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1. Proof of Sampling Boundaries for Infinite Hypothesis Space Cases

This section delves into the detailed proof of deriving sampling boundaries within the con-
text of an infinite hypothesis space. We focus on the scenario where the confounders are
modeled as continuous variables, necessitating a comprehensive measure of the hypoth-
esis space’s complexity. To this end, we primarily explore the concept of the Vapnik-
Chervonenkis (VC) dimension and its implications for the hypothesis space.
Proof The hypothesis space could be infinite when X is a continuous variable. In this case,
we need to measure the complexity of the hypothesis space, and the most common way is to
consider the ’VC dimension’ of the hypothesis space Mohri et al. (2012). Before introducing
the VC dimension, we introduce several related concepts: growth function, dichotomy, and
shatter. It is usually calculated in this way: if there exists a sample set of size d that can be
shattered by H, but there does not exist any sample sets of size d+1 that can be shattered
by H, then the VC dimension of H is d.

Definition A.1. Growth function. The growth function ΠH(n) of the hypothetical
space, H is

ΠH(n) = max|{
(
h(t1, x1), ..., h(tn, xn)

)
|h ∈ H}| (1)

The growth function ΠH(n) represents the maximum number of possible outcomes that
the hypothesis space H can assign to n samples, where the upper boundary is 2n due to Y
being a bivariate.

Definition A.2. Dichotomy. For the hypothetical space H = {h : {T,X} → Y }, Y ∈
{0, 1}, a dichotomy is an estimation of Y by h on all samples, i.e., {h(t1, x1), ..., h(tn, xn)}.

Definition A.3. Shatter. D′ is said to be shattered by H when the hypothesis space
H can produce all possible dichotomies of D′ with size n, i.e., ΠH(n) = 2n.

Now we can formally define the VC dimension.
Definition A.4. VC dimension. The VC dimension of the hypothesis space H is the

size of the largest set of examples that can be shattered by H,

V C(H) = max{n : ΠH(n) = 2n} (2)
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The VC dimension reflects the learning ability of the hypothesis, and a larger VC dimen-
sion denotes a more complex function that can be learned. In general, the VC dimension of
the hypothesis space is approximately equal to the number of free variables [20, 28, 29]. It
is usually calculated in this way: if there exists a sample set of size d that can be shattered
by H, but there does not exist any sample sets of size d + 1 that can be shattered by H,
then the VC dimension of H is d. The VC dimension of all linear functions is d = k + 1, k
denotes the number of variables.

Theorem A.1. If n ≥ N and N satisfies ε
2 =

√
8d ln 2eN

d
+8 ln 4

δ
N , equation (9) is satisfied

when there are confounders with an infinite hypothesis space H of VC dimension d.
Proof A.1. According to Vapnik and Chervonenkis (2015), for ∀h ∈ H, we have

P
(
|ED′ [Y (1)]− ED[Y (1)]| ≥ ε

2

)
=P

(∣∣∣∣∣ 1n
n∑

i=1

h (1, xi) − 1

n

n∑
i=1

E [h (1, xi)]

∣∣∣∣∣ ≥ ε

2

)

≤4ΠH(2n) exp

(
− 1

32
nε2
)
.

(3)

According to Mohri et al. (2012), the growth function ΠH(n) can be bounded as follows:

ΠH(n) ≤
d∑

i=0

(
n

i

)
≤
(en
d

)d
. (4)

Substituting Equation (4) into the inequality, we get:

P
(
|ED′ [Y (1)]− ED[Y (1)]| ≥

ε

2

)
≤ 4

(
2en

d

)d

exp

(
−

1

32
nε2

)
. (5)

Hence, the probability that the estimation error is within the specified threshold is:

P
(
|ED′ [Y (1)]− ED[Y (1)]| ≤

ε

2

)
≥ 1− 4

(
2en

d

)d

exp

(
−

1

32
nε2

)
. (6)

Setting the right side of Equation (6) to be greater than or equal to 1− δ, we derive the
condition for N :

ε

2
=

√
8d ln

(
2eN
d

)
+ 8 ln

(
4
δ

)
N

. (7)

2. Enhancing Data Augmentation: A Focus on Theorem 4.4

This section serves as an elaboration on Theorem 4.4, specifically addressing the augmenta-
tion process’s impact on estimation accuracy and confidence. Theorem 4.4 plays a pivotal
role in assessing the feasibility of enhancing the accuracy of ATE estimations on an aug-
mented dataset.
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The core of our discussion revolves around the confidence in estimations derived from
augmented datasets. The key insight from Theorem 4.4 lies in its ability to link the accuracy
of augmented dataset estimations directly to the confidence in the estimation of E[Y |T,X].
Specifically, if we can assert with confidence 1− δ that the error in estimating E[Y |T,X] on
the augmented dataset D′ is within a bound ε, i.e., P (|ED′ [y|t, x]− ED[y|t, x]| ≤ ε) ≥ 1− δ,
then it follows that the accuracy of ATE estimations on D′ is similarly bounded, with
P (|SATED′ − PATED| ≤ 2ε) ≥ 1− δ.

This assertion is grounded in the principle of backdoor adjustment, where the ATE
is conceptualized as a weighted sum of conditional expectations of Y . Importantly, the
confidence in estimating E[Y |T,X] and by extension, ATE relies not on the size of the
augmented dataset, but on the dataset size utilized for training the predictive model.

A crucial consideration is the nature of the augmented dataset, which comprises simu-
lated samples rather than samples randomly drawn from the entire dataset. As such, the
principles guiding the estimation error and confidence levels outlined in Theorems 4.1 to
4.3 do not directly apply to ATE estimations derived from augmented data. Instead, these
metrics are predominantly influenced by the error and confidence associated with estimat-
ing the conditional expectation, underscoring the nuanced approach required in leveraging
data augmentation to improve causal effect estimations.

3. VC Dimension

This section elaborates on the direct correlation between the VC (Vapnik-Chervonenkis)
dimension of the hypothesis space and the number of free variables in a hypothesis, which is
foundational for understanding the complexity and capacity of models in machine learning.

To ensure the analytical tractability of this study, our research is predicated on the
assumption that the number of free variables is equivalent to the VC dimension, a premise
that aligns with common scenarios encountered in empirical research Shalev-Shwartz and
Ben-David (2014).

For a given set of indicator functions, if there exist H samples that can be dichotomized
by the functions in the set in every possible manner, amounting to 2H configurations, then
we say the function set can ’shatter’ H samples. The VC dimension of the function set is
thus defined as the maximum number of samples, H, that it can shatter.

The magnitude of the VC dimension is contingent upon the selected model and the
defined hypothesis space. Below, we delineate the VC dimensions of several commonly
utilized models:

1. The VC dimension of the hypothesis space constituted by linear hyperplanes in Rd

space is d+ 1.
2. For neural networks, the magnitude of their VC dimension is O(V D), where V

represents the number of neurons within the neural network, and D denotes the number
of weights, correlating to the number of connections between neurons. This approximation
provides a broad estimate; currently, explicit VC bounds for deep neural networks are not
well-defined.
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Table 1: Probabilities of satisfying the error boundaries at different ε and 1−δ(%), sampling
10,000 times across four methods.

BD PSW PSS DML

C 95.45 99.73 95.45 99.73 95.45 99.73 95.45 99.73

1

0.05 98.92 99.89 98.96 99.89 98.99 99.91 99.25 99.91

0.025 98.91 99.92 98.96 99.88 99.15 99.90 99.32 99.95

0.01 98.95 99.91 98.90 99.89 98.83 99.86 99.39 99.96

2

0.05 99.86 100 99.86 100 99.91 99.99 99.90 99.98

0.025 99.89 100 99.87 100 99.90 99.99 99.85 99.98

0.01 99.86 99.99 99.78 99.97 99.39 100 99.90 99.99

5

0.05 99.99 99.99 99.93 99.98 99.99 100 99.97 100

0.025 99.99 100 100 100 99.96 99.99 99.97 99.99

0.01 100 100 100 100 99.79 99.98 100 100

10

0.05 99.99 99.99 100 100 99.98 100 100 100

0.025 99.98 99.99 100 100 100 100 100 100

0.01 99.96 100 99.99 100 100 99.99 99.99 100

4. Additional Experimental Details

Simulation Dataset Construction. We first create a Directed Acyclic Graph (DAG) to
represent the relationships among treatment T , outcome Y , and confounders {Xi}. Each
variable T, Y, Xi takes binary values {0, 1}. We specify P (xi) and the conditional prob-
abilities P (t | x), P (y | t, x) to form a joint distribution, then sample data D′ via Gibbs
sampling (Koller and Friedman, 2009). Given P (y | t), the theoretical causal effect is

ACED = P (Y = 1 | T = 1) − P (Y = 1 | T = 0),

which is set to 0.5 for consistent comparisons.
IHDP Dataset. In addition, we use the Infant Health and Development Program

(IHDP) dataset introduced by Hill (2011). It contains 25 covariates (6 continuous and
19 discrete) from a randomized experiment, where treatment corresponds to expert home
visits aimed at influencing infants’ future cognitive test scores. We employ this dataset for
data augmentation (described in Section Experimental Setup) to illustrate how insufficient
samples can be mitigated via synthetic sample generation.

Error Thresholds and Confidence Levels. We consider ε = {0.05, 0.025, 0.01}. For
confidence levels, we evaluate success rates at 1− δ ≈ 95.45% (2σ) and 1− δ ≈ 99.73% (3σ)
to measure how often the estimation error stays below ε.

Implementation in DoWhy. For each sampling size boundary, we use DoWhy (Sharma
and Kiciman, 2020) to estimate average treatment effects. We record the proportion of runs
(out of 10,000) where the estimation error is within ε, and compare that proportion to the
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nominal confidence level 1 − δ. This verifies whether the sampling boundaries align with
the theoretical guarantees presented in the main text.

5. Extended Results on Different Methods

As seen in Table 1, all four methods consistently surpassed the nominal confidence thresholds
across varying numbers of confounders C, error thresholds ε, and confidence levels (1− δ).

6. Supplementary Results for Theorem 4.4

This section presents the full detailed results from 100 repeated experiments on the IHDP
dataset to verify Theorem 4.4. Each row corresponds to one random seed.

Table 2: Detailed results from 100 repeated experiments on the IHDP dataset for Theo-
rem 4.4. Each row corresponds to one random seed.

Index Seed err outcome err ate 2× err outcome check

1 0 0.2038 0.0261 0.4076 True
2 1 0.1420 0.0977 0.2841 True
3 2 0.2077 0.1454 0.4154 True
4 3 0.1899 0.4201 0.3797 False
5 4 0.1579 0.2224 0.3159 True
6 5 0.2120 0.1215 0.4240 True
7 6 0.2029 0.1523 0.4058 True
8 7 0.2384 0.1242 0.4768 True
9 8 0.1905 0.3935 0.3810 False
10 9 0.2260 0.1794 0.4519 True
11 10 0.2103 0.0066 0.4205 True
12 11 0.1871 0.2335 0.3742 True
13 12 0.1932 0.1834 0.3864 True
14 13 0.1868 0.0706 0.3737 True
15 14 0.1883 0.2743 0.3766 True
16 15 0.2283 0.3520 0.4566 True
17 16 0.1929 0.2449 0.3858 True
18 17 0.2244 0.2918 0.4489 True
19 18 0.1596 0.1854 0.3192 True
20 19 0.1901 0.4597 0.3802 False
21 20 0.2334 0.3125 0.4668 True
22 21 0.2504 0.0023 0.5009 True
23 22 0.1960 0.3287 0.3920 True
24 23 0.1695 0.1754 0.3390 True
25 24 0.1927 0.1523 0.3853 True
26 25 0.1514 0.2635 0.3028 True

(Continued on next page)
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(Continued from previous page)

Index Seed err outcome err ate 2× err outcome check

27 26 0.2575 0.4741 0.5150 True
28 27 0.1747 0.0339 0.3495 True
29 28 0.1791 0.4770 0.3583 False
30 29 0.2022 0.3152 0.4043 True
31 30 0.1900 0.0648 0.3801 True
32 31 0.1776 0.2747 0.3552 True
33 32 0.1640 0.1006 0.3281 True
34 33 0.2372 0.0331 0.4745 True
35 34 0.2537 0.2513 0.5075 True
36 35 0.2319 0.3121 0.4637 True
37 36 0.2354 0.4259 0.4708 True
38 37 0.1768 0.0800 0.3537 True
39 38 0.1384 0.4427 0.2768 False
40 39 0.2297 0.0226 0.4594 True
41 40 0.1683 0.1661 0.3365 True
42 41 0.1946 0.2713 0.3892 True
43 42 0.2003 0.2598 0.4007 True
44 43 0.2564 0.0042 0.5127 True
45 44 0.1684 0.2066 0.3369 True
46 45 0.1946 0.2203 0.3892 True
47 46 0.1807 0.5667 0.3614 False
48 47 0.1527 0.0993 0.3053 True
49 48 0.1631 0.0713 0.3262 True
50 49 0.1794 0.1135 0.3587 True
51 50 0.2587 0.4802 0.5175 True
52 51 0.1792 0.1318 0.3584 True
53 52 0.1825 0.3886 0.3650 True
54 53 0.1514 0.2937 0.3029 False
55 54 0.2024 0.0283 0.4048 True
56 55 0.2482 0.1029 0.4965 True
57 56 0.1985 0.0502 0.3970 True
58 57 0.1765 0.1386 0.3530 True
59 58 0.1859 0.0205 0.3717 True
60 59 0.1733 0.0599 0.3466 True
61 60 0.1713 0.0217 0.3427 True
62 61 0.2586 0.1327 0.5172 True
63 62 0.1729 0.1523 0.3458 True
64 63 0.1977 0.1140 0.3954 True
65 64 0.2076 0.2564 0.4151 True
66 65 0.2341 0.0679 0.4683 True
67 66 0.2025 0.3255 0.4051 True

(Continued on next page)
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Index Seed err outcome err ate 2× err outcome check

68 67 0.2248 0.3303 0.4496 True
69 68 0.1541 0.0708 0.3082 True
70 69 0.2213 0.1033 0.4427 True
71 70 0.2320 0.3010 0.4640 True
72 71 0.1528 0.1884 0.3056 True
73 72 0.1720 0.0620 0.3439 True
74 73 0.1820 0.4251 0.3639 False
75 74 0.2241 0.1921 0.4482 True
76 75 0.1993 0.0536 0.3986 True
77 76 0.1811 0.2620 0.3623 True
78 77 0.2646 0.0094 0.5291 True
79 78 0.2012 0.1166 0.4024 True
80 79 0.1818 0.6128 0.3636 False
81 80 0.2156 0.2333 0.4312 True
82 81 0.1652 0.0373 0.3304 True
83 82 0.2533 0.3093 0.5065 True
84 83 0.1790 0.0978 0.3580 True
85 84 0.1723 0.1921 0.3445 True
86 85 0.1602 0.0192 0.3205 True
87 86 0.2284 0.5094 0.4567 False
88 87 0.1873 0.3103 0.3747 True
89 88 0.2056 0.2640 0.4111 True
90 89 0.1934 0.0139 0.3867 True
91 90 0.2103 0.0088 0.4206 True
92 91 0.1856 0.0474 0.3712 True
93 92 0.2091 0.0982 0.4182 True
94 93 0.1693 0.1417 0.3387 True
95 94 0.2153 0.2177 0.4306 True
96 95 0.1557 0.0289 0.3113 True
97 96 0.1758 0.1513 0.3516 True
98 97 0.1856 0.2599 0.3712 True
99 98 0.1884 0.0645 0.3767 True
100 99 0.1745 0.4314 0.3490 False

The tables above lists all seeds, outcome errors, ATE errors, and checks. Of the 100
trials in total, 89 (marked check = True) lie at or below the twofold boundary, err ate ≤
2 × err outcome. As discussed in the main text (Section 5), the one-sample Wald test
rejects a 50% null compliance rate with z≈8.3 (p < 10−15). These data also illustrate how
small biases in predicting treatment and control outcomes can inflate final ATE errors in a
minority of trials.
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7. Implementation Details of Data Augmentation Using Dragonnet

For the data augmentation process, the dataset was divided into training and validation
sets with a 70:30 ratio. The network architecture comprised three Dense layers with ELU
activation for representing covariates, one Dense layer with Sigmoid activation for the in-
tervention, and three Dense layers with ELU activation for predicting the outcome variable
y. L2 regularization was employed between layers to prevent overfitting. Optimization was
conducted using Stochastic Gradient Descent (SGD), with a dynamically adjusted learning
rate reduced by a factor of 0.5 and a momentum parameter set at 0.9, ensuring robust
performance and minimized overfitting, which enabled effective estimation of treatment
effects.
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