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6. Video Results

Please find the video results in the supplementary zip file,
which includes 360-degree renderings of various scenes
produced using our method. We also provide renderings of
the same scenes generated with PAPR [46] for comparison.

7. Additional Results
7.1. Close-up Real Dataset

Fig. 9 shows renderings from distant to close-up views
of real-world scenes in the close-up real dataset, com-
paring PAPR Up-close with PAPR[46]. This comparison
shows that the proposed method significantly enhances the
model’s ability to fill holes in close-up renderings while
preserving high-quality renderings of distant views in real-
world scenarios.

7.2. Tanks and Temples Dataset

Fig. 10 shows qualitative comparisons of our method, PAPR
Up-close, with the baselines on a subset of the Tanks &
Temples [15], following the same data pre-processing steps
as in [41]. For all experiments, the models are trained us-
ing the original distant training views in the dataset. Dur-
ing testing, close-up results are generated by moving the
camera closer along a testing view direction, while main-
taining a fixed focal length. As ground truth images for
close-up views are unavailable, we show zoomed-in views
of the most similar ground truth images from the same view
directions. These images are presented solely for compari-
son purposes within the figure. The results demonstrate that
PAPR Up-close outperforms in producing images that are
both hole-free and rich in details. In comparison, the base-
line methods frequently encounter difficulties in achieving
hole-free renderings, for example, SNP and PAPR on the
Family scene and Point-NeRF on the Caterpillar scene, and
tend to introduce either artifacts or blurriness, for example,
3DGS and Mip-Splatting on all the scenes.

8. Additional Sensitivity Analysis
8.1. Hyperparameters in DPS

In the proposed Dynamic Point Selection (DPS) method,
we classify the points by the ¢ 10-quantiles of the K at-
tention weights, where ¢ € {1,2,...,10}, as mentioned in
Sec. 3.3. In Fig. 11, we show how different values of ¢ af-
fect the quantitative results on the Chair, Hotdog, and Lego
scenes in the close-up synthetic dataset. As shown, DPS
achieves the best rendering quality when ¢ = 2.

8.2. Hyperparameters in RPS

In Table 2 and Fig. 12 we evaluate how different values of
k, which controls the magnitude of perturbation of the rays,
affect the quantitative results on Chair, Hotdog, and Lego
scenes from the close-up synthetic dataset. The results show
that both excessively small and excessively large values of
k may result in a decline in rendering quality. Additionally,
larger k& values can lead to a decline in the rendering qual-
ity of high-frequency details, such as the patterns on the
chair. Based on these observations, we select either k = 1
or k = 5 for our experiments, preferring smaller values of
k for scenes with more high-frequency details (e.g., Chair
and Lego).

9. Data Collection
9.1. Close-up Real Dataset

We capture two scenes, Bowser and Cup, from views sur-
rounding the object using a Oneplus 8T smartphone at two
distances. The camera is approximately 1 meter from the
object for distant views, and 0.2 meter from the object for
close-up views. We then use COLMAP [30, 31] to recon-
struct the point cloud and camera poses. For the Bowser
scene, we capture 165 images from distant views as the
training set, and 51 images from close-up views as the test-
ing set. For the cup scene, we capture 141 images from
distant views as the training set, and 26 images from close-
up views as the testing set. We then digitally remove the
background from each captured image. Samples from the
dataset are shown in Fig. 13.

9.2. Close-up Synthetic Dataset

As described in Sec. 4.1, we create a close-up syn-
thetic dataset by rendering scenes in the NeRF-synthetic
dataset [21] from close-up views using Blender. For each
training view in the original NeRF-synthetic dataset, we
first calculate the minimum depth d of a crop with size
% X % centering at the original ground truth depth map,
where the size of the depth map is H x W. Intuitively, d
gives us an estimation of how close we can move the cam-
era towards the object, such that everything is still in front
of the camera. For each training view, we translate the cam-
era center along the optical axis by d — 1 to get the close-up
camera and rendering in our new dataset, where the 1 is the
default distance between the camera center and image plane
in the NeRF-synthetic dataset, results in around 3x closer
camera views. Samples from the close-up synthetic dataset

are shown in Fig. 14.
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Figure 9. Qualitative comparison of novel view synthesis of our method and PAPR [46] on Bowser and Cup scenes. The images are
rendered from the cameras located at different distances L from the object along the same view direction. As shown in the figure, the
proposed PAPR Up-close significantly improves the model’s hole-filling ability for the close-up renderings, while maintaining high-quality

renderings of distant views compared to PAPR.

SNP [48] Point-NeRF [41] 3DGS [14] Mip-Splat [42] PAPR [46] PAPR Up-close Reference
(Ours)

L =20

ﬁ
II

Caterpillar

Family

Truck

Figure 10. Qualitative comparison of novel view synthesis between our method, PAPR Up-close, and the more competitive baselines on
Tanks & Temples [15] subset. All baselines use a total number of 30, 000 points. The figure shows close-up results generated by adjusting
the camera closer along a testing view direction with the focal length fixed. We use the most similar zoomed-in ground truth images from
the same view directions as references for the true close-up views. The results show that our method, PAPR Up-close, achieves the best
rendering quality without creating holes evaluating under unseen close-up views in challenging real-world scenes.



Chair

Hotdog

Lego

Figure 11. Quantitative results for varying values of g in the Dynamic Point Selection (DPS) method on Chair, Hotdog, and Lego scenes
from the close-up synthetic dataset.

Chair Hotdog Lego
PSNR 1 SSIM T LPIPS | | PSNR 1 SSIM T LPIPS | | PSNR 1 SSIM 1 LPIPS |

w/oRPS 23.45 0.871  0.265 25.72 0.889  0.272 24.48 0.842  0.341
k=05 2346 0.873 0.268 26.42  0.898  0.270 24.62  0.843  0.352
k=1 23.44  0.875  0.268 26.50 0.896  0.276 24.55 0.842  0.360
k=2 23.33 0.876  0.276 26.57 0.898  0.284 24.49 0.842  0.372
k=5 23.20 0.870  0.284 26.65 0.900 0.288 24.33 0.839  0.381
k=10 23.18 0.871 0.286 26.52  0.899  0.290 24.40  0.842  0.381

Table 2. Quantitative comparison of the impact of varying values of k, which determine the extent of ray perturbation, on Chair, Hotdog,
and Lego scenes from the close-up synthetic dataset.
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Figure 12. Qualitative comparison of the impact of varying values of k, which determine the extent of ray perturbation, on Chair, Hotdog,

and Lego scenes from the close-up synthetic dataset.
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Figure 13. Sample images from our close-up real dataset.
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Figure 14. Sample images from our close-up synthetic dataset, generated from the same scenes in the NeRF synthetic dataset [21].
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