
A Experiment Details for Reproducibility

Dataset. For experiments on hate speech detection, we download the Gab Hate Corpus (GHC) from
[20]2. Stormfront and HatEval datasets are downloaded from [2]3 and [1]4. For sentiment analysis,
AmazonMusic is released by [16]5 and SST-2 dataset can be downloaded from [40]6.

For Gab Hate Corpus (GHC) dataset, we randomly re-split the dataset into train/dev/test sets by the
ratio 8:1:1. For all the other datasets, we follow their original train/dev/test splits. Target training set
is used as the “target domain data” after removing the ground-truth labels. Target dev set is used for
early stopping when updating the target models and also for tuning model hyper-parameters. Target
test set is used for evaluating “target F1” metric. We fine-tune a pre-trained language model (e.g.,
BERT-Base) over the source training set to generate the source model. Source dev set is used for
early stopping when training the source model. Source test set is used for evaluating the “source F1”
metric for the updated models. Statistics of each dataset pair are included in Table 9.

Table 9: Statistics for the dataset pairs.
Dataset Pair Source train/dev/test Target train/dev/test

HatEval→ GHC 9000 / 1000 / 3000 22132 / 2766 / 2767
Stormfront→ GHC 7896 / 978 / 1998 22132 / 2766 / 2767
AmazonMusic→ SST-2 3000 / 300 / 8302 67349 / 872 / 1821

Implementation and Infrastructure. All our experiments are implemented with Transformers
library [50]7. All experiments are done with one single GPU. We use NVIDIA Quadro RTX 8000
for large-sized language models (i.e., BERT-Large) and NVIDIA GeForce RTX 2080 Ti for other
models (e.g., BERT-Base, RoBERTa-Base, Bi-LSTM+Attention).

Hyperparameters. We use Adam [23] optimizer throughout all the experiments. Batch size is
set to be 32 in all experiments for all the methods. We conduct grid search on learning rate and
regularization strength for each experiment using the target dev set. For REMOTE (R) and all the
baselines, learning rate is selected from the range {5e-6, 8e-6, 1e-5, 2e-5, 3e-5, 4e-5, 5e-5, 6e-5,
7e-5}. Regularization strength (when applicable) is selected from {0.01, 0.02, 0.03, 0.04, 0.05}. For
REMOTE (R+ C), learning rate is selected from the range {1e-5, 2e-5, 3e-5, 4e-5}. Regularization
strength is selected from {0.003, 0.005, 0.007, 0.01, 0.02, 0.03}.

Early Stopping. We evaluate the model performance over target dev set every 400 steps for
REMOTE (R+ C) and every 100 steps for REMOTE (R) and all the baselines. The training will be
early-stopped when the target dev F1 stops improving for 10 iterations, and the learning rate is halved
when the dev F1 stops improving for 5 iterations.

Multiple Runs. For every experiment setting, we select the best configuration of hyper-parameters
based on the target dev set F1 using one random seed. Then we train the model using this hyper-
parameter configuration with two additional random seeds and report the mean and standard deviation.

Label Balancing for Hate Speech Tasks. For hate speech tasks, due to the unbalanced ratio of
negative and positive examples (approximately 10:1), we re-weight the training loss so that positive
examples are weighted 10 times as negative examples for all the models.

B Details on Explanation Parsing

Lexicon Details. To help the parser understand the collected natural language explanations, we
define a lexicon str2predicate that maps 301 raw words/phrases into 83 predicates. In addition,

2https://osf.io/nqt6h/
3https://github.com/Vicomtech/hate-speech-dataset
4https://competitions.codalab.org/competitions/19935
5https://sites.google.com/a/eng.ucsd.edu/ruining-he/
6https://dl.fbaipublicfiles.com/glue/data/SST-2.zip
7https://github.com/huggingface/transformers
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we define a lexicon predicate2func that maps the predicates to 25 functions. For example, when
human annotator write the word political, politician, religious or nationality in their explanation,
the word will first be mapped to the predicate $NorpNER. NORP is the shorthand for “nationalities
or religious or political groups”. Then $NorpNER will be processed and combined with other
predicates in the same sentence (using CCG Parser), and the final parsing result may map it to the
function @NER(NORP), which will identify whether a given word is indeed a NORP named entity.
We have included these lexicons in our code.

Parser Evaluation and Modification. As a pre-validation of the parsed rule, we first execute it on
its reference instance xref and discard the rule if the execution outcome of the rule head B over xref

is False (i.e., the parsed rule cannot match the reference instance xref where the explanation was
solicited from). This step ensures the quality of explanations and parsed rules. After a first run of
parsing of the explanations, we further evaluate the quality of the parsed rules to ensure the parser is
working properly. If the parsed rules are not equivalent to their original explanations, we modify the
parser’s lexicon to adjust the parsing results. For example, if the annotator wrote “X is religion”,
while “religion” is not in the pre-defined str2predicate lexicon, the sentence will be ignored by
CCG parser at first. To correct the mistake, we can add “religion” to the lexicon. About 85% of
explanations can be parsed correctly in the first time (as we manually inspected). After updating the
lexicon, the parsing will reach 100% accuracy on all the collected explanations.

Parser Evaluation on Out-Of-Domain Data. To understand how well our parser can generalize
to out-of-domain data, we further collected 116 explanations following our annotation guideline,
on held-out data from Stormfront→ GHC and HatEval→ GHC. Note that this set of instances are
disjoint from the annotation sets used in our reported experiments. We present the parsing results
to human annotators for verification. This evaluation shows that the accuracy of semantic parser
can reach 92.2% on the held-out data (without any update to the parser). Therefore, we believe
our semantic parser is reliable when applied to out-of-domain data. We also admit that the parse
may encounter unseen vocabulary and typos when human annotators are not strictly following the
annotation guideline.

C Results on Refining BERT-Base and Bi-LSTM+Attention

Table 10: Results on three pairs of datasets with BERT-Base and BiLSTM+Attention. We report F1 scores
on source domain and target domain, and FPRD on IPTTS as fairness metric for hate speech task. Best results
are bold. The annotation time cost of each dataset pair is provided. We use SOC for feature attribution.
Dataset HatEval → GHC (80 mins) Stormfront → GHC (94 mins) AmazonMusic → SST-2 (15 mins)

Metrics Source F1 (↑) Target F1 (↑) FPRD (↓) Source F1(↑) Target F1 (↑) FPRD (↓) Source F1 (↑) Target F1 (↑)

BERT-Base

Source model 64.2±0.3 29.5±2.5 115.6 57.2±0.7 42.1±1.5 16.0 91.4±0.4 83.5±2.5
Fine-tune (Csample) 58.0±5.1 41.0±0.1 302.6 56.4±0.4 45.6±0.1 20.3 88.9±0.6 86.7±1.0
L2-reg (Csample) 59.8±4.2 41.3±0.7 278.7 55.8±0.9 46.8±1.2 26.8 89.0±0.6 86.8±0.6
Distillation (Csample) 60.8±5.1 42.4±1.6 315.4 54.4±2.0 46.6±1.4 112.6 87.4±0.9 86.7±1.0
REMOTE (Rs) 63.5±0.7 39.9±4.4 56.2 49.9±3.5 45.7±1.4 12.6 91.1±0.0 85.3±0.1
REMOTE (Rs + Ch) 63.2±0.6 46.6±1.1 49.0 47.4±1.9 51.1±1.6 34.6 91.1±0.2 87.3±0.1
Fine-tune (Call) 60.0±2.3 51.5±0.9 333.3 46.9±2.4 52.9±1.0 115.0 90.4±0.1 92.9±0.4

BiLSTM + Attention

Source model 60.5±0.7 20.2±1.2 115.2 44.7±2.2 26.3±4.2 157.2 81.1±1.5 54.0±5.5
Fine-tune (Csample) 60.8±0.2 23.7±0.8 71.9 42.9±2.7 29.1±2.3 201.8 78.9±0.4 61.0±1.3
L2-reg (Csample) 60.4±0.3 24.2±0.1 21.3 44.3±0.3 30.1±0.9 157.3 78.7±0.4 62.6±1.1
Distillation (Csample) 60.1±0.5 24.3±0.8 16.4 45.2±0.9 29.5±0.9 151.3 78.6±0.6 61.6±1.3
REMOTE (Rsoft) 61.1±0.1 27.0±0.4 69.3 36.8±5.1 31.5±0.9 18.6 78.5±0.7 64.9±1.5
REMOTE (Rsoft + Cstrict) 58.7±1.5 31.3±2.5 7.4 42.2±2.2 33.5±0.4 65.2 76.9±0.5 66.1±0.6
Fine-tune (Call) 58.5±1.7 38.5±1.7 124.2 42.5±2.0 44.5±0.2 323.3 79.2±0.2 81.7±1.1

As additional results for performance comparison, we conduct experiments on BERT-Base and
Bi-LSTM+Attention under the same setting as in Table 4 and summarize the results in Table 10.
We observe similar patterns as in Table 4. The results show that REMOTE can cope with different
language models and obtain consistent improvement over the baselines – it constantly yields the best
target performance and fairness among all compared methods, while preserves source performance
better than fine-tune (Call) in most cases.
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Table 11: Results with REMOTE (Rsoft + Ssoft). By using Csoft as noisy labels rather than Cstrict, the
target domain F1 scores are lower in most cases.

Dataset HatEval → GHC (80 mins) Stormfront → GHC (94 mins) AmazonMusic → SST-2 (15 mins)

Metrics Source F1 (↑) Target F1 (↑) FPRD (↓) Source F1(↑) Target F1 (↑) FPRD (↓) Source F1 (↑) Target F1 (↑)

BERT-Large

Source model 63.7±0.5 31.4±1.4 124.3 59.5±1.1 41.9±1.4 17.1 92.9±0.2 87.7±1.0
REMOTE (Rsoft + Cstrict) 62.0±0.4 46.1±1.0 15.3 49.0±3.4 52.2±0.4 10.0 92.7±0.2 90.3±0.2
REMOTE (Rsoft + Csoft) 61.8±0.2 47.4±0.9 11.2 50.7±1.9 51.6±2.7 17.8 92.7±0.0 89.5±0.1

Fine-tune (Call) 51.3±5.6 52.5±0.4 98.0 46.0±3.8 53.8±1.6 142.3 92.5±0.2 94.4±0.4

RoBERTa-Base

Source model 62.7±0.9 30.9±1.9 61.6 57.4±1.2 39.6±1.2 43.8 92.4±0.4 87.5±0.9
REMOTE (Rsoft + Cstrict) 57.5±0.9 44.7±1.0 97.8 57.6±1.9 50.1±1.7 77.5 91.4±0.2 89.5±0.5
REMOTE (Rsoft + Csoft) 59.2±1.4 44.0±1.0 8.6 46.0±2.6 49.6±0.8 19.2 91.2±0.3 89.1±0.9

Fine-tune (Call) 51.4±3.2 50.6±0.4 263.2 52.2±4.9 50.5±1.5 294.0 91.2±0.0 95.1±0.4
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D Additional Experiments for Performance Analysis

Ablation Study on Refinement with Strict/Soft-Matched Labels. Table 11 compares the model
performance of REMOTE using Rsoft + Cstrict and Rsoft + Csoft. It shows that refinement with
strict-matched labels (Cstrict) often outperform the model refined with soft-matched labels (Csoft).
It shows that model refinement is sensitive to the precision of noisy labels so we decide to use
strict-matched labels in our main experiments.

Ablation Study on Regularization with Strict/Soft-Matched Instances. Figure 6 compares the
target F1 performance of REMOTE usingRstrict andRsoft as regularization advice without noisy
labels. For the three dataset pairs, Rsoft always yields better performance than Rstrict. With
soft-matching, regularization advice are generalized to more instances and thus take more effect.
Therefore, we present results on REMOTE the regularization term fromRsoft in the main experiments.

Performance changes by Varying the Number of Explanations. In addition to the setting reported
in Fig. 4, we also conduct experiment on Stormfront→ GHC by varying the number of explanations.
In Fig. 7, result shows that model performance continuously grows when more explanations are
introduced, which is the same pattern as in Fig. 4.
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Figure 9: Sensitivity of reg. strength on
Amazon to SST-2.

Sensitivity Study on Negative Samples. For hate speech
detection experiments, we randomly sample (unlabeled)
examples from the training set and treat them as “negative”
(or “non-hate”) examples to balance the label ratio. We
control the number of sampled instances in the Storm-
front→ GHC setting (as 500, 1600, and 3000 instances),
and show the results in Fig. 8. For each number, we ran-
domly sample the instances for 3 times. We observed
that performance is not very sensitive to the number of
negative samples included. Our main results are based
on sampling 1,600 negative instances, which has slightly
better performance among all.

Sensitivity Study on Reg. Strength. We report results on sensitivity of model refinement to
regularization strength on dataset pair Amazon→ SST-2 in Figure 9. We tune reg. strength from
0.0003 to 0.03 in the experiments of REMOTE (Rsoft + Cstrict). We conclude that REMOTE is not
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sensitive to the selection of regularization strength, and the refined model constantly perform better
than source model.

Table 12: Comparison with unsupervised model adaptation
method. We compare REMOTE (Rsoft + Cstrict) (based on IG
and SOC) with a representative UMA method SHOT[29].

Dataset HatEval → GHC Stormfront → GHC Amazon → SST-2

Metrics Target F1 (↑) Target F1 (↑) Target F1 (↑)

Source model 29.5±2.5 42.1±1.5 83.5±2.5
SHOT [29] 25.4±1.6 28.8±1.9 61.0±16.1
REMOTE w. IG 47.2±1.3 49.5±1.1 87.0±0.7
REMOTE w. SOC 46.6±1.1 51.1±1.6 87.3±0.1
fine-tune (Call) 51.5±0.9 52.9±1.0 92.9±0.4

Comparison with Unsupervised
Model Adaptation Method. Recent
works have studied how to adapt a
model trained with source dataset to
a target domain only with unlabeled
target instances and no source data.
This setting is known as unsupervised
model adaptation (UMA). We apply
a popular UMA method SHOT [29]
on our task and report the results in
Table 12. We found that the SHOT harms rather than improves model performance in the target
domain. SHOT was originally proposed for computer vision tasks such as object detection and digit
recognition. We conjecture that SHOT, an approach proposed for computer vision tasks, may not
be directly applicable to a different modality (i.e., natural language). We defer thorough study on
extending UMA method to our problem as future work.

Table 13: Ablation Study on soft version of INTER
module. For StormFront → GHC, we report results on
REMOTEn soft version and replace the softened INTER
module with strict version on BERT-Base.

Dataset Stormfront→GHC

Metrics Source F1 (↑) Target F1 (↑) FPRD (↓)

Source model 57.2±0.7 42.1±1.5 16.0
REMOTEall soft but INTER) 51.0±0.9 44.8±0.4 5.2
REMOTEall soft) 49.9±3.5 45.7±1.4 12.6

Ablation Study on Soft Version of Interac-
tion Module. To understand the effect of
“softening” change to the Interaction mod-
ule , we conduct an ablation study on Storm-
front → GHC using BERT-base, as shown in
table 13. Specifically, we set all other mod-
ules in REMOTE as their soft versions but only
the Interaction module as its strict version, and
compare it with “REMOTE (all soft)” to show
the effectiveness of softening the Interaction. Results show that softening the interaction module
is an important operation in generalizing explanations to a broader set of unlabeled instances (as
discussed in Sec 3.3). When we replace the softened version of Interaction with its strict counterpart,
the performance significantly drops.

E Details about Individuality modules

In this section we introduce details about how to conduct strict matching via Individuality module.
Given the reference sentence xref and a word qref in it, the module finds a word qk in the unlabeled
instance xk, where qk has the same semantic type or plays the same grammatical role with qref .
The model determines whether qref and qk have the same semantic type according to their named
entity types, their sentiment types, and whether they are both identity phrases or hateful words. For
sentiment labels, we use the subjectivity lexicon [49] to decide if a word is positive, negative or
neutral. For identity phrases, we take the list in [19] which contains group identifiers such as “women”
or “black”. In addition, because we aim at hate speech task, we use a list of hateful words obtained
from HateBase8. We’ve uploaded the aformetioned lists together with our code, except for hateful
word list due to license issue. As for the grammatical roles of qref and qk, the model compares their
relations to the dependency trees and constituency trees of the sentences they are from (dependency
parser and constituency parser implemented in spaCy9).

F Explanation Solicitation Interface

The screenshots of the interface for explanation solicitation of the hate speech detection task are
included in Fig. 10. The annotators are given the following instructions:

1) Read the sentence and provide a label. You will see a sentence on the top of each page. Please
decide the label of the sentence, and fill in a number (0 for non-hateful, and 1 for hateful) in the blank.

8https://hatebase.org/search_results
9https://spacy.io/
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(a) Initial interface shown for each instance

(b) Heat-map and explanation slots shown after annotators select buttons

Figure 10: Interface for Explanation Solicitation

2) Inspect the heat-map. Please select the “Show Prediction and Heatmap” button. You will see a
predicted label, and a heat-map. In the heat-map, if a word span is considered to be related to hate
speech, it is marked as red.

3) Write an explanation if a spurious pattern is found. If you think the predicted label and the
heat-map do not align with your interpretation of the sentence, please select the “Show Explanation
Slots” button. Please specify at least one phrase that you believe the color in the heat-map should be
changed, and fill in the phrases in the left-hand side slots, and select the actions that you suggest in
the rightmost drop-down lists. You can explain the characteristic of this phrase in its neighboring
slot, such as the sentiment or the part-of-speech tag. If you choose to describe the characteristic,
please select the “soft” option in the neighboring drop-down list. You can also describe the relations
between the specified phrases in the “Observed relations” slot.

Additional Instructions. The duration of annotation process is measured. Please press the “Pause”
button or close the window when you decide to leave. The program will save your progress. Once you
finish filling the slots, you can select the “Next” button to proceed to the next sentence. You can also
select “Skip” to skip the current sentence.Though NLP knowledge about post-hoc explanation scores
and text classification tasks is required to use our system, we believe the heatmap-based annotation
interface is accessible to lay users.

G Case Study

Fig. 11 demonstrates an example to show the effect of model refinement. The corresponding human
explanation is on the top. The first heat-map is produced by SOC algorithm based on source model
fS , and the second heat-map is based on fT , the refined model. We observe that the refined model
makes correct prediction. The differences between the two maps demonstrate that attribution scores
are adjusted according to human explanations, as expected.
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H Societal Impact

Figure 11: Post-hoc explanation heat-maps
before and after model refinement. Top:
Before regularization; Bottom: After RE-
MOTE regularization. Word spans contribut-
ing to hate are red, and non-hate ones are
blue.

Our approach can be widely applied to adapt trained
text classifiers without accessing upstream data.
Therefore, for social media websites aiming to de-
tect hate speech, or customer services doing senti-
ment analysis based on customer feedback, different
service providers can share trained neural models
without leaking users’ private information. This also
reduces the need of collecting a large amount of users’
data to fine-tune trained text classifiers.

In addition, as the natural language explanations pro-
vided are precise enough, the unintended biases of an
existing model can be reduced after refinement. How-
ever, if the explanations are not inspected by other
annotators or do not pass quality check, but are still
applied to refine the model, the model may be at risk
of biased explanations that are maliciously injected.
To avoid this situation, human annotators need to be
required to reach agreement on explanations.
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