
ACPO: A Policy Optimization Algorithm for Average MDPs with Constraints

Akhil Agnihotri 1 Rahul Jain 1 Haipeng Luo 1

Abstract
Reinforcement Learning (RL) for constrained
MDPs (CMDPs) is an increasingly important
problem for various applications. Often, the
average criterion is more suitable than the dis-
counted criterion. Yet, RL for average-CMDPs
(ACMDPs) remains a challenging problem. Al-
gorithms designed for discounted constrained RL
problems often do not perform well for the aver-
age CMDP setting. In this paper, we introduce
a new policy optimization with function approxi-
mation algorithm for constrained MDPs with the
average criterion. The Average-Constrained Pol-
icy Optimization (ACPO) algorithm is inspired
by trust region-based policy optimization algo-
rithms. We develop basic sensitivity theory for
average CMDPs, and then use the corresponding
bounds in the design of the algorithm. We provide
theoretical guarantees on its performance, and
through extensive experimental work in various
challenging OpenAI Gym environments, show its
superior empirical performance when compared
to other state-of-the-art algorithms adapted for the
ACMDPs.

1. Introduction
Over the last decade, we have seen an enormous impact
of RL techniques on a variety of problems, from master-
ing complex games like Go (Silver et al., 2017) and Star-
Craft (Vinyals et al., 2019) to robotic control (Levine et al.,
2016; Akkaya et al., 2019; Aractingi et al., 2023). Many
of these have used RL-policy optimization algorithms such
as Schulman et al. (2017) for discounted MDPs (DMDPs).
These have come in handy even in generative AI, e.g., train-
ing large language models (LLMs) (Achiam et al., 2023).
However, applications often need satisfaction of some con-
straints, e.g., physical safety of mobile robots (Hu et al.,

1University of Southern California, Los Angeles, CA, USA.
RJ is also affiliated with Google DeepMind. Correspondence to:
Akhil Agnihotri <agnihotri.akhil@gmail.com>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

2022), safe language, image or multi-modal output gener-
ation. Furthermore, the average criterion when long-term
rewards and safety are of consideration is more suitable.
Using discounted cost formulations (as a proxy for safety)
incentivizes policy optimization algorithms to search for
policies that are short-term safe but not long-term because
of future-discounting.

The planning problem for MDPs with constraints is often
formulated as a Constrained MDP (CMDP) model (Manne,
1960; Hordijk & Kallenberg, 1979; Altman, 1999). Unfor-
tunately, CMDP models do not satisfy Bellman’s principle
of optimality, and hence dynamic programming (DP)-style
algorithms cannot be developed for the setting. Instead, an
alternative approach called the convex analytic approach
(Borkar, 1988; Altman, 1999) is used by way of introducing
occupation measures that leads to optimization formula-
tions. This can be done for both discounted (DCMDPs) and
average-criterion (ACMDPs) constrained MDPs.

Theory and algorithms for RL deal with settings when the
MDP model is unknown. While DP-inspired RL algorithms
such as DQN, when combined with deep learning architec-
tures for function approximation work remarkably effec-
tively (Mnih et al., 2015), policy optimization algorithms
such as TRPO (Schulman et al., 2015), PPO (Schulman
et al., 2017) have proven even more effective in solving
high dimensional problems. Since the discounted criterion
is sometimes not suitable, policy optimization algorithms
such as ATRPO (Zhang et al., 2021; Wan et al., 2021; Liao
et al., 2022) have been developed for AMDPs. Furthermore,
as already mentioned, certain RL applications have multiple
objectives, one of which is to be optimized and the rest con-
strained. Thus, the Constrained Policy Optimization (CPO)
algorithm (Achiam et al., 2017) was introduced for infinite-
horizon DCMDP problems. Unfortunately, as motivated
above, not all such applications fit the discounted-criterion
formulation: there are settings, for example where there may
be safety requirements when the average-CMDP model is a
better fit. No scalable RL algorithms are currently available
for such settings.

We note that the RL problem is usually harder than the cor-
responding planning problem; average-MDPs are more chal-
lenging than discounted MDPs; and constrained MDPs are
more challenging than unconstrained ones. In this paper, we

1

ACPO

present the first practical algorithm for policy optimization-
based RL algorithm for average-constrained MDPs. We pro-
pose ACPO, a policy optimization algorithm for an average-
CMDP with deep learning for function approximation. Our
approach is motivated by theoretical guarantees that bound
the difference between the average long-run rewards or costs
of different policies. It draws inspiration from CPO (Achiam
et al., 2017) (see also Tessler et al. (2019) for DCMDPs),
which uses a policy improvement theorem for the discounted
setting based on the trust region methods of Schulman et al.
(2015). Unfortunately, this result trivializes for the average
setting and hence can’t be used. Instead, we derive a new
bound that depends on the worst-case level of “mixture” of
the irreducible Markov chain associated with a policy. Our
proposed algorithm, ACPO is based on these theoretical
developments. For experimental evaluation, we use several
OpenAI Gym environments from Todorov et al. (2012), train
large neural network policies and demonstrate the effective-
ness and superior performance of the ACPO algorithm as
compared to others.

Main Contributions and Novelty.

Algorithmic: We introduce the first practical policy
optimization-based RL algorithm for average-constrained
MDPs with new and tight performance bounds and viola-
tion guarantees. The algorithm draws inspiration from CPO
(for discounted-CMDPs) and ATRPO (for average-MDPs)
but is not a straightforward extension of either. One may
posit that setting the discount factor γ “ 1 in CPO for the
discounted setting may suffice but that does not perform
well on average-CMDPs even with a large discount factor.
Further, constraint violation and policy degradation bounds
of CPO do not hold in the average setting and hence we
develop novel bounds (in Corollary 3.5). In fact, the advan-
tage function estimation routine in our algorithm (line 4 and
6 in Algorithm 1) is also different from that in CPO, since
the discounted-setting procedure cannot be used for the av-
erage setting (see Appendix A.3): We first approximate the
average-reward bias and then use a one-step TD backup to
estimate the action-bias function. Furthermore, policy op-
timization algorithms for the average case (Zhang & Ross,
2020; Wan et al., 2021; Liao et al., 2022) cannot incorporate
constraints. We enable this by introducing sublevel sets
of cost constraints. We also introduce an approximate but
novel line search procedure that improves the empirical per-
formance of our algorithm, an idea that may help improve
performance of other policy optimization algorithms such
as PPO.
Technical: Since ACPO is a trust region method, one can
expect some overlap in analysis techniques with other simi-
lar algorithms. Nevertheless, our analysis has several novel
elements: Lemma 3.3, where we use eigenvalues of the
transition matrix to relate total variation of stationary dis-
tributions with that of the policies, and in Lemma A.6, we

use the sublevel sets of constraints and projection inequality
of Bregman divergence. Furthermore, several important
results from CPO and ATRPO papers cannot be applied to
the analysis of our algorithm.
Empirical: We evaluate the empirical performance of ACPO
in the OpenAI Gym (Mujoco) environments, a standard
benchmark. We find that ACPO outperforms all state-of-
the-art Deep RL algorithms such as CPO in (Achiam et al.,
2017), PCPO in (Yang et al., 2020), PPO in (Schulman
et al., 2017), BVF-PPO in (Satija et al., 2020) and ATRPO
in (Zhang et al., 2021). We use a large discount factor if the
algorithm is not for the average setting, and a Lagrangian
objective if it is not for the constrained setting, and in some
cases both.
Significance: ACPO is the first practical trust region-style
policy optimization algorithm for ACMDPs with excellent
empirical performance. ACMDPs are important models
because they allow incorporation of long term safety con-
straints, which are important not only in the context of
safe robot learning and control, but also safety-constrained
RLHF fine-tuning and inference for LLMs (Moskovitz et al.,
2023) and Diffusion models as well. In the absence of
suitable policy optimization algorithms for ACMDPs, re-
searchers have resorted to using adaptations of PPO, etc.

Related Work. Learning constraint-satisfaction policies
has been explored in the Deep RL literature in (Agnihotri
et al., 2019; Garcia & Fernandez, 2015). This can either
be (1) through expert annotations and demonstrations as
in (Rajeswaran et al., 2017; Gao et al., 2018) or, (2) by
exploration with constraint satisfaction as in (Achiam et al.,
2017; Tessler et al., 2019). While the former approach is
not scalable since it requires human interventions, current
state-of-the-art algorithms for the latter are not applicable
to the average reward setting.

Previous work on RL with the average reward criterion
has mostly attempted to extend stochastic approximation
schemes for the tabular setting, such as Q-learning in
(Abounadi et al., 2001; Wan et al., 2021), to the non-tabular
setting with function approximation in (Wei et al., 2021;
Zhang & Ross, 2020). (Chen et al., 2022) deals with online
learning in a constrained MDP setting, but their aim is regret
minimization or exploration, both in tabular settings. We
are inspired by the work of (Zhang et al., 2021) to develop
techniques required to derive the policy degradation and
constraint violation bounds in Section 3.

The more recent works of (Bhatnagar & Lakshmanan, 2012)
and (Calvo-Fullana et al., 2023) also fail to address our
problem setting as the former test on a 2x4 queueing network
with maximum state space of 128, while the latter test on
a grid of size 10x10 (maximum states of 100). In addition
to that, the way they incorporate constraints during training
is just via a Lagrangian formulation. In our paper we show

2

ACPO

that simply doing this (in the case of PPO and ATRPO
for example) leads to much inferior performance to ACPO,
which can outperform current state-of-the-art algorithms in
state spaces of upto 1096.

2. Preliminaries
A Markov decision process (MDP) is a tuple, (S,A, r, P, µ),
where S is the set of states, A is the set of actions, r : S ˆ

AˆS Ñ R is the reward function, P : SˆAˆS Ñ r0, 1s is
the transition probability function such that P ps1|s, aq is the
probability of transitioning to state s1 from state s by taking
action a, and µ : S Ñ r0, 1s is the initial state distribution.
A stationary policy π : S Ñ ∆pAq is a mapping from states
to probability distributions over the actions, with πpa|sq

denoting the probability of selecting action a in state s, and
∆pAq is the probability simplex over the action space A.
We denote the set of all stationary policies by Π. For the
average setting, we will make the standard assumption that
the MDP is ergodic and is unichain.

In reinforcement learning, we aim to select a policy π which
maximizes a performance measure, Jpπq, which, for contin-
uous control tasks is either the discounted reward criterion
or the average reward approach. Below, we briefly discuss
both formulations.

2.1. Discounted criterion

For a given discount factor γ P p0, 1q, the discounted reward
objective is defined as

Jγpπq :“ E
τ„π

«

8
ÿ

t“0

γtrpst, at, st`1q

ff

“
1

1 ´ γ
E

s„dπ,γ
a„π

s1
„P p¨|s,aq

rrps, a, s1qs

where τ refers to a sample trajectory of ps0, a0, s1, ¨ ¨ ¨ q gen-
erated when following a policy π, that is, at „ πp¨|stq and
st`1 „ P p¨|st, atq ; dπ,γ is the discounted occupation mea-
sure that is defined by dπ,γpsq “ p1´ γq

ř8

t“0 γ
t P
τ„π

pst “

sq, which essentially refers to the discounted fraction of
time spent in state s while following policy π.

2.2. Average criterion

The average-reward objective is given by:

Jpπq :“ lim
NÑ8

1

N
E

τ„π

«

N´1
ÿ

t“0

rpst, at, st`1q

ff

“ E
s„dπ

a„πp¨|sq

s1
„P p¨|s,aq

rrps, a, s1qs,
(1)

where dπpsq :“ limNÑ8
1
N

řN´1
t“0 Pτ„πpst “ sq is the

stationary state distribution under policy π. The limits in
Jpπq and dπpsq are guaranteed to exist under our ergodic
assumption. Since the MDP is aperiodic, it can also be
shown that dπpsq “ limtÑ8 Pτ„πpst “ sq. Since we
have limγÑ1 dπ,γpsq Ñ dπpsq,@s, it can be shown that
limγÑ1p1 ´ γqJγpπq “ Jpπq.

In the average setting, we seek to keep the estimate of
the state value function unbiased and hence, introduce the
average-reward bias function as

sV πpsq :“ E
τ„π

«

8
ÿ

t“0

prpst, at, st`1q ´ Jpπqq

ˇ

ˇ

ˇ

ˇ

s0 “ s

ff

and the average-reward action-bias function as

sQπps, aq :“ E
τ„π

„ 8
ÿ

t“0

prpst, at, st`1q´Jpπqq

ˇ

ˇ

ˇ

ˇ

s0 “ s,
a0“a

ȷ

.

Finally, define the average-reward advantage function as
sAπps, aq :“ sQπps, aq ´ sV πpsq.

2.3. Constrained MDPs

A constrained Markov decision process (CMDP) is an MDP
augmented with constraints that restrict the set of allowable
policies for that MDP. Specifically, we augment the MDP
with a set C of auxiliary cost functions, C1, ¨ ¨ ¨ , Cm (with
each function Ci : S ˆ A ˆ S Ñ R mapping transition
tuples to costs, just like the reward function), and bounds
l1, ¨ ¨ ¨ , lm. Similar to the value functions being defined
for the average reward criterion, we define the average cost
objective with respect to the cost function Ci as

JCipπq :“ lim
NÑ8

1

N
E

τ„π

«

N´1
ÿ

t“0

Cipst, at, st`1q

ff

“ E
s„dπ
a„π

s1
„P p¨|s,aq

rCips, a, s
1qs.

(2)

where JCi
will be referred to as the average cost

for constraint Ci. The set of feasible stationary
policies for a CMDP then is given by ΠC :“
tπ P Π : JCipπq ď li, @ i P t1, ¨ ¨ ¨ ,Muu. The goal is
to find a policy π‹ such that π‹ P argmaxπPΠC

Jpπq.

However, finding an exact π‹ is infeasible for large-scale
problems. Instead, we aim to derive an iterative policy
improvement algorithm that given a current policy, improves
upon it by approximately maximizing the increase in the
reward, while not violating the constraints by too much and
not being too different from the current policy.

Lastly, analogous to sV π, sQπ, and sAπ, we define similar
quantities for the cost functions Cip¨q, and denote them by
sV π
Ci

, sQπ
Ci

, and sAπ
Ci

.

3

ACPO

2.4. Policy Improvement for discounted CMDPs

In many on-policy constrained RL problems, we improve
policies iteratively by maximizing a predefined function
within a local region of the current best policy as in (Tessler
et al., 2019; Achiam et al., 2017; Yang et al., 2020; Song
et al., 2020). (Achiam et al., 2017) derived a policy improve-
ment bound for the discounted CMDP setting as:

Jγpπk`1q ´ Jγpπkq ě

1

1 ´ γ
E

s„dπk

a„πk`1

„

Aπk
γ ps, aq ´

2γϵπk`1

1 ´ γ
DTV pπk`1||πkqrss

ȷ

,

(3)
where Aπk

γ is the discounted version of the advan-
tage function, ϵπk`1 :“ maxs |Ea„πk`1

rAπk
γ ps, aqs|, and

DTV pπk`1||πkqrss “ p1{2q
ř

a |πk`1pa|sq ´ πkpa|sq| is
the total variational divergence between πk`1 and πk at s.
These results laid the foundations for on-policy constrained
RL algorithms as in(Wu et al., 2017; Vuong et al., 2019).

However, Equation (3) does not generalize to the average
setting (γ Ñ 1) (see Appendix A.1). In the next section,
we will derive a policy improvement bound for the average
case and present an algorithm based on trust region meth-
ods, which will generate almost-monotonically improving
iterative policies. Proofs of theorems and lemmas, if not
already given, are available in Appendix A.

3. ACPO: The Average-Constrained Policy
Optimization Algorithm

In this section, we present the main results of our work. For
conciseness, we denote by dπ P R|S| the column vector
whose components are dπpsq and Pπ P R|S|ˆ|S| to be the
state transition probability matrix under policy π.

3.1. Policy Improvement for the Average-CMDP

Let π1 be the policy obtained via some update rule from
the current policy π. Analogous to the discounted setting
of a CMDP, we would like to characterize the performance
difference Jpπ1q ´ Jpπq by an expression which depends
on π and some divergence metric between the two policies.

Lemma 3.1. (Zhang & Ross, 2020) Under the unichain as-
sumption of the underlying Markov chain, for any stochastic
policies π and π1:

Jpπ1q ´ Jpπq “ E
s„dπ1

a„π1

“

sAπps, aq
‰

. (4)

Note that this difference depends on the stationary state
distribution obtained from the new policy, dπ1 . This is com-
putationally impractical as we do not have access to this dπ1 .

Fortunately, by use of the following lemma we can show
that if dπ and dπ1 are “close” with respect to some metric,
we can approximate Eq. (4) using samples from dπ .

Lemma 3.2. Under the unichain assumption, for any
stochastic policies π and π1 we have:

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Jpπ1q ´ Jpπq ´ E
s„dπ

a„π1

“

sAπps, aq
‰

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď 2ϵDTVpdπ1 ∥ dπq

(5)

, where ϵ “ maxs
ˇ

ˇ E
a„π1

r sAπps, aqs
ˇ

ˇ. See Appendix A.1 for

proof. Lemma 3.2 implies Jpπ1q « Jpπq ` Er sAπps, aqs

when dπ and dπ1 are “close”. Now that we have established
this approximation, we need to study the relation of how
the actual change in policies affects their corresponding
stationary state distributions. For this, we turn to standard
analysis of the underlying Markov chain of the CMDP.

Under the ergodic assumption, we have that Pπ is irre-
ducible and hence its eigenvalues tλπ,iu

|S|

i“1 are such that
λπ,1 “ 1 and λπ,i‰1 ă 1. For our analysis, we define
σπ “ maxi‰1 p1 ´ λπ,iq

´1{2, and from (Levene & Loizou,
2002) and (Doyle, 2009), we connect tλπ,iu

|S|

i“1 to the sensi-
tivity of the stationary distributions to changes in the policy
using the result below.

Lemma 3.3. Under the ergodic assumption, the divergence
between the stationary distributions dπ and dπ1 is upper
bounded as:

DTVpdπ1 ∥ dπq ď σ‹ E
s„dπ

rDTVpπ1 ∥ πqrsss, (6)

, where σ‹ “ maxπ σ
π. See Appendix A.1 for proof. This

bound is tighter and easier to compute than the one given by
(Zhang et al., 2021), which replaces σ‹ by κ‹ “ maxπ κ

π,
where κπ is known as Kemeny’s constant from (Kemeny
& Snell, 1960). It is interpreted as the expected number of
steps to get to any goal state, where the expectation is taken
with respect to the stationary-distribution of those states.

Combining the bounds in Lemma 3.2 and Lemma 3.3 gives
us the following result:

Proposition 3.4. Under the ergodic assumption, the follow-
ing bounds hold for any stochastic policies π and π1:

L´
π pπ1q ď Jpπ1q ´ Jpπq ď L`

π pπ1q (7)

where

L˘
π pπ1q “ E

s„dπ

a„π1

“

sAπps, aq
‰

˘ 2ν E
s„dπ

rDTVpπ1 ∥ πqrsss

and ν “ σ‹ max
s

ˇ

ˇ E
a„π1

r sAπps, aqs
ˇ

ˇ.

4

ACPO

It is interesting to compare the inequalities of Equation
(7) to Equation (4). The term Er sAπps, aqs in Prop. 3.4 is
somewhat of a surrogate approximation to Jpπ1q ´ Jpπq,
in the sense that it uses dπ instead of dπ1 . As discussed
before, we do not have access to dπ1 since the trajectories
of the new policy are not available unless the policy itself
is updated. This surrogate is a first order approximation to
Jpπ1q ´ Jpπq in the parameters of π1 in a neighborhood
around π as in (Kakade & Langford, 2002). Hence, Eq. (7)
can be viewed as bounding the worst-case approximation
error.

Extending this discussion to the cost function of our CMDP,
similar expressions follow immediately.

Corollary 3.5. For any policies π1, π, and any cost function
Ci, the following bound holds:

M´
π pπ1q ď JCipπ

1q ´ JCipπq ď M`
π pπ1q (8)

where

M˘
π pπ1q “ E

s„dπ

a„π1

“

sAπ
Ci

ps, aq
‰

˘ 2νCi E
s„dπ

rDTVpπ1 ∥ πqrsss

and νCi
“ σ‹ max

s

ˇ

ˇ E
a„π1

r sAπ
Ci

ps, aqs
ˇ

ˇ.

Until now, we have been dealing with bounds given with
regards to the TV divergence of the policies. However,
in practice, bounds with respect to the KL divergence of
policies is more commonly used as in (Schulman et al.,
2015; 2016; Ma et al., 2021). From Pinsker’s and Jensen’s
inequalities, we have that

E
s„dπ

“

DTVpπ1 ∥ πqrss
‰

ď

c

E
s„dπ

“

DKL pπ1}πqsrss
‰

{2.

(9)

We can thus use Eq. (9) in the bounds of Proposi-
tion 3.4 and Corollary 3.5 to make policy improvement
guarantees, i.e., if we find updates such that πk`1 P

argmaxπ L
´
πk

pπq, then we will have monotonically increas-
ing policies as, at iteration k, E

s„dπk
,a„π

r sAπkps, aqs “ 0,

E
s„dπk

rDKL pπ}πkq rsss “ 0 for π “ πk, implying that

Jpπk`1q ´ Jpπkq ě 0. However, this sequence does not
guarantee constraint satisfaction at each iteration, so we now
turn to trust region methods to incorporate constraints, do
policy improvement and provide safety guarantees.

3.2. Trust Region Based Approach

For large or continuous state and action CMDPs, solving
for the exact optimal policy is impractical. However, trust
region-based policy optimization algorithms have proven to
be effective for solving such problems as in (Schulman et al.,
2015; 2016; 2017; Achiam, 2017). For these approaches,

we usually consider some parameterized policy class ΠΘ “

tπθ : θ P Θu for tractibility. In addition, for CMDPs, we
also require the policy iterates to be feasible, so instead
of optimizing just over ΠΘ, we optimize over ΠΘ X ΠC .
However, it is much easier to solve the above problem if
we introduce hard constraints, rather than limiting the set
to ΠΘ X ΠC . Therefore, we now introduce the ACPO
algorithm, which is inspired by the trust region formulations
above as the following optimization problem:

maximize
πPΠΘ

E
s„dπθk
a„π

r sAπθk ps, aqs

s.t. JCi
pπθkq ` E

s„dπθk
a„π

r sA
πθk

Ci
ps, aqs ď li, @ i

D̄KLpπ ∥ πθkq ď δ
(10)

where D̄KLpπ ∥ πθkq :“ E
s„dπθk

rDKL pπ}πθkq rsss,

sAπθk ps, aq is the average advantage function defined earlier,
and δ ą 0 is a step size. We use this form of updates as it is
an approximation to the lower bound given in Proposition
3.4 and the upper bound given in Corollary 3.5.

In most cases, the trust region threshold for formulations
like Eq. (10) are heuristically motivated. We now show that
it is quantitatively motivated and comes with a worst case
performance degradation and constraint violation. Proof is
in Appendix A.2.

Theorem 3.6. Let πθk`1
be the optimal solution to Eq. (10)

for some πθk P ΠΘ. Then, we have

Jpπθk`1
q ´ Jpπθkq ě ´

a

2pδ ` Vmaxqνπθk`1 (11)

and JCipπθk`1
q ď li `

a

2pδ ` Vmaxqν
πθk`1

Ci
@ i,

(12)

where νπθk`1 “ σπθk`1 maxs
ˇ

ˇ E
a„πθk`1

r sAπθk ps, aqs
ˇ

ˇ,

ν
πθk`1

Ci
“ σπθk`1 maxi,s

ˇ

ˇ E
a„πθk`1

r sA
πθk

Ci
ps, aqs

ˇ

ˇ, Vmax “

maxi β
2
i , and βi “ rJCi

pπθkq ´ lis`.

Remark 3.7. Note that if the constraints are ignored (by
setting Vmax “ 0), then this bound is tighter than given in
(Zhang et al., 2021) for the unconstrained average-reward
setting.

However, the update rule of Eq. (10) is difficult to imple-
ment in practice as it takes steps that are too small, which
degrades convergence. In addition, it requires the exact
knowledge of sAπθk ps, aq which is computationally infeasi-
ble for large-scale problems. In the next section, we will
introduce a specific sampling-based practical algorithm to
alleviate these concerns.

5

ACPO

4. Practical Implementation of ACPO
In this section, we introduce a practical version of the ACPO
algorithm with a principle recovery method. With a small
step size δ, we can approximate the reward function and
constraints with a first order expansion, and approximate
the KL divergence constraint with a second order expansion.
This gives us a new optimization problem which can be
solved exactly using Lagrangian duality.

4.1. An Implementation of ACPO

Since we are working with a parameterized class, we shall
now overload notation to use θk as the policy at iteration k,
i.e., θk ” πθk . In addition, we use g to denote the gradient
of the advantage function objective, ai to denote the gradient
of the advantage function of the cost Ci, H as the Hessian
of the KL-divergence. Formally,

g :“ ∇θ E
s„dθk
a„θ

r sAθk ps, aqs

ˇ

ˇ

ˇ

θ“θk

,

ai :“ ∇θ E
s„dθk
a„θ

r sA
θk
Ci

ps, aqs

ˇ

ˇ

ˇ

θ“θk

,

H :“ ∇2
θ E
s„dθk

“

DKL pθ}θkqqrss
‰

ˇ

ˇ

ˇ

θ“θk

.

In addition, let ci :“ JCi
pθkq ´ li. The approximation to

the problem in Eq. (10) is:

max
θ

gT pθ ´ θkq

s.t. ci ` aTi pθ ´ θkq ď 0, @ i

and, 1
2 pθ ´ θkqTHpθ ´ θkq ď δ.

(13)

This is a convex optimization problem in which strong du-
ality holds, and hence it can be solved using a Lagrangian
method. The update rule for the dual problem then takes the
form

θk`1 “ θk `
1

λ‹
H´1 pg ´ Aµ‹q . (14)

where λ‹ and µ‹ are the Lagrange multipliers satisfying the
dual

max
λě0
µľ0

´1

2λ

`

gTH´1g ´ 2rTµ ` µTSµ
˘

` µT c ´
λδ

2
,

(15)

with r :“ gTH´1A, S :“ ATH´1A, A :“ ra1, ¨ ¨ ¨ , ams,
and c :“ rc1, ¨ ¨ ¨ , cmsT .

4.2. Feasibility and Recovery

The approximation regime described in Eq. (13) requires
H to be invertible. For large parametric policies, H is com-
puted using the conjugate gradient method as in (Schulman
et al., 2015). However, in practice, using this approximation
along with the associated statistical sampling errors, there

Algorithm 1 Average-Constrained Policy Optimization
(ACPO)

1: Input: Initial random policy π0 P Πθ

2: for k “ 0, 1, 2, ...,K do
3: Sample a set of trajectories Ω using πk “ πθk

4: Find estimates of g, a,H, c using Ω
5: if a feasible solution to Equation (13) exists then
6: Solve dual problem in Equation (15) for λ‹

k, µ
‹
k

7: Find policy update πk`1 with Equation (14)
8: else
9: Find recovery policy πk`1{2 with Equation (16)

10: Obtain πk`1 by linesearch till approximate con-
straint satisfaction of Equation (13)

11: end if
12: end for

might be potential violations of the approximate constraints
leading to infeasible policies.

To rectify this, for the case where we only have one con-
straint, one can recover a feasible policy by applying a recov-
ery step inspired by the TRPO update on the cost surrogate
as:

θk`1{2 “ θk ´
?
2δ

„

t ¨
H´1a

?
aTH´1a

` p1 ´ tq ¨
H´1g

a

gTH´1g

ȷ

(16)

where t P r0, 1s. Contrasting with the policy recovery up-
date of (Achiam et al., 2017) which only uses the cost advan-
tage function gradient a, we introduce the reward advantage
function gradient g as well. This choice is to ensure recovery
while simultaneously balancing the “regret” of not choosing
the best (in terms of the objective value) policy πk. In other
words, we wish to find a policy πk`1{2 as close to πk in
terms of their objective function values. We follow up this
step with a simple linesearch to find feasible πk`1. Based
on this, Algorithm 1 provides a basic outline of ACPO. For
more details of the algorithm, see Appendix A.3.

5. Empirical Results
We conducted a series of experiments to evaluate the relative
performance of the ACPO algorithm and answer the follow-
ing questions: (i) Does ACPO learn a sequence of constraint
satisfying policies while maximizing the average reward
in the long run? (ii) How does ACPO compare with the
already existing constraint policy optimization algorithms
which are applied with a large discount factor? (iii) What
are the factors that affect the performance of ACPO?

We work with the OpenAI Gym environments to train the
various learning agent on the following tasks - Gather, Cir-
cle, Grid, and Bottleneck tasks (see Figure 3 in Appendix
A.6.1 for more details on the environments). For our exper-

6

ACPO

Average Rewards:

2 4 6 8

175

150

125

100

75

50

25

0
2 4 6 8

320

300

280

260

240

220

200

180
2 4 6 8

105

90

75

60

45

30

15

0

Average Constraint values:

2 4 6 8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

(a) Ant Gather

2 4 6 8

140

120

100

80

60

40

20

0

(b) Bottleneck

2 4 6 8

35

30

25

20

15

10

5

0

(c) Grid

Figure 1. The average reward and constraint cost function values vs iterations (in 104) learning curves for some algorithm-task pairs.
Solid lines in each figure are the empirical means, while the shaded area represents 1 standard deviation, all over 5 runs. The dashed
line in constraint plots is the constraint threshold l. ATRPO and PPO are tested with constraints, which are included in their Lagrangian
formulation. Additional results are available in Appendix A.6.

iments we only work with a single constraint with policy
recovery using Eq. (16) (this is only a computational limi-
tation; ACPO in principle can handle multiple constraints).
We compare ACPO with the following baseline algorithms:
CPO by (Achiam et al., 2017), ATRPO by (Zhang et al.,
2021), PCPO by (Yang et al., 2020) (a close variant of CPO),
BVF-PPO by (Satija et al., 2020) and PPO by (Schulman
et al., 2017).

Although ATRPO and PPO originally do not incorporate
constraints, for fair comparison, we introduce constraints us-
ing a Lagrangian. Also, CPO, PCPO and PPO are compared
with γ “ 0.999. See Appendix A.5 for more details.

5.1. Evaluation Details and Protocol

For the Gather and Circle tasks we test two distinct agents:
a point-mass (S Ď R9, A Ď R2), and an ant robot (S Ď

R32, A Ď R8). The agent in the Bottleneck task in S Ď

R71, A Ď R16, and for the Grid task is S Ď R96, A Ď

R4. We use two hidden layer neural networks to represent
Gaussian policies for the tasks. For Gather and Circle, size
is (64,32) for both layers, and for Grid and Bottleneck the
layer sizes are (16,16) and (50,25). We set the step size δ

to 10´4, and for each task, we conduct 5 runs to get the
mean and standard deviation for reward objective and cost
constraint values during training. We train CPO, PCPO,
and PPO with the discounted objective, however, evaluation
and comparison with BVF-PPO, ATRPO and ACPO1 is
done using the average reward objective (this is a standard
evaluation scheme as in (Schulman et al., 2015; Wu et al.,
2017; Vuong et al., 2019)).

For each environment, we train an agent for 105 steps, and
for every 103 steps, we instantiate 10 evaluation trajectories
with the current (deterministic) policy. For each of these
trajectories, we calculate the trajectory average reward for
the next 103 steps and finally report the total average-reward
as the mean of these 10 trajectories. Learning curves for
the algorithms are compiled in Figure 1 (for Point-Circle,
Point-Gather, and Ant-Circle see Appendix A.6).

Since there are two objectives (rewards in the objective and
costs in the constraints), we show the plots which maximize
the reward objective while satisfying the cost constraint. See
Appendix A.4 and A.5 for more details.

1Code of the ACPO implementation will be made available on
GitHub.

7

ACPO

5.2. Performance Analysis

From Figure 1, we can see that ACPO is able to improve
the reward objective while having approximate constraint
satisfaction on all tasks. In particular, ACPO is the only algo-
rithm that best learns almost-constraint-satisfying maximum
average-reward policies across all tasks: in a simple Gather
environment, ACPO is able to almost exactly track the cost
constraint values to within the given threshold l; however,
for the high dimensional Grid and Bottleneck environments
we have more constraint violations due to complexity of the
policy behavior. Regardless, in these environments, ACPO
still outperforms all other baselines.

ACPO vs. CPO/PCPO. For the Point-Gather environment
(see Figure 4), we see that initially ACPO and CPO/PCPO
give relatively similar performance, but eventually ACPO
improves over CPO and PCPO by 52.5% and 36.1% on
average-rewards respectively. This superior performance
does not come with more constraint violation. The Ant-
Gather environment particularly brings out the effectiveness
of ACPO where it shows 41.1% and 61.5% improvement
over CPO and PCPO respectively, while satisfying the con-
straint. In the high dimensional Bottleneck and Grid envi-
ronments, ACPO is particularly quick at optimizing for low
constraint violations, while improving over PCPO and CPO
in terms of average-reward.

ACPO vs Lagrangian ATRPO/PPO. One could suppose
to use the state of the art unconstrained policy optimiza-
tion algorithms with a Lagrangian formulation to solve the
average-rewards CMDP problem in consideration, but we
see that such an approach, although principled in theory,
does not give satisfactory empirical results. This can be
particularly seen in the Ant-Circle, Ant-Gather, Bottleneck,
and Grid environments, where Lagrangian ATRPO and PPO
give the least rewards, while not even satisfying the con-
straints. If ATRPO and PPO were used with constraints
ignored, one would see higher rewards but even worse con-
straint violations, which are not useful.

ACPO vs BVF-PPO. BVF-PPO is a whole different formu-
lation than the other baselines, as it translates the cumulative
cost constraints into state-based constraints, which results
in an almost-safe policy improvement method which max-
imizes returns at every step. However, we see that this
approach fails to satisfy the constraints even in the moder-
ately difficult Ant Gather environment, let alone the high
dimensional Bottleneck and Grid environments.

5.3. Dependence of the Recovery Regime

In Equation (16) we introduced a hyperparameter t, which
provides for an intuitive trade-off as follows: either we
purely decrease the constraint violations (t “ 1), or we
decrease the average-reward (t “ 0), which consequently

2 4 6 8

56

48

40

32

24

16

8

0

(a) Rewards
2 4 6 8

56

48

40

32

24

16

(b) Costs

Figure 2. Comparison of performance of ACPO with different val-
ues of the hyperparameter t in the Point-Circle environment. X-
axis is iterations in 104. See Appendix A.6 for more details.

decreases the constraint violation. The latter formulation is
principled in that if we decrease rewards, we are bound to
decrease constraints violation due to the nature of the envi-
ronments. Figure 2 shows the experiments we conducted
with varying t. With t “ 1, we obtain the same recovery
scheme as that of (Achiam et al., 2017). Our results show
that this scheme does not lead to the best performance, and
that t “ 0.75 and t “ 1 perform the best across all tasks.
See Appendix A.6 for a detailed study.

6. Conclusions
In this paper, we studied the problem of learning policies
that maximize average-rewards for a given CMDP with
average-cost constraints. We showed that the current algo-
rithms with constraint violation bounds for the discounted
setting do not generalize to the average setting. We then
proposed a new algorithm, the Average-Constrained Policy
Optimization (ACPO) that is inspired by the TRPO class of
algorithms but based on theoretical sensitivity-type bounds
for average-CMDPs we derive, and use in designing the
algorithm. Our experimental results on a range of Ope-
nAI Gym environments (including some high dimensional
ones) show the effectiveness of ACPO on ACMDP RL prob-
lems, as well as its superior empirical performance vis-a-vis
some current alternatives. A direction for future work is
implementation of ACPO to fully exploit the parallelization
potential.

Impact Statement
This paper not only advances the field of RL theory and algo-
rithms but also introduces a practical and scalable algorithm
(supported by theory) that is of utility in many fields includ-
ing LLMs, Diffusion Models, and robotic control. Currently,
algorithms such as PPO are adapted for use simply because
of lack of alternatives.

8

ACPO

References
Abounadi, J., Bertsekas, D., and Borkar, V. S. Learning algorithms

for markov decision processes with average cost. SIAM Journal
on Control and Optimization, 40(3):681–698, 2001.

Achiam, J. UC Berkeley CS 285 (Fall 2017), Advanced Policy
Gradients, 2017. URL: http://rail.eecs.berkeley.
edu/deeprlcourse-fa17/f17docs/lecture_13_
advanced_pg.pdf. Last visited on 2020/05/24.

Achiam, J., Held, D., Tamar, A., and Abbeel, P. Constrained
policy optimization. In Proceedings of the 34th International
Conference on Machine Learning-Volume 70, pp. 22–31. JMLR.
org, 2017.

Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I., Aleman,
F. L., Almeida, D., Altenschmidt, J., Altman, S., Anadkat, S.,
et al. Gpt-4 technical report. arXiv preprint arXiv:2303.08774,
2023.

Agnihotri, A., Saraf, P., and Bapnad, K. R. A convolutional neural
network approach towards self-driving cars. In 2019 IEEE 16th
India Council International Conference (INDICON), pp. 1–4,
2019. doi: 10.1109/INDICON47234.2019.9030307.

Akkaya, I., Andrychowicz, M., Chociej, M., Litwin, M., McGrew,
B., Petron, A., Paino, A., Plappert, M., Powell, G., Ribas, R.,
et al. Solving rubik’s cube with a robot hand. arXiv preprint
arXiv:1910.07113, 2019.

Altman, E. Constrained Markov decision processes, volume 7.
CRC Press, 1999.

Aractingi, M., Léziart, P.-A., Flayols, T., Perez, J., Silander, T.,
and Souères, P. Controlling the solo12 quadruped robot with
deep reinforcement learning. scientific Reports, 13(1):11945,
2023.

Bhatnagar, S. and Lakshmanan, K. An Online Actor–Critic
Algorithm with Function Approximation for Constrained
Markov Decision Processes. https://doi.org/10.
1007/s10957-012-9989-5, 2012. [Accessed 08-10-
2023].

Borkar, V. S. A convex analytic approach to markov decision
processes. Probability Theory and Related Fields, 78(4):583–
602, 1988.

Calvo-Fullana, M., Paternain, S., Chamon, L. F., and Ribeiro, A.
State augmented constrained reinforcement learning: Overcom-
ing the limitations of learning with rewards. IEEE Transactions
on Automatic Control, 2023.

Chen, L., Jain, R., and Luo, H. Learning infinite-horizon average-
reward Markov decision process with constraints. In Chaud-
huri, K., Jegelka, S., Song, L., Szepesvari, C., Niu, G., and
Sabato, S. (eds.), Proceedings of the 39th International Con-
ference on Machine Learning, volume 162 of Proceedings of
Machine Learning Research, pp. 3246–3270. PMLR, 17–23
Jul 2022. URL https://proceedings.mlr.press/
v162/chen22i.html.

Cho, G. E. and Meyer, C. D. Comparison of perturbation bounds
for the stationary distribution of a markov chain. Linear Algebra
and its Applications, 335(1-3):137–150, 2001.

Doyle, P. G. The kemeny constant of a markov chain. arXiv
preprint arXiv:0909.2636, 2009.

Gao, Y., Xu, H., Lin, J., Yu, F., Levine, S., and Darrell, T. Re-
inforcement learning from imperfect demonstrations. arXiv
preprint arXiv:1802.05313, 2018.

Garcia, J. and Fernandez, F. A comprehensive survey on safe
reinforcement learning. Journal of Machine Learning Research,
16(1):1437–1480, 2015.

Hordijk, A. and Kallenberg, L. Linear programming and markov
decision chains. Management Science, 25(4):352–362, 1979.

Hu, H., Liu, Z., Chitlangia, S., Agnihotri, A., and Zhao, D. Inves-
tigating the impact of multi-lidar placement on object detection
for autonomous driving. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR),
pp. 2550–2559, June 2022.

Hunter, J. J. Stationary distributions and mean first passage times of
perturbed markov chains. Linear Algebra and its Applications,
410:217–243, 2005.

Hunter, J. J. Mathematical techniques of applied probability:
Discrete time models: Basic theory, volume 1. Academic Press,
2014.

Kakade, S. and Langford, J. Approximately optimal approximate
reinforcement learning. In International Conference on Ma-
chine Learning, volume 2, pp. 267–274, 2002.

Kemeny, J. and Snell, I. Finite Markov Chains. Van Nostrand,
New Jersey, 1960.

Levene, M. and Loizou, G. Kemeny’s constant and the random
surfer. The American mathematical monthly, 109(8):741–745,
2002.

Levine, S., Finn, C., Darrell, T., and Abbeel, P. End-to-end training
of deep visuomotor policies. Journal of Machine Learning
Research, 17(1):1334–1373, 2016.

Liao, P., Qi, Z., Wan, R., Klasnja, P., and Murphy, S. A. Batch
policy learning in average reward markov decision processes.
The Annals of Statistics, 50(6):3364–3387, 2022.

Ma, X., Tang, X., Xia, L., Yang, J., and Zhao, Q. Average-reward
reinforcement learning with trust region methods. arXiv preprint
arXiv:2106.03442, 2021.

Manne, A. S. Linear programming and sequential decisions. Man-
agement Science, 6(3):259–267, 1960.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J.,
Bellemare, M. G., Graves, A., Riedmiller, M., Fidjeland, A. K.,
Ostrovski, G., et al. Human-level control through deep rein-
forcement learning. nature, 518(7540):529–533, 2015.

Moskovitz, T., Singh, A. K., Strouse, D., Sandholm, T., Salakhut-
dinov, R., Dragan, A. D., and McAleer, S. Confronting reward
model overoptimization with constrained rlhf. arXiv preprint
arXiv:2310.04373, 2023.

Rajeswaran, A., Kumar, V., Gupta, A., Vezzani, G., Schulman, J.,
Todorov, E., and Levine, S. Learning complex dexterous manip-
ulation with deep reinforcement learning and demonstrations.
arXiv preprint arXiv:1709.10087, 2017.

9

http://rail.eecs.berkeley.edu/deeprlcourse-fa17/f17docs/lecture_13_advanced_pg.pdf
http://rail.eecs.berkeley.edu/deeprlcourse-fa17/f17docs/lecture_13_advanced_pg.pdf
http://rail.eecs.berkeley.edu/deeprlcourse-fa17/f17docs/lecture_13_advanced_pg.pdf
https://doi.org/10.1007/s10957-012-9989-5
https://doi.org/10.1007/s10957-012-9989-5
https://proceedings.mlr.press/v162/chen22i.html
https://proceedings.mlr.press/v162/chen22i.html

ACPO

Satija, H., Amortila, P., and Pineau, J. Constrained Markov deci-
sion processes via backward value functions. In III, H. D. and
Singh, A. (eds.), Proceedings of the 37th International Con-
ference on Machine Learning, volume 119 of Proceedings of
Machine Learning Research, pp. 8502–8511. PMLR, 13–18
Jul 2020. URL https://proceedings.mlr.press/
v119/satija20a.html.

Schulman, J., Levine, S., Abbeel, P., Jordan, M., and Moritz, P.
Trust region policy optimization. In International Conference
on Machine Learning, pp. 1889–1897, 2015.

Schulman, J., Moritz, P., Levine, S., Jordan, M., and Abbeel, P.
High-dimensional continuous control using generalized advan-
tage estimation. International Conference on Learning Repre-
sentations (ICLR), 2016.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov,
O. Proximal policy optimization algorithms. arXiv preprint
arXiv:1707.06347, 2017.

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang,
A., Guez, A., Hubert, T., Baker, L., Lai, M., Bolton, A., et al.
Mastering the game of go without human knowledge. nature,
550(7676):354–359, 2017.

Song, H. F., Abdolmaleki, A., Springenberg, J. T., Clark, A., Soyer,
H., Rae, J. W., Noury, S., Ahuja, A., Liu, S., Tirumala, D., et al.
V-mpo: on-policy maximum a posteriori policy optimization
for discrete and continuous control. International Conference
on Learning Representations, 2020.

Tessler, C., Mankowitz, D. J., and Mannor, S. Reward constrained
policy optimization. International Conference on Learning
Representation (ICLR), 2019.

Tibshirani, R. J. Dykstra’s algorithm, admm, and coordinate de-
scent: Connections, insights, and extensions. Advances in
Neural Information Processing Systems, 30, 2017.

Todorov, E., Erez, T., and Tassa, Y. Mujoco: A physics engine for
model-based control. In 2012 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems, pp. 5026–5033. IEEE,
2012.

Vinitsky, E., Kreidieh, A., Le Flem, L., Kheterpal, N., Jang, K.,
Wu, F., Liaw, R., Liang, E., and Bayen, A. M. Benchmarks for
reinforcement learning in mixed-autonomy traffic. In Proceed-
ings of Conference on Robot Learning, pp. 399–409, 2018.

Vinyals, O., Babuschkin, I., Czarnecki, W. M., Mathieu, M.,
Dudzik, A., Chung, J., Choi, D. H., Powell, R., Ewalds, T.,
Georgiev, P., et al. Grandmaster level in starcraft ii using
multi-agent reinforcement learning. Nature, 575(7782):350–
354, 2019.

Vuong, Q., Zhang, Y., and Ross, K. W. Supervised policy update
for deep reinforcement learning. In International Conference
on Learning Representation (ICLR), 2019.

Wan, Y., Naik, A., and Sutton, R. S. Learning and planning in
average-reward markov decision processes. In International
Conference on Machine Learning, pp. 10653–10662. PMLR,
2021.

Wei, C.-Y., Jahromi, M. J., Luo, H., and Jain, R. Learning infinite-
horizon average-reward mdps with linear function approxima-
tion. In International Conference on Artificial Intelligence and
Statistics, pp. 3007–3015. PMLR, 2021.

Wu, Y., Mansimov, E., Grosse, R. B., Liao, S., and Ba, J. Scal-
able trust-region method for deep reinforcement learning using
kronecker-factored approximation. In Advances in neural infor-
mation processing systems (NIPS), pp. 5285–5294, 2017.

Yang, T.-Y., Rosca, J., Narasimhan, K., and Ramadge, P. J.
Projection-based constrained policy optimization. In Interna-
tional Conference on Learning Representation (ICLR), 2020.

Zhang, S., Wan, Y., Sutton, R. S., and Whiteson, S. Average-reward
off-policy policy evaluation with function approximation. arXiv
preprint arXiv:2101.02808, 2021.

Zhang, Y. and Ross, K. Average reward reinforcement learning
with monotonic policy improvement. Preprint, 2020.

10

https://proceedings.mlr.press/v119/satija20a.html
https://proceedings.mlr.press/v119/satija20a.html

ACPO

A. Appendix
A.1. Proofs

Lemma A.1 (Trivialization of Discounted Criterion Bounds). Consider the policy performance bound of (Achiam et al.,
2017), which says that for any two stationary policies π and π1:

Jγpπ1q ´ Jγpπq ě
1

1 ´ γ

»

– E
s„dπ,γ

a„π1

rAπ
γ ps, aqs ´

2γϵγ

1 ´ γ
E

s„dπ,γ

DTVpπ1 ∥ πqrss

fi

fl (17)

where ϵγ “ maxs

ˇ

ˇ

ˇ

ˇ

E
a„π1

rAπ
γ ps, aqs

ˇ

ˇ

ˇ

ˇ

. Then, the right hand side times 1 ´ γ goes to negative infinity as γ Ñ 1.

Proof. Since dπ,γ approaches the stationary distribution dπ as γ Ñ 1, we can multiply the right hand side of (17) by p1´γq

and take the limit which gives us:

lim
γÑ1

¨

˝ E
s„dπ,γ

a„π1

rAπ
γ ps, aqs ˘

2γϵγ

1 ´ γ
E

s„dπ,γ

DTVpπ1 ∥ πqrss

˛

‚

“ E
s„dπ

a„π1

r sAπps, aqs ´ 2ϵ E
s„dπ

“

DTVpπ1 ∥ πqrss
‰

¨ lim
γÑ1

γ

1 ´ γ

“ ´ 8

Here ϵ “ maxs

ˇ

ˇ

ˇ

ˇ

E
a„π1

r sAπps, aqs

ˇ

ˇ

ˇ

ˇ

. The first equality is a standard result of limγÑ1 A
π
γ ps, aq “ sAπps, aq.

Lemma A.2. (Zhang & Ross, 2020) Under the unichain assumption of the underlying Markov chain, for any stochastic
policies π and π1:

Jpπ1q ´ Jpπq “ E
s„dπ1

a„π1

“

sAπps, aq
‰

. (4)

Proof. We directly expand the right-hand side using the definition of the advantage function and Bellman equation, which
gives us:

E
s„dπ1

a„π1

“

sAπps, aq
‰

“ E
s„dπ1

a„π1

“

sQπps, aq ´ sV πpsq
‰

“ E
s„dπ1

a„π1

s1
„P p¨|s,aq

“

rps, a, s1q ´ Jpπq ` sV πps1q ´ sV πpsq
‰

“ Jpπ1q ´ Jpπq ` E
s„dπ1

a„π1

s1
„P p¨|s,aq

r sV πps1qs ´ E
s„dπ1

r sV πpsqs

looooooooooooooooooooomooooooooooooooooooooon

A

Analyzing A, since dπ1 psq is a stationary distribution:

E
s„dπ1

a„π1

s1
„P p¨|s,aq

r sV πps1qs “
ÿ

s

dπ1 psq
ÿ

a

π1pa|sq
ÿ

s1

P ps1|s, aq sV πps1q

“
ÿ

s

dπ1 psq
ÿ

s1

Pπ1 ps1|sq sV πps1q “
ÿ

s1

dπ1 ps1q sV πps1q

Therefore, A “
ř

s1 dπ1 ps1q sV πps1q ´ E
s„dπ1

r sV πpsqs “ 0. Hence, proved.

11

ACPO

Lemma A.3. Under the unichain assumption, for any stochastic policies π and π1 we have:

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Jpπ1q ´ Jpπq ´ E
s„dπ

a„π1

“

sAπps, aq
‰

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď 2ϵDTVpdπ1 ∥ dπq (5)

Proof.

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Jpπ1q ´ Jpπq ´ E
s„dπ

a„π1

“

sAπps, aq
‰

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

E
s„dπ1

a„π1

“

sAπps, aq
‰

´ E
s„dπ

a„π1

“

sAπps, aq
‰

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

(from Lemma 3.1)

“

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

s

E
a„π1

“

sAπps, aq
‰

pdπ1 psq ´ dπpsqq

ˇ

ˇ

ˇ

ˇ

ˇ

ď
ÿ

s

ˇ

ˇ

ˇ

ˇ

E
a„π1

“

sAπps, aq
‰

pdπ1 psq ´ dπpsqq

ˇ

ˇ

ˇ

ˇ

ď max
s

ˇ

ˇ

ˇ

ˇ

E
a„π1

“

sAπps, aq
‰

ˇ

ˇ

ˇ

ˇ

}dπ1 ´ dπ}1 (Holder’s inequality)

“ 2ϵDTVpdπ1 ∥ dπq

Lemma A.4. Under the ergodic assumption, the divergence between the stationary distributions dπ and dπ1 is upper
bounded as:

DTVpdπ1 ∥ dπq ď σ‹ E
s„dπ

rDTVpπ1 ∥ πqrsss, (6)

Proof. This proof takes ideas from Markov chain perturbation theory in (Cho & Meyer, 2001; Hunter, 2005; Zhang & Ross,
2020). Firstly we state a standard result with P ‹

π “ 1dTπ

pdπ1 ´ dπqT pI ´ Pπ1 ` P ‹
π1 q “ dTπ1 ´ dTπ ´ dTπ1 ` dTπPπ1 “ dTπPπ1 ´ dTπ “ dTπ pPπ1 ´ Pπq.

Denoting the fundamental matrix of the Markov chain Zπ1

“ pI ´ Pπ1 ` P ‹
π1 q

´1 and the mean first passage time matrix
Mπ1

“ pI ´ Zπ1

` EZπ1

dg qDπ1

, and right multiplying the above by pZπ1

q´1 we have,

dTπ1 ´ dTπ “ dTπ pPπ1 ´ PπqpI ´ Mπ1

pDπ1

q´1q ñ dπ1 ´ dπ “ pI ´ Mπ1

pDπ1

q´1qT pPT
π1 ´ PT

π qdπ (18)

i.e. }dπ1 ´ dπ}1 ď

›

›

›
pI ´ Mπ1

pDπ1

q´1qT pPT
π1 ´ PT

π qdπ

›

›

›

1
(submultiplicative property)

}dπ1 ´ dπ}1 ď

›

›

›
pI ´ Mπ1

pDπ1

q´1q

›

›

›

8
looooooooooooomooooooooooooon

T1

›

›pPT
π1 ´ PT

π qdπ
›

›

1
looooooooomooooooooon

T2

(Holder’s inequality)

We know that κπ “ TrpZπq and from (Hunter, 2014), we can write T1 using the eigenvalues tλπ,iu
|S|

i“1 of the underlying Pπ

as

T1 ď
1

|S|

|S|
ÿ

i“2

1

p1 ´ λπ,iq
1{2

ď max
i

p1 ´ λπ,iq
´1{2 “ σπ ď max

π
σπ “ σ‹.

For T2, we refer to the result by (Zhang & Ross, 2020), and provide the proof for completeness below.

12

ACPO

T2 “
ÿ

s1

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

s

˜

ÿ

a

P ps1|s, aqπ1pa|sq ´ P ps1|s, aqπpa|sq

¸

dπpsq

ˇ

ˇ

ˇ

ˇ

ˇ

ď
ÿ

s1,s

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

a

P ps1|s, aqpπ1pa|sq ´ πpa|sqq

ˇ

ˇ

ˇ

ˇ

ˇ

dπpsq

ď
ÿ

s,s1,a

P ps1|s, aq
ˇ

ˇπ1pa|sq ´ πpa|sq
ˇ

ˇ dπpsq

ď
ÿ

s,a

ˇ

ˇπ1pa|sq ´ πpa|sq
ˇ

ˇ dπpsq “ 2 E
s„dπ

rDTVpπ1 ∥ πqrsss

Combining these inequalities of T1 and T2, we get the desired result.

A.2. Performance and Constraint Bounds of Trust Region Approach

Consider the trust region formulation in Equation (10). To prove the policy performance bound when the current policy is
infeasible (i.e., constraint-violating), we prove the KL divergence between πk and πk`1 for the KL divergence projection,
along with other lemmas. We then prove our main theorem for the worst-case performance degradation.

Lemma A.5. For a closed convex constraint set, if we have a constraint satisfying policy πk and the KL divergence
E

s„dπk

“

DKL
`

πk`1{2

›

›πk

˘

rss
‰

of the ‘Improve’ step is upper bounded by step size δ, then after KL divergence projection of

the ‘Project’ step we have
E

s„dπk

“

DKL pπk`1}πkq rss
‰

ď δ.

Proof. We make use of the fact that Bregman divergence (hence, KL divergence) projection onto the constraint set
(P Rd , d P N) exists and is unique. Since πk is safe, we have πk in the constraint set, and πk`1 is the projection of πk` 1

2

onto the constraint set. Using the projection inequality, we have

E
s„dπk

“

DKL pπk}πk`1q rss
‰

` E
s„dπk

“

DKL

´

πk`1

›

›

›
πk` 1

2

¯

rss
‰

ď E
s„dπk

“

DKL

´

πk

›

›

›
πk` 1

2

¯

rss
‰

ñ E
s„dπk

“

DKL pπk}πk`1q rss
‰

ď E
s„dπk

“

DKL

´

πk

›

›

›
πk` 1

2

¯

rss
‰

ď δ. (DKL p¨}¨q ě 0)

Since KL divergence is asymptotically symmetric when updating the policy within a local neighbourhood (δ ăă 1), we
have

E
s„dπk

“

DKL pπk`1}πkq rss
‰

ď E
s„dπk

“

DKL

´

πk` 1
2

›

›

›
πk

¯

rss
‰

ď δ.

Lemma A.6. For a closed convex constraint set, if we have a constraint violating policy πk and the KL divergence
E

s„dπk

“

DKL
`

πk`1{2

›

›πk

˘

rss
‰

of the first step is upper bounded by step size δ, then after KL divergence projection of the

second step we have
E

s„dπk

“

DKL pπk`1}πkq rss
‰

ď δ ` Vmax,

where Vmax “ maxi αiβ
2
i , βi “ rJCi

pπkq ´ lis`, αi “ 1
2aT

i H´1ai
, with ai as the gradient of the cost advantage function

corresponding to constraint Ci, and H as the Hessian of the KL divergence constraint. 2.

Proof. Let the sublevel set of cost constraint function for the current infeasible policy πk be given as:

Lπk
“ tπ | JCipπq ` E

s„dπk
a„π

r sAπk

Ci
ps, aqs ď JCipπkq @ iu.

2For any x P R, rxs` :“ maxp0, xq

13

ACPO

This implies that the current policy πk lies in Lπk
. The constraint set onto which πk` 1

2
is projected onto is given by:

tπ | JCipπkq ` E
s„dπk
a„π

r sAπk

Ci
ps, aqs ď li @ iu. Let πL

k`1 be the projection of πk` 1
2

onto Lπk
.

Note that the Bregman inequality of Lemma A.5 holds for any convex set in Rd , d P N. This implies
E

s„dπk

“

DKL
`

πL
k`1

›

›πk

˘

rss
‰

ď δ since πk and πL
k`1 are both in Lπk

, which is also convex since the constraint functions are

convex. Using the Three-point Lemma 3, for polices πk, πk`1, and πL
k`1, with φpxq :“

ř

i xi log xi, we have

δ ě E
s„dπk

“

DKL
`

πL
k`1

›

›πk

˘

qrss
‰

“ E
s„dπk

“

DKL pπk`1}πkq rss
‰

´ E
s„dπk

“

DKL
`

πk`1

›

›πL
k`1

˘

rss
‰

` E
s„dπk

“

p∇φpπkq ´ ∇φpπL
k`1qqT pπk`1 ´ πL

k`1qrss
‰

ñ E
s„dπk

“

DKL pπk`1}πkq rss
‰

ď δ ` E
s„dπk

“

DKL
`

πk`1

›

›πL
k`1

˘

rss
‰

looooooooooooooooomooooooooooooooooon

T1

´ E
s„dπk

“

p∇φpπkq ´ ∇φpπL
k`1qqT pπk`1 ´ πL

k`1qrss
‰

loooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooon

T2

. (19)

If the constraint violations of the current policy πk are small, i.e., JCipπkq ´ li “ bi is small for all i, then T1 can be
approximated by a second order expansion. We analyze T1 for any constraint Ci and then bound it over all the constraints.
As before we overload the notation with πk “ πθk “ θk to write. For any constraint Ci, we can write T i

1 as the expected KL
divergence if projection was onto the constraint set of Ci i.e.

T i
1 «

1

2
pπk`1 ´ πL

k`1qTHpπk`1 ´ πL
k`1q “

1

2

´ βi

aTi H
´1ai

H´1ai

¯T

H
´ βi

aTi H
´1ai

H´1ai

¯

“
β2
i

2aTi H
´1ai

“ αiβ
2
i ,

where the second equality is a result of the trust region guarantee (see (Schulman et al., 2015) for more details). Finally we
invoke the projection result from (Achiam, 2017) which uses Dykstra’s Alternating Projection algorithm from (Tibshirani,
2017) to bound this projection, i.e., T1 ď maxi T

i
1 « maxi αiβ

2
i .

And since δ is small, we have ∇φpπkq ´ ∇φpπL
k`1q « 0 given s. Thus, T2 « 0. Combining all of the above, we have

E
s„dπk

“

DKL pπk`1}πkq rss
‰

ď δ ` Vmax.

Theorem 3.6. Let πθk`1
be the optimal solution to Eq. (10) for some πθk P ΠΘ. Then, we have

Jpπθk`1
q ´ Jpπθkq ě ´

a

2pδ ` Vmaxqνπθk`1 (11)

and JCi
pπθk`1

q ď li `
a

2pδ ` Vmaxqν
πθk`1

Ci
@ i, (12)

where νπθk`1 “ σπθk`1 maxs
ˇ

ˇ E
a„πθk`1

r sAπθk ps, aqs
ˇ

ˇ, ν
πθk`1

Ci
“ σπθk`1 maxi,s

ˇ

ˇ E
a„πθk`1

r sA
πθk

Ci
ps, aqs

ˇ

ˇ, Vmax “ maxi β
2
i ,

and βi “ rJCi
pπθkq ´ lis`.

Proof. Since D̄KLpπθk ∥ πθkq “ 0, πθk is feasible. The objective value is 0 for πθ “ πθk . The bound follows from Equation
(7) and Equation (9) where the average KL i.e. E

s„dπk

“

DKL pπk`1}πkq rss
‰

is bounded by δ ` Vmax from Lemma A.6.

Similar to Corollary 3.5, expressions for the auxiliary cost constraints also follow immediately as the second result.

3For any ϕ, the Bregman divergence identity: Dϕpx, yq ` Dϕpy, zq “ Dϕpx, zq` ă ∇ϕpzq ´ ∇ϕpyq, x ´ y ą

14

ACPO

Remark A.7. Remark If we look at proof as given by (Zhang & Ross, 2020) in Section 5 of their paper, with the distinction
now that δ is replaced by δ ` Vmax, we have the same result. Our worse bound is due to the constrained nature of our
setting, which is intuitive in the sense that for the sake of satisfying constraints, we undergo a worse worst-case performance
degradation.

A.3. Approximate ACPO

A.3.1. POLICY RECOVERY ROUTINE

As described in Section 4.2, we need a recovery routine in case the updated policy πk`1{2 is not approximate constraint
satisfying. In this case, the optimization problem is inspired from a simple trust region approach by (Schulman et al., 2015).
Since we only deal with one constraint in the practical implementation of ACPO, the recovery rule is obtained by solving
the following problem:

minθ c ` aT pθ ´ θkq

s.t. 1
2 pθ ´ θkq

T
H pθ ´ θkq ď δ.

Let x “ θ ´ θk, then the dual function Lpx, λq is given by: Lpx, λq “ c ` aTx ` λ
`

1
2x

THx ´ δ
˘

. Now,

L

Bx
“ a ` λpHxq “ 0 ùñ x “ ´

1

λ
H´1a.

x obtained above should satisfy the trust-region constraint:

1

2

ˆ

´
1

λ
H´1a

˙T

H

ˆ

´
1

λ
H´1a

˙

ď δ

ùñ
1

2
¨
1

λ2
¨ aTH´1a ď δ

ùñ

c

aTH´1a

2δ
ď λ.

Therefore, the update rule in case of infeasibility takes the form θ “ θk ´

b

2δ
aTH´1a

H´1a. We augment this rule with the
gradient of the reward advantage function as well, so the final recovery is

θk`1{2 “ θk ´
?
2δ

„

t ¨
H´1a

?
aTH´1a

` p1 ´ tq ¨
H´1g

a

gTH´1g

ȷ

; t P r0, 1s

A.3.2. LINE SEARCH

Because of approximation error, the proposed update may not satisfy the constraints in Eq. (10). Constraint satisfaction is
enforced via line search, so the final update is

θk`1 “ θk ` sj
`

θk`1{2 ´ θk
˘

,

where s P p0, 1q is the backtracking coefficient and j P t0, ..., Lu is the smallest integer for which πk`1 satisfies the
constraints in Equation 10. Here, L is a finite backtracking budget; if no proposed policy satisfies the constraints after L
backtracking steps, no update occurs.

15

ACPO

A.4. Practical ACPO

As explained in Section 4, we use the below problem formulation, which uses first-order Taylor approximation on the
objective and second-order approximation on the KL constraint 4 around θk, given small δ:

max
θ

gT pθ ´ θkq

s.t. ci ` aTi pθ ´ θkq ď 0, @ i ; 1
2 pθ ´ θkqTHpθ ´ θkq ď δ.

(20)

where

g :“ E
s„dπθk
a„πθk

“

∇θ log πθpa|sq|θ“θk
sAπθk ps, aq

‰

; ci :“ JCi
pθkq ´ li @ i

ai :“ E
s„dπθk
a„πθk

”

∇θ log πθpa|sq|θ“θk
sA
πθk

Ci
ps, aq

ı

; H :“ E
s„dπθk
a„πθk

“

∇θ log πθpa|sq|θ“θk∇θ log πθpa|sq|Tθ“θk

‰

Similar to the work of (Achiam et al., 2017), g, ai, and H can be approximated using samples drawn from the policy πθk . The
Hessian H is identical to the Hessian H used by (Achiam et al., 2017) and (Zhang & Ross, 2020). However, the definitons g
and ai’s are different since they include the average reward advantage functions, sAπθk ps, aq “ sQπθk ps, aq ´ sV πθk psq.

Since rewards and cost advantage functions can be approximated independently, we use the framework of (Zhang & Ross,
2020) to do so. We describe the process of estimation of rewards advantage function, and the same procedure can be used
for the cost advantage functions as well. Specifically, first approximate the average-reward bias sV πθk psq and then use a
one-step TD backup to estimate the action-bias function. Concretely, using the average reward Bellman equation gives

sAπθk ps, aq “ rps, aq ´ Jpπθkq ` E
s1

„P p¨|s,aq

“

sV πθk ps1q
‰

´ sV πθk psq (21)

This expression involves the average-reward bias sV πθk psq, which we can approximated using the standard critic network
sVϕk

psq. However, in practice we use the average-reward version of the Generalized Advantage Estimator (GAE) from
(Schulman et al., 2016), similar to (Zhang & Ross, 2020). Hence, we refer the reader to that paper for detailed explanation,
but provide an overview below for completeness.

Let pJπ “ 1
N

řN
t“1 rt denote the estimated average reward. The Monte Carlo target for the average reward value function is

sV target
t “

řN
t1“tprt ´ pJπq and the bootstrapped target is sV target

t “ rt ´ pJπ ` sV π
ϕ pst`1q.

The Monte Carlo and Bootstrap estimators for the average reward advantage function are:

pAπ
MCpst, atq “

N
ÿ

t1“t

prt ´ pJπq ´ sV π
ϕ pstq ; pAπ

BSpst, atq “ ri,t ´ pJπ ` sV π
ϕ pst`1q ´ sV π

ϕ pstq

We can similarly extend the GAE to the average reward setting:

pAGAEpst, atq “

N
ÿ

t1“t

λt1
´tδt1 , δt1 “ rt1 ´ pJπ ` sV π

ϕ pst1`1q ´ sV π
ϕ pst1 q. (22)

and set the target for the value function to sV target
t “ rt ´ pJπ ` sV π

ϕ pst`1q `
řN

t1“t`1 λ
t1

´tδt1 .

A.5. Experimental Details

For detailed explanation of Point-Circle, Point-Gather, Ant-Circle, and Ant-Gather tasks, please refer to (Achiam et al.,
2017). For detailed explanation of Bottleneck and Grid tasks, please refer to (Vinitsky et al., 2018). For the simulations
in the Gather and Circle tasks, we use neural network baselines with the same architecture and activation functions as the
policy networks. For the simulations in the Grid and Bottleneck tasks, we use linear baselines. For all experiments we use

4The gradient and first-order Taylor approximation of D̄KLpπθ ∥ πθk q at θ “ θk is zero.

16

ACPO

Gaussian neural policies whose outputs are the mean vectors and variances are separate parameters to be learned. Seeds
used for generating evaluation trajectories are different from those used for training.

For comparison of different algorithms, we make use of CPO, PCPO, ATRPO, and PPO implementations taken from https:
//github.com/rll/rllab and https://github.com/openai/safety-starter-agents. Even the hy-
perparameters are selected so as to showcase the best performance of other algorithms for fair comparison. The choice of
the hyperparameters given below is inspired by the original papers since we wanted to understand the performance of the
average reward case.

We use settings which are common in all open-source implementations of the algorithms, such as normalizing the states by
the running mean and standard deviation before being fed into the neural network and similarly normalizing the advantage
values (for both rewards and constraints) by their batch means and standard deviations before being used for policy updates.
Table 1 summarizes the hyperparameters below.

Table 1. Hyperparameter Setup

Hyperparameter PPO/ATRPO CPO/PCPO/ACPO

No. of hidden layers 2 2
Activation tanh tanh
Initial log std -0.5 -1
Batch size 2500 2500
GAE parameter (reward) 0.95 0.95
GAE parameter (cost) N/A 0.95
Trust region step size δ 10´4 10´4

Learning rate for policy 2 ˆ 10´4 2 ˆ 10´4

Learning rate for reward critic net 2 ˆ 10´4 2 ˆ 10´4

Learning rate for cost critic net N/A 2 ˆ 10´4

Backtracking coeff. 0.75 0.75
Max backtracking iterations 10 10
Max conjugate gradient iterations 10 10
Recovery regime parameter t N/A 0.75

For the Lagrangian formulation of ATRPO and PPO, note that the original papers do not provide any blueprint for formulating
the Lagrangian, and even CPO and PCPO use unconstrained TRPO for benchmarking. However, we feel that this is unfair to
these algorithms as they can possibly perform better with a Lagrangian formulation in an average-reward CMDP setting. To
this extent, we introduced a Lagrangian parameter ℓ P r0, 1s that balances the rewards and constraints in the final objective
function. More specifically, Equation (13) for a single constraint now becomes

max
θ

p1 ´ ℓqgT pθ ´ θkq ´ ℓ
“`

c1 ` aT1 pθ ´ θkq
˘

`
`

1
2 pθ ´ θkqTHpθ ´ θkq ´ δ

˘‰

. (23)

Note. The authors of the ATRPO and PPO do not suggest any principled approach for finding an optimal ℓ. Hence, the
choice of the Lagrangian parameter ℓ is completely empirical and is selected such that these algorithms achieve maximum
rewards while satisfying the constraints. Also see in Figure 1, for Ant-Gather, Bottleneck, and Grid environments, where the
constraints cannot be satisfied for any value of ℓ, we include the results for a specific value of ℓ for illustrative purposes, as
detailed in Table 2.

Table 2. Lagrangian parameter ℓ for ATRPO and PPO

Algorithm Point-Gather Ant-Circle Ant-Gather Bottleneck Grid

ATRPO 0.50 0.60 0.45 0.50 0.45
PPO 0.55 0.50 0.50 0.50 0.60

17

https://github.com/rll/rllab
https://github.com/rll/rllab
https://github.com/openai/safety-starter-agents

ACPO

A.6. Experimental Addendum

A.6.1. ENVIRONMENTS

All environments tested on are illustrated in Figure 3, along with a detailed description of each.

(a) Circle (b) Gather (c) Grid (d) Bottle-
neck

Figure 3. The Circle, Gather, Grid, and Bottleneck tasks. (a) Circle: The agent is rewarded for moving in a specified circle but is penalized
if the diameter of the circle is larger than some value as in (Achiam et al., 2017). (b) Gather: The agent is rewarded for collecting the
green balls while penalized to gather red balls as in (Achiam et al., 2017). (c) Grid: The agent controls traffic lights in a 3x3 road network
and is rewarded for high traffic throughput but is constrained to let lights be red for at most 5 consecutive seconds as in (Vinitsky et al.,
2018). (d) Botteneck: The agent controls vehicles (red) in a merging traffic situation and is rewarded for maximizing the number of
vehicles that pass through but is constrained to ensure that white vehicles (not controlled by agent) have “low” speed for no more than 10
seconds as in (Vinitsky et al., 2018).

A.6.2. LEARNING CURVES

Due to space restrictions, we present the learning curves for the remaining environments in Figure 4.

A.6.3. RECOVERY REGIME REVISITED

In Subsection 5.3, we studied the effect of the hyperparameter t for only one task. Figure 5 shows the performance of ACPO
with different values of t in various environments.

18

ACPO

Average Rewards:

2 4 6 8

28

24

20

16

12

8

4

0
2 4 6 8

105

90

75

60

45

30

15

0

Average Constraint values:

2 4 6 8

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

(a) Point Gather

2 4 6 8

21

18

15

12

9

6

3

0

(b) Ant Circle

Figure 4. The average reward and constraint cost function values vs iterations (in 104) learning curves for some algorithm-task pairs.
Solid lines in each figure are the empirical means, while the shaded area represents 1 standard deviation, all over 5 runs. The dashed
line in constraint plots is the constraint threshold l. ATRPO and PPO are tested with constraints, which are included in their Lagrangian
formulation.

Rewards:

2 4 6 8

28

24

20

16

12

8

4

0
2 4 6 8

105

90

75

60

45

30

15

0
2 4 6 8

175

150

125

100

75

50

25

0
2 4 6 8

300

280

260

240

220

200

180
2 4 6 8

105

90

75

60

45

30

15

0

Constraint values:

2 4 6 8

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

(a) Point Gather
2 4 6 8

21

18

15

12

9

6

3

0

(b) Ant Circle
2 4 6 8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

(c) Ant Gather
2 4 6 8

140

120

100

80

60

40

20

0

(d) Bottleneck
2 4 6 8

35

30

25

20

15

10

5

0

(e) Grid

Figure 5. Comparison of performance of ACPO with different values of the hyperparameter t in various environment. X-axis is iterations
in 104.

19

