement-learning-with-pytorch

& Barto, 2018) for a stable policy gradient. For DDPG, the actor network and the critic network is
updated at every 1 environment step. For TD3, the critic network is updated every 1 environment
step and the actor network is updated every 2 environment steps.

The default latent action dim is 8, We set the KL weight in representation loss LMARS as 0.5.
Environment dynamic prediction loss weight β is 5 (default).

C ADDITIONAL EXPERIMENT

C.1 GENERALIZATION OF MARS

We test MARS with popular RL methods on three tasks: Hopper, Walker, and hardMaze. To make
the experiment fair, we used the same parameters for all methods and implemented them based on
public code. We use each RL algorithm to train on three tasks under the ideal setting and compare
them with their corresponding improvement methods. To show the optimal score after the algorithm
convergence, we train all the algorithm’s 2000000 time steps. The results in Tab.4 show that all
methods can learn effective policies with the help of MARS and perform similarly to their ideal set-
tings. The differences in scores are mainly due to the variation in performance of the RL algorithms.
In summary, MARS can be combined with different methods to provide a reliable action space for
solving FIMDP as normal MDP with RL.

Benchmarks MARS-PPO MARS-DDPG MARS-TD3

Maze hard 256 | 0.7 ↑ 243 | 2.5 ↑ 311 | 16.3 ↑
Hopper 2811.4 | 73.5 ↓ 1815.6 | 184.3 ↑ 3384 | 53.1 ↑
Walker 3831.2 | 285.1 ↓ 1032.7 | 201.9 ↓ 4821.6 | 427.6 ↑

Table 4: MARS generalization verification. All tasks are set to constant FIMDP, interval is 8. The
format of the data in the table is: MARS-RL score | the score gap. ↓ denotes score of MARS lower
than the ideal setting baseline. ↑ denotes score of MARS higher than the ideal setting baseline. All
scores are averaged over five runs.

C.2 DETAILS OF ABLATION STUDY

We conducted two experiments to show how well the two mechanisms of MARS work together.
Although the results of randomized FIMDP and constant FIMDP are slightly different, the same
conclusion can be derived: The green curves in Figure 1 demonstrate that the representation model
with increased action transition scale is much better than the original VAE. This means that dynamic
transition potential can create an action hidden space by explicitly modeling the dependence between
multi-step actions. The blue curves also show that VAE with state dynamic prediction is better than
the original VAE because it can represent action sequences that have similar environmental effects at
close locations. Finally, the red curves show that the two mechanisms work well together in MARS,
and combining them improves representation ability.

C.3 VALIDITY VERIFICATION OF MULTIPLE INTERACTION INTERVALS

To further demonstrate the effectiveness of MARS in diverse fragmentary interaction scenarios. For
constant fragmentary interaction control tasks, we uniformly set the forbidden interaction duration
and conducted four experiments on Hopper. The results in Figure 2 show that MARS can solve most
tasks effectively and still guarantee good scores at long intervals, but the effectiveness of MARS
decreases significantly when the interval is too long (which is not common in real-world scenarios).
We believe that this is because VAE is unable to effectively characterize excessively long sequences,
leading to the failure of multi-step action space modeling.

In addition, to observe the sensitivity of MARS to interaction intervals on random FIMDP tasks, we
uniformly set the forbidden interaction duration and conducted four experiments on Hopper. The
results in Figure 3 show that in random FIMDP scenarios, MARS performs well in both short and
medium-interval scenarios. However, convergence changes slowly in the very long interval scenario,

3

（a) Constant FIMDP （b) Random FIMDP

MARS_action_transition_scale

Vanilla_VAE
MARS_state_dynamic_prediction
MARS_with_all_module

MARS_action_transition_scale

Vanilla_VAE
MARS_state_dynamic_prediction
MARS_with_all_module

Figure 1: Details of ablation study. The curve and shade denote the mean and a standard deviation
over 5 runs.

Interaction interval : 4 time step Interaction interval : 10 time step

Interaction interval : 16 time step Interaction interval : 22 time step

Figure 2: MARS’s experimental results under four different settings of forbidden interaction dura-
tion. The curve and shade denote the mean and a standard deviation over 5 runs.

and the score is only half that of the medium interval task. Because MARS’s representational ca-
pabilities are not perfect for modeling long action sequences for extremely long-spaced tasks (even
if this setting rarely occurs in real-world scenarios). Therefore, in the future, we hope to find more
suitable representation models to overcome this problem.

C.4 THE INFLUENCE OF LATENT ACTION SPACE DIMENSION ON ALGORITHM EFFECT

The representation space dimension of VAE is an important hyperparameter. If the latent space
dimension is too low, a large amount of original data information will be lost, resulting in invalid
representation space. On the contrary, when the latent space dimension is too large, the calculation

4

Interaction interval : 4 time step Interaction interval : 10 time step

Interaction interval : 16 time step Interaction interval : 22 time step

Figure 3: MARS’s experimental results under four different settings of forbidden interaction dura-
tion. The curve and shade denote the mean and a standard deviation over 5 runs.

amount of the model will be increased. To verify the sensitivity of MARS to latent space dimensions,
we test it on two tasks with different original action dimensions.

We set up four sets of latent space dimensions for constant FIMDP Hopper (interaction interval time
step: 8, original action dimension: 3, so the action sequence dimension to be modeled is 24). The
learning curve in Figure 4 shows that for raw data of such high dimensions, when the latent space
dimension is set too low, the latent space information will be lost, resulting in the convergence failure
of reinforcement learning policies. On the contrary, too high a latent space dimension increases the
complexity of reinforcement learning policy exploration. In addition, we set up four comparison
experiments on the 2dmaze task with a lower dimension of the original action sequence (interaction
interval time step: 4, original action dimension: 2, so the action sequence dimension to be modeled
is 8). The experimental results in Figure 5 show that the suboptimal policy can be learned when the
latent space dimension is low, because the original data dimension is low. So the low-dimensional
latent space loses less information. The score increases as the latent space dimension increases.
However, when the latent space dimension is too high, the score will drop significantly, which is
because of the exploration difficulties brought by high-dimensional latent space.

C.5 THE INFLUENCE OF ENVIRONMENT STEPS OF WARMUP STAGE

In this section, we conduct some additional experimental results for a further study of MARS from
different perspectives: We provide the exact number of samples used in the warm-up stage (i.e.,
stage 1 in Algorithm ?? in each environment in Tab.5. The number of warm-up environment steps
is about 5% ∼ 10% of the total environment steps in our original experiments. Moreover, we also
conducted some experiments to further reduce the number of samples used in the warm-up stage (at
most 80% off). See the colored results in Tab.5. MARS can achieve comparable performance with
< 3% samples of the total environment steps.

Conclusion: The number of warm-up environment steps is about 5% ∼ 10% of the total environment
steps in our original experiments. The number of warmup environment steps can be further reduced

5

Latent_dim : 1 Latent_dim : 8

Latent_dim : 16

Figure 4: TD3 learning curves of three different latent space dimensions set the corresponding. The
curve and shade denote the mean and a standard deviation over 5 runs.

by at most 80% off (thus leading to < 3% of the total environment steps) while the comparable
performance of our algorithm remains.

Environment Warm-up steps (original) Warm-up steps (new) Total Env. Steps

Hopper 400000(0.08|3219.1) 100000(0.02|3086.4) 5000000
Ant 400000(0.08|4305.7) 100000(0.02|4025.6) 5000000

Walker 400000(0.08|4961.3) 100000(0.02|4792.6) 5000000
HalfCheetah 400000(0.08|6593.2) 100000(0.02|6071.2) 5000000

2dmaze-medium 100000(0.083|127.8) 30000(0.025|118.5) 1200000
2dmaze-hard 100000(0.083|327.6) 35000(0.0292|296.1) 1200000

Table 5: The exact number of samples used in warm-up stage training in different environments.
The column of ‘original’ denotes what is done in our experiments; the column of ‘new’ denotes
additional experiments we conduct with fewer warm-up samples (and proportionally fewer warm-
up training). For each entry x(y|z), x is the number of samples (environment steps), y denotes the
percentage number of warm−up environment steps

number of total environment steps during the training process , and z denotes the
corresponding performance of MARS-TD3.

C.6 MARS-DDPG PSEUDOCODE

REFERENCES

Alexander Braylan, Mark Hollenbeck, Elliot Meyerson, and Risto Miikkulainen. Frame skip is
a powerful parameter for learning to play atari. In AAAI-15 Workshop on Learning for Gen-

6

Latent_dim : 2 Latent_dim : 8

Latent_dim : 16

Figure 5: TD3 learning curves of three different latent space dimensions set the corresponding. The
curve and shade denote the mean and a standard deviation over 5 runs.

Algorithm 1 MARS-DDPG
Initialize actor πτ and critic networks Qθ
Initialize conditional VAE qϕ, pψ and replay buffer D

Stage 1
while not reaching warmup training times do

Fill D with data generated by random policy or offline datasets
Update qϕ, pψ using samples in D

end while
Stage 2

while t < policy training time do
az, aη = πτ (with Gaussian noise)
u = pψ(az, aη, s)
Execute u, observe r and new state s′
Fill D with (s, st:t+c, u, az, aη, r, s

′)
Sample from D, update Qθ and piτ
if reach representation training time thenUpdate qϕ, pψusing samples in D

eral Competency in Video Games, 2015. URL http://nn.cs.utexas.edu/?braylan:
aaai15ws.

Xihua Dong, Xiaochen Li, and Dapeng Wu. Analysis of packet error probability in delay con-
strained communication over fading channels. In 2009 6th IEEE Consumer Communications and
Networking Conference, pp. 1–5. IEEE, 2009.

Florian Fuchs, Yunlong Song, Elia Kaufmann, Davide Scaramuzza, and Peter Dürr. Super-human
performance in gran turismo sport using deep reinforcement learning. IEEE Robotics and Au-
tomation Letters, 6(3):4257–4264, 2021.

7

http://nn.cs.utexas.edu/?braylan:aaai15ws
http://nn.cs.utexas.edu/?braylan:aaai15ws

Shivaram Kalyanakrishnan, Siddharth Aravindan, Vishwajeet Bagdawat, Varun Bhatt, Harshith
Goka, Archit Gupta, Kalpesh Krishna, and Vihari Piratla. An analysis of frame-skipping in rein-
forcement learning. arXiv preprint arXiv:2102.03718, 2021.

Yuliang Li, Rui Miao, Changhoon Kim, and Minlan Yu. Lossradar: Fast detection of lost packets
in data center networks. In Proceedings of the 12th International on Conference on Emerging
Networking EXperiments and Technologies, CoNEXT ’16, pp. 481–495, New York, NY, USA,
2016. Association for Computing Machinery. ISBN 9781450342926. doi: 10.1145/2999572.
2999609. URL https://doi.org/10.1145/2999572.2999609.

A Rupam Mahmood, Dmytro Korenkevych, Brent J Komer, and James Bergstra. Setting up a
reinforcement learning task with a real-world robot. In 2018 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pp. 4635–4640. IEEE, 2018.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. A Bradford
Book, Cambridge, MA, USA, 2018. ISBN 0262039249.

8

https://doi.org/10.1145/2999572.2999609

	Preliminaries
	Experimental Details
	NETWORK STRUCTURE
	Hyperparameter
	Additional Implementation Details

	Additional experiment
	Generalization of MARS
	Details of Ablation study
	Validity verification of multiple interaction intervals
	The influence of Latent action space dimension on algorithm effect
	The influence of environment steps of warmup stage
	MARS-DDPG pseudocode

