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APPENDIX

A ANALYSIS OF THE UGLAD ARCHITECTURE

A.1 UGLAD PARAMETER DETAILS

For the sake of completeness of understanding the GLAD architecture, we graciously borrow the
algorithm (see Alg.2) and neural network design details from Shrivastava et al. (2020b) here. GLAD
parameter settings details are: p,,,, was a 4 layer neural network and A,,,, was a 2 layer neural network.
Both used 3 hidden units in each layer. The non-linearity used for hidden layers was tanh, while
the final layer had sigmoid (o) as the non-linearity for both, p,,,, and A,,,, (refer to Figure 2). The
learnable offset parameter of initial ©( was set to ¢ = 1. It was unrolled for L = 30 iterations.The
optimizer used was adam with the learning rates were chosen between [0.001, 0.005].

B CASE STUDY: ANAEROBIC DIGESTION

Our algorithm development was inspired by a prac-
tical problem of domain exploration in anaerobic
digestion. Anaerobic digestion is a growing field
addressing waste management with both environmen-
tal benefits (reduced odor and pathogens, improved
soil health, reduction in methane emissions) and eco-
nomic value from use of captured methane gas. De-
spite numerous studies, the dynamics of organisms’

Algorithm 2: GLAD

Function GLADcell (f, 0,7, 1):
A Ann(|1Z - 6”% ,A)
Y113 -Z

growth in digesters, their dependence on conditions
(temperature, pH, feedstock mix, nitrogen to carbon
ratio, etc.) and their impact on methane yield are not
well understood.

We present findings based on a public dataset from

®<—%(—Y+,/YTY+%I)

For alli, j do
pij = Pnn(©ij. 2ij. Zij)
Zij < 1pi; (©ij)

| return 0,7, 1

Function GLAD(E):
Oy — (Z+ t])_l, Ay 1
Data comes from a 6-year study of 46 digesters lo- Fork=01t0K —1do
cated at 22 Danish treatment plants. We have three

\\ Ok+15 Zk+15 Ak+1

types of digesters, operating at different temperatures -
(mesophilic, mesophilic with thermal hydrolysis pre- «—GLADcell(Z, O, Zx, Ax)
| return Ok, Zg

a study of anaerobic digesters at Danish wastewater
plants Jiang et al. (2021). Data is available at NCBI
under bioproject accession number PRINA637463.

treatment, thermophilic). Digesters operate continu-
ously with sludge retention rate of 15.8 to 35.6 days.
Samples were taken at 3-month and 6-month inter-
vals, so they can be treated as i.i.d. We have a total of
1,010 sludge samples, 418 used to sequence archaea
and 592 bacteria, performed using 16S rRNA gene amplicon sequencing. Analysis resulted in
identification of 33,047 bacterial and 878 archaeal unique amplicon sequence variants (ASVs). 70%
of genera and 93% of the species were determined to be novel or previously unclassified. This
presents problems for all approaches attempting to utilize existing databases to determine organisms’
function for the purpose of grouping and feature selection. In fact, one of the best ways to determine
an organism’s function is based on checking properties of organisms whose abundance numbers in
the digester best correlate with the given organism’s numbers.

A A1 Z = 0%, ) Pij = Pun(Oij> ij, Zij)

Non-Linearity:
Hidden layers = ‘tanh’
Final layer = ‘sigmoid’

Num of layers = 4
Hidden unit size = 3

Num of layers = 2
Hidden unit size = 3

Figure 2: Minimalist neural network architectures designed for GLAD
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Figure 3: uGLAD recovered precision matrix compared to empirical covariance and precision matrix recovered
by the BCD algorithm for archaea at family level
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Figure 4: uGLAD recovered precision matrix compared to empirical covariance and precision matrix recovered
by the BCD algorithm for archaea at species level

Our algorithm works with any input, including: ASVs filtered by frequency, ASVs rolled up to higher
taxonomy levels (species, genus, family), ASVs abundance normalized in various ways Badri et al.
(2020). We calculate the partial correlation matrix from the precision matrix. Each entry of the partial
correlation matrix P;; shows the correlation of the feature x;, x; given the values of the other features
are observed. This helps us obtain the direct dependence of the features.
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We use networkx package to visualize the graphs, presenting positive correlations in green and
negative in red, with edge weights corresponding to the strength of the correlation.

P = —

Figures 4 and 3 present precision matrices recovered by our algorithm and BCD with empirical
covariance shown for comparison. Figures 5 and 6 show corresponding graphs for archaea at family
and species level.

Figures 8 and 7 show a result of multitask learning based on digester type: mesophilic (operating at
temperature 38°C) and thermophilic (operated at temperature 53.6°C). The two graphs’ edges are
filtered to show only edges common to both graphs, which is a small fraction of all edges. Note that
in some cases, the sign of the correlation (and the color of the edge) changes depending on digester’s
type.

Our model is being used by domain experts to gain insight into the domain of anaerobic digestion.
One use case is to understand properties of newly discovered bacteria and archaea by analyzing
which known organisms their abundance in digester samples correlates with (positively or negatively).
That can lead to focusing attention on a smaller organism set. Another use case centers around
understanding the role of digester conditions and feedstock mix on organisms’ growth and methane
yield. The results presented in recovered graphs lead to new hypotheses and new experiments being
designed to test them.

C CASE STUDY: INFANT MORTALITY

We used uGLAD to recover the graph for the domain of infant mortality. The dataset is based on CDC
Birth Cohort Linked Birth — Infant Death Data Files of Health et al.. It describes pregnancy and birth
variables for all live births in the U.S. together with an indication of an infant’s death before the first
birthday. We used the data for 2015 (latest available), which includes information about 3,988,733
live births in the US during 2015 calendar year.
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Figure 5: uGLAD graph for archaea at family level. Edge color indicates the sign of the correlation: green -
positive, red - negative, edge weight corresponds to correlation’s strength.
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Figure 6: uGLAD graph for archaea at species level. Edge color indicates the sign of the correlation: green -
positive, red - negative, edge weight corresponds to correlation’s strength.
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Figure 7: Example of multitask learning applied to different digester types. uGLAD graph for bacteria at
genus level for thermophilic digesters showing only edges common to all digester types. Note that edge colors
(correlation signs) are different from the corresponding graph for mesophilic digesters. Edge color indicates the
sign of the correlation: green - positive, red - negative, edge weight corresponds to correlation’s strength.
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Figure 8: Example of multitask learning applied to different digester types. uGLAD graph for bacteria at genus
level for mesophilic digesters showing only edges common to all digester types. Edge color indicates the sign of
the correlation: green - positive, red - negative, edge weight corresponds to correlation’s strength.
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Figure 9: The Bayesian network graph learned using score-based method for the Infant Mortality 2015 data.

We recovered the graph strucure of the dataset using uGLAD and using the Bayesian network package
bnlearn Scutari (2010) with Tabu search and AIC score. The graphs are shown in Fig. 10 and 9
respectively. Since bnlearn does not support networks containing both continuous and discrete
variables, all variables were converted to categorical for bnlearn structure learning and inference.
In contrast, uGLAD is equipped to work with mixed types of variables and was trained on the dataset
prior to conversion.

Both graphs show similar sets of clusters with high connectivity within each cluster:

¢ describing both parents’ race and ethnicity (mrace and frace variables),

« related to mother’s bmi, height (mht r) and weight, both pre-pregnancy (pwgt_r) and at delivery
(dwgt_x),

* consisting of maternal morbidity variables marked with mm prefix (e.g., unplanned hysterectomy),

» showing pregnancy related complications such as hypertension and diabetes (variables prefixed
with rf and urf),

 consisting of variables related to parents’ STD infections (ip prefix),

« related to delivery complications and interventions (variables prefixed with 1d),

» showing interventions after delivery (ab prefix) such as ventilation or neonatal ICU,

* describing congenital anomalies diagnosed in the infant at the time of birth (variables prefixed with
ca),

« related to infant’s death: age at death, place, autopsy, manner, etc.

Apart from these clusters, there are a few highly connected variables in both graphs: gestational age
(combgest and oegest), delivery route (rdmeth_rec), Apgar score, type of insurance (pay),
parents’ ages (fage and mage variables), birth order (tbo and 1bo), and prenatal care.

With all these similarities, however, the total number of edges varies greatly between the two graphs
and the number of edges unique to each graph outnumbers the number of edges the two graphs have
in common (see Figure 11). Obviously, the two graph recovery algorithms are very different in both
algorithmic approach and objective function. One additional reason for the differences lies in the
continuous-to-categorical conversion performed prior to Bayesian network structure discovery and
training.

New edges discovered by uGLAD and missed by bnlearn merit futher exploration.

17



Under review as a conference paper at ICLR 2023

bfacil

attend

Ig/lanto restatus

dobrwk p{a‘ce W no” Ibdly X 4
anes ‘
B Id_augm dcb_ql%qwg,gkrmmype
Id_ndl /] 7
A /;ff iz
X + /
*1d_ster e/ thal
aged { dchot ] /;{ =2 Dot
¥ 17 gdi;
< \pahis N i Sined ;
N " . — fEh
autopsyk five raln /,bw(riat =i L it don}mﬂ
jai\// A0, NskS - /
Py obstick 2 dimp_mm
A= » 524 I dimp_yy =
apgarto]
(st EARAT deatn Uege-sl% rdmelt.reg
4 i ¢a aneny ey me_] n
C?J'mb no_congen apga:ﬁ il
caom ph J A/ Sz prioTdeEst
ca_cdh ! : ed_clpal 4 anti
Ca_celfdefast
= vb - ab_ficu
ab.p eluabiavenﬂ priorterm
ab_surf no_abnorm
ﬁj
i A
llop_r p;wfmmo(b
P
ip_hepc
ip_hepb mm_plac
ip .gon i mm_lihyst .
I ip/syph mmupt sex
ng/infec mm _Taiou mtr \
mracef 2
ip_chlam frace6

Figure 10: The CI graph recovered by uGLAD for the Infant Mortality 2015 data.

D POTENTIAL OTHER APPLICATIONS OF THE UGLAD MODEL

Listing some more applications for the uGLAD model for which we feel that it can help improve the
current state-of-the-art performance.

* Protein Structure recovery: PSICOV Jones et al. (2012) uses graphical lasso based approach to
predict the contact matrix, which then eventually gives the 3D protein structure. uGLAD can be
substituted for predicting the contact matrix from the input correlation matrix between the amino
acid sequences.

* Finance & Healthcare: Finding correlations between stocks to see how companies compare Hallac
et al. (2017). Similarly systems for finding connection between important body vitals of ICU
patients Shrivastava et al. (2021); Bhattacharya et al. (2019).

¢ Class imbalance handling: We can potentially use uGLAD to find correlation between the features.
This correlation graph can be helpful in sampling down useful feature clusters. This will help
identify key features and in-turn improve performance in cases where there is less data or imbal-
anced data (more data points for one class over another). Some of the methods for class imbalance
handling on which uGLAD model can act as a preprocessing steps are Rahman & Davis (2013);
Shrivastava et al. (2015); Bhattacharya et al. (2017).

* Gaussian processes & time series problems: uGLAD can be extended to this interesting work
by Chatrabgoun et al. (2021) on combining graphical lasso with Gaussian processes for learning
gene regulatory networks. Similarly, in a recent work on including negative data points for the
Gaussian processes Shrivastava et al. (2020a), uGLAD can be used for narrowing down the relevant
features for doing the GP regression. Our model can be used for time-series modeling, refer Jung
et al. (2015) for an example.

* Video sequence predictions: uGLAD can be integrated into the pipeline for latest models used for
generating unseen future video frames Denton & Fergus (2018); Shrivastava & Shrivastava (2021).
Specifically, the parameters of the uGLAD can be learned to narrow down the potential future viable
frames from the generated ones.
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Figure 11: Comparing the graphs recovered by uGLAD and Bayesian Network recovery package (Scutari,

2010).
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