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Generalized Source-free Domain-adaptive Segmentation
via Reliable Knowledge Propagation
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ABSTRACT
Unanticipated domain shifts can severely degrade model perfor-
mance, prompting the need for model adaptation techniques (i.e.,
Source-free Domain Adaptation (SFDA)) to adapt a model to new
domains without accessing source data. However, existing SFDA
methods often sacrifice source domain performance to improve
adaptation on the target, limiting overall model capability. In this
paper, we focus on a more challenging paradigm in semantic seg-
mentation, Generalized SFDA (G-SFDA), aiming to achieve robust
performance on both source and target domains. To achieve this,
we propose a novel G-SFDA framework, Reliable Knowledge Prop-
agation (RKP), for semantic segmentation tasks, which leverages
the text-to-image diffusion model to propagate reliable semantic
knowledge from the segmentation model. The key of RKP lies in
aggregating the predicted reliable but scattered segments into a
complete semantic layout and using them to activate the diffusion
model for conditional generation. Subsequently, diverse images
with multiple domain factors can be synthesized to retrain the seg-
mentation model. This enables the segmentation model to learn
domain-invariant knowledge across multiple domains, improving
its adaptability to target domain, maintaining discriminability to
source domain, and even handling unseen domains. Our model-
agnostic RKP framework establishes new state-of-the-art across
current SFDA segmentation benchmarks, significantly advancing
various SFDA methods. The code will be open source.

CCS CONCEPTS
• Computing methodologies → Image segmentation; • Trans-
fer learning → Source free domain adaptation.

KEYWORDS
source-free domain adaptation, semantic segmentation, diffusion
model

1 INTRODUCTION
In real-world machine perception systems (e.g., autonomous driv-
ing [2]), unexpected domain changes in test distribution are com-
monly encountered, which can lead to a significant degradation in
perception capability when applying pre-trained models [41, 46].
Therefore, the development of model adaptation methods is essen-
tial for enhancing the generalization capability of models in the
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Figure 1: The performance comparison of various methods
on both the source and target domains in GTA → Cityscapes
tasks under the source-free domain adaptation. All methods
use the same pre-trained model.

wild and improving the reliability of machine perception systems
in dynamic environments[28]. To this end, Source-free Domain
Adaptation (SFDA) has been proposed [25, 30], aiming to adapt
a source-trained model to a target domain without accessing the
source data. In particular, the SFDA methods for segmentation
[23, 32, 50, 66] have been proposed to improve the models’ adapt-
ability of on target domain by self-training. However, as shown in
Fig. 1, most SFDA methods sacrifice the performance of the source
domain when improving target adaptability due to the catastrophic
forgetting [22], which leads to the model’s generalization capability
remaining limited. In this paper, we focus on a more practical and
challenging paradigm in semantic segmentation, Generalized SFDA
(G-SFDA) [57], which requires the adapted model to perform well
not only on source and target domains but even on unseen domains.

While the concept of G-SFDA [57] has been proposed in clas-
sification tasks for some time, there has been scarce exploration
of G-SFDA in segmentation tasks. Relevant to this objective is the
continual domain adaptation segmentation [46, 49], where tech-
niques involve freezing some segmentation model’s parameters to
maintain its performance on the source domain. However, we find
that while this approach indeed yields some benefits in maintain-
ing performance on the source, its benefits on the target appear
to be relatively limited compared to existing SFDA methods, as
indicated by the triangular marker (CoTTA [46] and DIGA [49])
in Fig. 1. This is mainly because the adaptation for segmentation
tasks is often complex and requires the model to update most or full
parameters to enhance its adaptability to the target. This challenge
poses difficulties for existing techniques in balancing adaptability
to the target domain and discriminability to the source domain, and
also limits its generalization to unseen domains.

In this paper, we introduce a novel idea from a generative per-
spective to address both target adaptation and source discrimination
issues simultaneously: updating all parameters of the segmentation
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model using synthetic multi-domain data to learn domain-invariant
representations, as shown in Fig. 2. Based on this, we innovatively
develop a G-SFDA framework, termed Reliable Knowledge Propa-
gation (RKP), to propagate reliable semantic knowledge from the
segmentation model through the text-to-image diffusion model
[39]. The key of RKP is to aggregate the scattered reliable segments
predicted by the segmentation model into a complete semantic lay-
out and activate the text-to-image diffusion model for conditional
generation. Subsequently, diverse training images with multiple
domain factors (e.g., different weather or illumination environments)
can be synthesized through activated diffusion model. Under this
drive, the segmentation model can jointly learn domain-invariant
knowledge across multiple synthetic domains, enhancing its adapt-
ability to target and empowering its discriminability to the source
domain and even unseen domains.

Specifically, our RKP consists of three stages. 1) Reliable Knowl-
edge Aggregation. Given many reliable scattered segments from
the pre-train segmentation model, activating the text-to-image dif-
fusion model to synthesize target-specific data is difficult due to
the lack of complete layout. One possible idea is to mix scattered
segments into a complete semantic layout. The challenge here is to
select appropriate mixing segments and determine where and how
they should be mixed. To achieve this, we devise a Layout-Aware
Mixing (LAM) technique, which adaptively mixes the scattered
reliable segments into a complete layout in an optimizable manner.
LAM retrieves the most appropriate segment for the unreliable
region by matching the class distribution among reliable segment
candidates and learns the most suitable affine transformation to
determine the optimal mixing position for the selected segment. 2)
Reliable Knowledge Injection.With reliable LAM-driven target
data, sufficient semantic-to-image pairings can be used to control
the diffusion model. Taking mixed reliable semantic mask as a spa-
tial condition and the caption of the category name component as
the text prompt, the diffusion model can be effectively fine-tuned to
the target domain. Observing noisy edges and semantics in spatial
conditions, we propose uncertainty-guided fine-tuning for stabiliz-
ing the tuning process. 3) Reliable Knowledge Propagation and
Learning. By incorporating vocabulary representing various do-
main factors, e.g., different simulation (‘synthetic’/‘real’) or weather
(‘hot’) or illumination (‘night’), into the text prompts, the fine-tuned
diffusion model synthesizes both target domain and out-of-domain
data with various styles. Subsequently, these synthesized data are
utilized to learn domain-invariant representations. With these ef-
forts, RKP endows the segmentation model with adaptability to
the target and discriminability to the source, as shown in Fig. 1. In
summary, our contributions are as follows:

•. For the first time, we introduce the text-to-image diffusion
model in SFDA semantic segmentation task and develop
a novel G-SFDA framework, called Reliable Knowledge
Propagation (RKP). RKP can not only enhance adaptability
to the target domain but also the discriminability of source
domain and even unseen domains.

•. In RKP, we devise a Layout-Aware Mixing (LAM) tech-
nique, that optimally mixes scattered reliable segments into
complete layouts, aided by retrieving the most appropriate
segments for uncertain regions through class distribution

Pre-trained Segmentation Model Pseudo-labelTarget Domain Image

Frozen

Target adaptation 👍 Source maintained 👍

Pre-trained Segmentation Model
Synthesized Multi-domain Images

Mixed  Pseudo-label

(b) Continual SFDA:

(c) Ours G-SFDA:

Noise

Night

Hot

Rain

Snow

Pre-trained Segmentation Model Pseudo-labelTarget Domain Image

(a) SFDA:

Noise

Unseen domain 👍

Target adaptation 😩 Source maintained 👍 Unseen domain 😩

Trainable

Target adaptation 👍 Source maintained 😩 Unseen domain 😩

Trainable

🔥

🔥

🔥 🔥

🔥

🔥

Figure 2: Comparison of our method with traditional SFDA
methods and continual SFDA [46] in principle.

matching and determining the optimal mixing position of
segments through affine transformation learning.

•. With LAM-driven paired semantic-to-image data and cor-
responding text prompts, the diffusion model is fine-tuned
to the target domain, while proposing uncertainty-guided
fine-tuning to stabilize the fine-tuning by alleviating noise.

•. Our framework RKP is model-agnostic and can be embed-
ded into various SFDA methods, further boosting their gen-
eralization capabilities.

2 RELATEDWORK
Source-free Domain Adaptation (SFDA). Previous SFDA meth-
ods in classification tasks propose various techniques such as dis-
tribution alignment[10, 29, 48], contrastive learning[65, 67], and
model perturbation [21] to enhance adaptability without source
data. However, these are challenging to apply in segmentation
due to complex semantic features. SFDA in segmentation tasks
often involves self-training [11, 19, 23, 47, 50] by filtering reli-
able pseudo-labels and retraining the model. Filtering methods
include thresholds[60, 66, 68], adversarial training[58], and feature
prototypes[6]. Anti-noise training methods [61] are also proposed
for SFDA to reduce error accumulation by adding perturbations
[26] or enhancing data [12, 32]. Despite progress in pseudo-label fil-
tering and anti-noise training, overfitting to the pseudo-label noise
of the target domain remains a challenge. Our method sidesteps
high-noise pseudo-labels, leveraging reliable multi-domain samples
to adapt to the source-trained model effectively, thus enhancing
generalization and reducing error accumulation.
Generalized Source-free Domain Adaptation (G-SFDA). G-
SFDA[57], an extension of SFDA, is expected to perform well across
both source and target domains. While it’s been mainly studied
in classification tasks, addressing catastrophic forgetting remains
a challenge. Existing methods preserve weights [3, 35] or update
specific prompts [13, 43] to maintain history domain performance.
However, these strategies are less effective in segmentation tasks
due to complexity in balancing adaptability and discriminability
across domains. In contrast, our novel G-SFDA method (RKP) syn-
thesizes multi-domain data using a text-to-image diffusion model

2
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Figure 3: The pipeline of our RKP for G-SFDA: (a) Through layout-aware mixing, the prediction and uncertainty maps of
target data from the segmentation model are exploited to generate mixed reliable samples with complete layouts. (b) Training
ControlNet with mixed prediction as spatial conditions and captions composed of class names as text prompts to adapt the
Diffusion model to specific target data. (c) Text prompts serve as style conditions, while mixed prediction serves as spatial
conditions for controlling generation of multi-domain images, which can be used for training the segmentation model.

and focuses on jointly learning domain-invariant representations,
presenting a new idea tailored for segmentation tasks.
Text-to-image Diffusion Model for Semantic Segmentation.
Some prior works explore the potential of pre-trained text-to-image
diffusion model by synthesizing new training data [9, 34, 51, 56]
for semantic segmentation tasks, offering a viable solution to al-
leviate the issue of data scarcity in semantic segmentation tasks.
Nguyen et al. [34] andWu et al. [52] optimize the cross-modal atten-
tion maps between text and images, considering them as semantic
masks for image generation. Wu et al. [51] augment the diffusion
model with perception heads and fine-tune the added units using a
small number of target samples to generate paired data. However,
such approaches are prone to generating domain-agnostic data
with simple layouts, which impedes the model’s ability to extract
useful knowledge for domain adaptation tasks. In contrast to these
methods, we focus on extracting reliable domain-specific knowl-
edge from the source model to activate the diffusion model, thereby
empowering it to generate diverse target-style training data.

3 METHOD
3.1 Problem Setting and Preliminary
Problem Setting. Given a pre-trained segmentation model G(𝜃 )
trained on labeled source domain data D𝑠 = {(𝑥𝑖𝑠 , 𝑦𝑖𝑠 )}

𝑛𝑠
𝑖=1, where

𝑥𝑖𝑠 is the source image and 𝑦𝑖𝑠 is the corresponding label, we aim to
adapt the pre-trained model to target domain data D𝑡 = {(𝑥𝑖𝑡 )}

𝑛𝑡
𝑖=1

only consisting of 𝑛𝑡 unlabeled images, and the source domain
data is not accessible. For traditional Source-Free Domain Adapta-
tion (SFDA), the adapted segmentation model is only required to
perform well on the target domain D𝑡 . In this paper, we consider

the Generalized SFDA (G-SFDA), where the adapted segmentation
model needs to perform well on both domains D𝑠 and D𝑡 .
Preliminary. Most works conduct self-training to optimize the
G(𝜃 ) as follows,

argmin
𝜃

𝑛𝑡∑︁
𝑖

𝐻×𝑊∑︁
𝑙

L[G(𝑥 (𝑖,𝑙 )𝑡 |𝜃 ), 𝑦 (𝑖,𝑙 )𝑡 ], (1)

where L is the cross-entropy loss and 𝑦𝑖𝑡 is the pseudo-label. As
previously mentioned, there are two issues with this approach.
First, noise in pseudo-labels results in error accumulation during
self-training, which reduces the adaptability to the target. Second,
updating all parameters for specific target data reduces the discrim-
inability of the model to the source, while updating some parame-
ters will harm the adaptability to the target, which poses difficulties
in balancing adaptability and discriminability. Next, we will intro-
duce our solution that can better alleviate the above problems.

3.2 Overall
This paper develops a novel G-SFDA framework called Reliable
Knowledge Propagation (RKP), which propagates knowledge from
the segmentation model G(𝜃 ) through the diffusion model and
then facilitates G(𝜃 ) to learn domain-invariant representations.
Our main insight is to mix the scattered reliable segments predicted
by G(𝜃 ) into a complete layout, and then use them to guide diffu-
sion model to learn specific target distribution, thereby generating
unlimited and diverse annotated data. The synthesized data can
be used to enhance the adaptability of G(𝜃 ) to the target while
maintaining the discriminability to the source.

3
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𝓣𝝎(𝑨[𝒓𝒅])

⨂

𝜔
Location Net

Maximize Eq. (5)

(b) Optimizable mixing process

Eq. (7) Eq. (8)

Optimal 𝓣#𝒘(𝑨[𝒓𝒅])  

(a) Retrieve the most appropriate segment

mix  the
selected
𝒓𝒅

𝒙𝒕𝒓

𝒓

𝒓𝒅
Affine transformation

Figure 4: The pipeline of our Layout-Aware Mixing (LAM). LAM consists of two steps: (a) Given target image 𝑥𝑡 , its pseudo-label
𝑦𝑡 and uncertainty 𝑢𝑡 , retrieving its most suitable reliable mixing segments 𝑟𝑑 through the label distribution of high uncertainty
regions. (b) Mixing the retrieved segment 𝑟𝑑 and its corresponding image 𝑥𝑡𝑟 with 𝑦𝑡 and 𝑥𝑡 to make 𝑟𝑑 better cover the uncertain
area in 𝑢𝑡 through an optimizable design.

Our pipeline is shown in Fig. 3, including three stages: a) Reli-
able Knowledge Aggregation (§3.3) —mixing the scattered reli-
able segments into a complete layout by layout-aware mixing. b)
Reliable Knowledge Injection (§3.4) —using mixed data to build
spatial conditions and text prompts, and efficiently fine-tuning the
diffusion model with controls. c) Reliable Knowledge Propaga-
tion (§3.5) and Learning (§3.6) —sampling multi-domain images
under joint control of layout and style and leveraging synthetic
images for learning domain-invariant representations.

3.3 Reliable Knowledge Aggregation
This section discusses two main aspects, extracting reliable seg-
ments and mixing them in a complete layout.
Reliable Segments Extraction. Simply, we utilize common Shan-
non entropy maps [45] as uncertainty measures, and then sort the
predicted pixels for each class based on their entropy values and
select the top-ranked segments as reliable ones. The details are as
follows. Given the segmentation model G(𝜃 ) and target domain
data 𝑥𝑖𝑡 , the 𝐾-dimensional soft-segmentation map can be predicted
as 𝑝𝑖 = G(𝑥𝑖𝑡 , 𝜃 ), where 𝑝𝑖 ∈ [0, 1]𝐻,𝑊 ,𝐾 , 𝐻 ,𝑊 is the height, width
of 𝑥𝑖𝑡 , 𝐾 is the number of classes. As 𝑝𝑖 can be interpreted as a
discrete distribution over 𝐾 classes, thus the entropy map [45] of
the prediction can be calculate as𝑢𝑖𝑡 (𝑥𝑖𝑡 ) =

1
log(𝐾 )

∑𝐾
𝑘=1 𝑝

𝑖,𝑘 log 𝑝𝑖,𝑘 .
Given the pseudo-label 𝑦𝑖𝑡 of 𝑥

𝑖
𝑡 , we sort all the predicted pixels

based on their entropy values and select the reliable ones,

R = Top[Sort({𝑦𝑖𝑡 }
𝑛𝑡
𝑖=1, {𝑢

𝑖
𝑡 (𝑥𝑖𝑡 )}

𝑛𝑡
𝑖=1), 𝜏%], (2)

where Sort(·, ·) means sort the former list in descending order us-
ing the latter as metric, Top[·, 𝜏%] means selecting top 𝜏% ranked
pixels. Then, a connected region with the same semantic label on
an image is regarded as a segment 𝑟 . We denote these scattered
reliable segments and their images as R = {𝑥𝑖𝑡𝑟 , 𝑟 𝑖 }

𝑛𝑡𝑟
𝑖=1.

Layout-Aware Mixing. Given a target image 𝑥𝑖𝑡 , its unreliable
pseudo-label 𝑦𝑖𝑡 , its uncertainty map 𝑢𝑖𝑡 , and a set R of reliable yet
scattered images and segments, we aim to aggregate them into
a complete layout. A naive way is using copy-paste [14, 44] to
randomly paste images and segments in R onto the given 𝑥𝑖𝑡 and

𝑦𝑖𝑡 . However, it always produces a messy image layout, making
exploiting it difficult.

Then, the challenge here is how to select appropriate mixing ob-
jects and determine where and how they should be mixed. To solve
this problem, we devise Layout-Aware Mixing (LAM), as shown in
Fig. 4. The core idea is to cover the appropriate segments in R on
the corresponding uncertain region in 𝑦𝑖𝑡 to reduce the uncertain
prediction in 𝑦𝑖𝑡 , thereby reasonably constructing a complete lay-
out. LAM consists of two steps: LAM (1) first retrieves the most
appropriate segment from R by matching the class distribution of
the uncertain region and (2) then forms the mixing process as an
optimizable problem.

Specifically, (1) in the first step, based on 𝑦𝑖𝑡 and 𝑢
𝑖
𝑡 , we analyze

the connected regions in 𝑦𝑖𝑡 and select the connected region O with
the highest uncertainty. We then calculate the pixel distribution
within the maximum bounding rectangle of O. Despite significant
semantic noise in O, the calculated pixel distribution can globally
represent the semantic possibilities in this region. Thus, we retrieve
the segment (denote as 𝑟𝑑 ) from R that most matches the class
distribution of O by follows,

𝑟𝑑 = argmax
𝑟

SIM[ℎ𝑖𝑠𝑡 (𝑟 𝑖 ), ℎ𝑖𝑠𝑡 (O)], 𝑟 ∈ R, (3)

where SIM[·, ·] is the cosine similarity between two vectors, ℎ𝑖𝑠𝑡 (·)
is the calculated histogram of pixel numbers for the categories.

Next, (2) in the second step, 𝑟𝑑 will cover the uncertainty region
O in 𝑦𝑖𝑡 with the most appropriate angle, scale and displacement.
Inspired by the learnable spatial transformation [20], we devise an
optimizable geometric (affine) transformation applied to 𝑟𝑑 so that
the transformed 𝑟𝑑 can maximally coincide with the uncertainty
region O. Let T𝜔 be a 2D affine transformation with learnable
parameters 𝜔 . The pixels in 𝑟𝑑 are defined to lie on a regular grid
𝐴[𝑟𝑑 ] = {(𝑚,𝑛)}, where𝑚 and 𝑛 are the horizontal and vertical
coordinates of arbitrary pixel in 𝑟𝑑 , and its transformed pixels
T𝜔 (𝐴[𝑟𝑑 ]) are also lie on a regular grid, i.e.,(

𝑚′

𝑛′

)
=

(
𝜔11 𝜔12 𝜔13
𝜔21 𝜔22 𝜔23

) (
𝑚

𝑛

)
. (4)

4
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Let 𝑟𝑑 ∈ R𝐻×𝑊 be the binary version of the segment 𝑟𝑑 , where the
segment region is 1 and the rest is 0. Then the optimization goal
for 𝜔 is that, T𝜔★ =

argmax
𝜔

∑[𝑢𝑖𝑡 · T𝜔 (𝐴[𝑟𝑑 ]) ⊗ 𝑟𝑑 ]∑[T𝜔 (𝐴[𝑟𝑑 ]) ⊗ 𝑟𝑑 ] +
∑[𝑢𝑖𝑡 ] −

∑[𝑢𝑖𝑡 · T𝜔 (𝐴[𝑟𝑑 ]) ⊗ 𝑟𝑑 ]
,

(5)
where ⊗ is the coordinate sampler, T𝜔 (𝐴[𝑟𝑑 ]) ⊗ 𝑟𝑑 is the geometri-
cally transformed segment, its sum represents the total area, and
𝑢𝑖𝑡 ∈ R𝐻×𝑊 is to set all other values in 𝑢𝑖𝑡 to 0 except for the re-
gion O. The numerator represents the intersection of 𝑟𝑑 and O,
the denominator represents the union of 𝑟𝑑 and O, and the entire
formula represents the intersection and union ratio between the
transformed segment 𝑟𝑑 and O. A larger value indicates that the
transformed 𝑟𝑑 covers O better, which also prevents the transfor-
mation scale of 𝑟𝑑 from being too large or too small.

To learn the transform parameters 𝜔 , we introduce a small lo-
cation network, e.g, Resnet-8 [16] with a regression layer. It takes
the segment 𝑟𝑑 as input and outputs the affine transformation pa-
rameters. By optimizing the location network using Eq. (5), the
optimal parameters �̃� can be obtained. With �̃� , we denote the
transformed 𝑟𝑑 as a mask, i.e., M = T�̃� (𝐴[𝑟𝑑 ]) ⊗ 𝑟𝑑 , the trans-
formed image 𝑥𝑖𝑡𝑟 = T�̃� (𝐴[𝑟𝑑 ]) ⊗ 𝑥𝑖𝑡𝑟 , the transformed segment as
𝑟𝑑 = T�̃� (𝐴[𝑟𝑑 ]) ⊗𝑟𝑑 . Thus, the final layout-aware mixed image 𝑥𝑖𝑡𝑚 ,
mixed pseudo-label 𝑦𝑖𝑡𝑚 , and mixed uncertainty 𝑢𝑖𝑡𝑚 are obtained,

𝑥𝑖𝑡𝑚 = 𝑥𝑖𝑡 · (1 −M) + 𝑥𝑖𝑡𝑟 · M, (6)

𝑦𝑖𝑡𝑚 = 𝑦𝑖𝑡 · (1 −M) + 𝑟𝑑 , (7)

𝑢𝑖𝑡𝑚 = 𝑢𝑖𝑡 · (1 −M) . (8)

Our LAM can be executed in multiple rounds to comprehensively
cover semantic noise present in a given𝑦𝑖𝑡 . See the Appendix for the
specific algorithm flow. For the remaining edge noise in the mixed
pseudo-label 𝑦𝑖𝑡𝑚 , we will discuss it in the following sections.

3.4 Reliable Knowledge Injection
With reliable paired target data {𝑥𝑖𝑡𝑚, 𝑦𝑖𝑡𝑚, 𝑢𝑖𝑡𝑚}, sufficient reliable
data provide supportingmaterial for controlling the diffusionmodel.
Here, we adopt the ControlNet [63] to add the mixed reliable layout
as spatial controls into the pre-trained stable diffusion [39, 42]. The
details are as follows.
Text Prompts.We extract the class names present in𝑦𝑖𝑡𝑚 . Based on
this list of class names, we can utilize the Large Language Models
(LLM) such as ChatGPT [1] to generate sentences as text prompts,
similar to the method described in [51].
Spatial Condition. Due to the efforts of LAM, the vast majority of
𝑥𝑖𝑡𝑚 and𝑦𝑖𝑡𝑚 are semantically consistent. Although noise at the class
edges may still exist, it’s possible to use 𝑦𝑖𝑡𝑚 as spatial conditions
to control the main-body semantics of the generated image.
Uncertainty Guided Fine-tuning. One can aim at predicting the
noise at each timestamp to fine-tune the diffusion model with Con-
trolNet. However, as mentioned above, due to the noise at the edges,
mismatches may exist between 𝑥𝑖𝑡𝑚 and 𝑦𝑖𝑡𝑚 at the edges, resulting
in noise in the data used for fine-tuning. Thus, we propose utilizing
the mixed uncertainty to guide the training of noise predictions
at each timestamp. Specifically, given an input image 𝑥𝑖𝑡𝑚 and its
corresponding uncertain map 𝑢𝑖𝑡𝑚 , the image diffusion algorithm

gradually adds noise 𝜖 to the image and generates a noisy image
𝑧𝑡 , where 𝑡 denotes the number of times noise is added. Given time
step 𝑡 , text prompt 𝑐𝑡 , and spatial conditions 𝑐 𝑓 (𝑦𝑖𝑡𝑚), we fine-tune
the ControlNet to predict the noise in the confident regions (i.e.
1-𝑢𝑖𝑡𝑚) of 𝑧𝑡 during the reverse diffusion process as,

L𝑑𝑖 𝑓 𝑓 = E𝑧0,𝑡,𝑐𝑡 ,𝑐 𝑓 ,𝜖∼N(0,1) (1 − 𝑢𝑖𝑡𝑚) · ∥𝜖 − 𝜖𝜃 (𝑧𝑡 , 𝑡, 𝑐𝑡 , 𝑐 𝑓 )∥2 . (9)

Please refer to [63] for details on fine-tuning.

3.5 Reliable Knowledge Propagation
Through the fine-tuned ControlNet on the diffusion model, we
can sample diverse data from a Gaussian distribution N(0, 1) with
prompts, thus propagating the knowledge in the segmentation
model to a wider target space and even a out-of-target space.
Propagation to the Target. On one hand, since ControlNet is
trained with target data, we can use the original text prompts 𝑐𝑡
and spatial conditions 𝑐 𝑓 to sample more target-style data 𝑥𝑠𝑦𝑛 .
These sampled data can enhance the adaptation of the segmentation
model to the target domain.
Propagation to the Out-of-target. On the other hand, inspired
by some works on text-driven style transfer [27, 54], we can in-
corporate domain-specific factors (e.g., the vocabulary of different
weather, ‘foggy’, ‘rainy’) into the text prompt 𝑐𝑡 to generate out-of-
target data 𝑥𝑑𝑜𝑚 with various styles.

3.6 Reliable Knowledge Learning
With the mixed target data {𝑥𝑖𝑡𝑚, 𝑦𝑖𝑡𝑚, 𝑢𝑖𝑡𝑚}𝑁𝑡

𝑖=1, synthetic target-

style data {𝑥𝑖𝑠𝑦𝑛, 𝑦𝑖𝑡𝑚, 𝑢𝑖𝑡𝑚}𝑁𝑠𝑦𝑛

𝑖=1 , and synthetic out-of-target data
{[𝑥𝑖, 𝑗

𝑑𝑜𝑚
]𝑁𝑑

𝑗=1, 𝑦
𝑖
𝑡𝑚, 𝑢

𝑖
𝑡𝑚}𝑁𝑑𝑜𝑚

𝑖=1 (𝑁𝑑 is the number of domain-specific
text prompts.), we combine them to jointly learning domain-invariant
representations for the segmentation model,

L𝑠𝑒𝑔 =
1
𝑁𝑡

𝑁𝑡∑︁
𝑖

L𝑤 (𝑥𝑖𝑡𝑚, 𝑦𝑖𝑡𝑚, 𝑢𝑖𝑡𝑚) + 1
𝑁𝑠𝑦𝑛

𝑁𝑠𝑦𝑛∑︁
𝑖

L𝑤 (𝑥𝑖𝑠𝑦𝑛, 𝑦𝑖𝑡𝑚, 𝑢𝑖𝑡𝑚)

+ 1
𝑁𝑑𝑜𝑚

𝜆

𝑁𝑑𝑜𝑚∑︁
𝑖

𝑁𝑑∑︁
𝑗

L𝑤 (𝑥𝑖, 𝑗𝑑𝑜𝑚, 𝑦
𝑖
𝑡𝑚, 𝑢

𝑖
𝑡𝑚), (10)

where L𝑤 (·, ·, ·) is the cross-entropy loss with uncertain weighting
[7, 36]. 𝜆 is the weighting coefficient, which balances the adapt-
ability to the target domain and the discriminability to the source
and out-of-target domains. We use L𝑠𝑒𝑔 to optimize all parame-
ters of the model G(𝜃 ), unlike other works [35] only a part of the
parameters, as segmentation tasks require a larger adjustment of
optimization space to better adapt to both new and old domains.

4 EXPERIMENTS
4.1 Datasets and Experimental Setup
Datasets.We use a real-world dataset (Cityscapes [8]) alongside
two synthetic datasets (GTA5 [38] and SYNTHIA [40]). Cityscapes
dataset comprises 2,975 training and 500 validation images at a reso-
lution of 2048 × 1024. GTA5 dataset comprises 24,966 images with a
resolution of 1914 × 1052 and shares 19 categories with Cityscapes.
SYNTHIA dataset comprises 9,400 images with a resolution of 1280
× 760 and shares 16 categories with Cityscapes.
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𝑚𝐼𝑜𝑈𝑇 𝑚𝐼𝑜𝑈𝑆 𝑚𝐼𝑜𝑈𝐻
Generalized Source-free Domain Adaptation: GTA - Cityscapes (Val.)

URMDA (CVPR’21) [11] R 92.3 55.2 81.6 30.8 18.8 37.1 17.7 12.1 84.2 35.9 83.8 57.7 24.1 81.7 27.5 44.3 6.9 24.1 40.4 45.1 51.6 48.1
SFDA (CVPR’21) [30] R 91.7 52.7 82.2 28.7 20.3 36.5 30.6 23.6 81.7 35.6 84.8 59.5 22.6 83.4 29.6 32.4 11.8 23.8 39.6 45.8 54.6 49.8
HCL (NIPS’21) [19] R 92.6 54.6 82.8 33.2 26.2 39.8 38.1 31.9 84.5 38.6 85.3 61.3 30.2 85.4 33.1 41.6 14.4 27.3 44.0 49.7 51.7 50.7

SFDASEG (ICCV’21) [24] R 91.7 53.4 86.1 37.6 32.1 37.4 38.2 35.6 86.7 48.5 89.9 62.6 34.3 87.2 51.0 50.8 4.2 42.7 53.9 53.4 54.4 53.9
DTST (CVPR’23) [66] R 93.5 57.6 84.7 36.5 25.2 33.4 44.7 36.7 86.8 42.8 81.3 62.3 37.2 88.1 48.7 50.6 35.5 48.3 59.1 55.4 54.8 55.1
CROTS(IJCV’24) [32] R 92.0 52.4 85.9 37.3 35.8 34.6 42.2 38.4 86.9 45.6 91.1 65.1 36.1 87.3 41.6 51.1 0.0 41.4 56.2 53.7 52.4 53.1

CrossMatch(ICCV’23) [59] R* 95.1 67.8 87.7 51.3 41.5 36.3 47.4 51.3 87.8 47.8 87.3 67.0 34.2 87.5 41.0 51.8 0.0 42.6 46.4 56.4 - -
RKP (Ours) R 95.9 62.2 86.9 39.6 36.9 38.7 44.4 49.0 89.6 46.7 90.8 66.0 41.4 90.3 56.0 45.3 34.5 50.5 62.1 59.3 61.4 60.3

VPT(NIPS’23) [33] M 89.4 22.9 87.3 38.9 34.3 41.0 45.8 30.3 88.8 44.2 90.1 67.0 32.4 90.1 52.9 60.4 37.1 37.7 38.6 54.2 55.6 54.9
RKP (Ours) M 93.5 25.8 89.3 40.2 36.6 41.2 49.3 34.7 93.4 44.6 94.5 71.2 37.4 91.1 54.4 65.7 51.7 44.8 42.6 58.0 58.4 58.2

Generalized Source-free Domain Adaptation: SYNTHIA - Cityscapes (Val.)
URMDA (CVPR’21) [11] R 59.3 24.6 77.0 14.0 1.8 31.5 18.3 32.0 83.1 - 80.4 46.3 17.8 76.7 - 17.0 - 18.5 34.6 39.6 43.7 41.6
SFDA (CVPR’21) [30] R 67.8 31.9 77.1 8.3 1.1 35.9 21.2 26.7 79.8 - 79.4 58.8 27.3 80.4 - 25.3 - 19.5 37.4 42.4 44.5 43.4
HCL (NIPS’21) [19] R 86.7 38.1 82.7 10.0 0.6 30.3 25.4 29.7 82.8 - 85.9 61.9 24.8 84.5 - 38.9 - 22.6 37.9 46.4 41.7 43.9

SFDASEG (ICCV’21) [24] R 90.5 50.0 81.6 13.3 2.8 34.7 25.7 33.1 83.8 - 89.2 66.0 34.9 85.3 - 53.4 - 46.1 46.6 52.3 46.8 49.4
DTST (CVPR’23) [66] R 88.9 45.8 83.3 13.7 0.8 32.7 31.6 20.8 85.7 - 82.5 64.4 27.8 88.1 - 50.9 - 37.6 57.3 50.7 42.6 46.3
CROTS(IJCV’24) [32] R 89.4 41.6 82.7 15.1 1.2 34.7 33.7 25.7 83.7 - 87.9 66.6 34.6 85.4 - 45.9 - 43.5 49.6 51.3 45.1 48.0

CrossMatch(ICCV’23) [59] R* 91.5 55.5 85.4 34.4 8.3 40.8 40.0 44.4 86.6 - 84.3 62.4 22.0 88.3 - 60.0 - 40.6 45.6 55.6 - -
RKP (Ours) R 91.6 51.0 85.2 39.0 25.2 31.6 41.0 45.4 89.0 - 88.9 63.6 33.5 88.9 - 37.9 - 49.1 60.9 57.8 49.9 53.6

VPT(NIPS’23) [33] M 88.6 47.8 84.0 36.8 3.0 39.8 37.3 35.4 83.9 - 87.2 66.2 31.3 85.0 - 50.6 - 39.1 45.0 53.8 44.7 48.8
RKP (Ours) M 89.5 50.6 87.4 40.5 3.6 40.8 41.0 36.8 87.4 - 88.6 68.6 33.1 87.2 - 50.7 - 42.9 48.9 56.1 48.9 52.3

Table 1: Comparison of RKP with state-of-the-art methods on the generalized source-free domain adaptation for semantic
segmentation. Segmentation architectures: R (DeepLabv2 ResNet-101), M (Segformer MiT-B5).𝑚𝐼𝑜𝑈𝑇 /𝑚𝐼𝑜𝑈𝑆 reports the perfor-
mance on the target/source domain. R* denotes CrossMatch [59] using two segmentation models with depth estimation.

Implementation Details.We use the SegFormer [53] with MiT-B5
[16] and Swin-transformer[31], the Deeplab-v2 [4] with ResNet-
101. For optimizer, learning rate, and configuration, we follow the
same settings as described in methods [66] and [17]. The Stable
diffusion V1.5 model [39] pre-trained on the LAION5B [42] dataset
is used as our text-to-image diffusion model. The batch size is set to
4, and the model is trained for 20,000 iterations. The batch size for
fine-tuning with diffusion using ControlNet is set to 2, with other
parameters consistent with ControlNet settings. For all tasks, we
train ControlNet for 50,000 iterations with image size 512 × 512, on
an RTX 3090 GPU. In LAM, the localization network is ResNet-8
with global pooling [15] and an additional regression head [20].
LAM optimization is unsupervised, and training is stopped after 100
iterations. We utilize 8 fixed domain textual prompts for sampling
multi-domain data, namely [‘windy’, ‘hot’, ‘cold’, ‘hail’, ‘foggy’,
‘night’, ‘rainy’]. For each sampling, we randomly select 𝑁𝑑 = 4
domain text prompts from the list. For each adaptation task, a total
of 10,000 multi-domain images are synthesized. The synthesized
target-style images 𝑁𝑠𝑦𝑛 = 2, 000, the synthesized out-of-target
images 𝑁𝑑𝑜𝑚 = 8, 000, totally 10,000 synthesized images. The trade-
off hyper-parameter 𝜆 is set to 0.1.
Evaluation Metrics. We use the mean Intersection over Union
(mIoU) to measure performance on each domain and calculate the
harmonic mean𝑚𝐼𝑜𝑈𝐻 =

2∗𝑚𝐼𝑜𝑈𝑆∗𝑚𝐼𝑜𝑈𝑇

𝑚𝐼𝑜𝑈𝑆+𝑚𝐼𝑜𝑈𝑇
between the source and

target mIoU, and𝑚𝐼𝑜𝑈𝑆 and𝑚𝐼𝑜𝑈𝑇 are the mIoU on source and
target data, respectively.

4.2 Comparison with SOTA Methods
We compare our method with the current state-of-the-art (SOTA)
in two Source-Free Domain Adaptation (SFDA) scenarios: GTA5→
Cityscapes and SYNTHIA → Cityscapes, as shown in Table 1. In
both benchmarks, our RKP significantly outperforms our baseline.

Generalization to Unseen Domains

Method Type Labeled
Seen Citysacpes BDD-

100K Map. ACDC Unseen
Average

Source only DG ✓ 36.8 32.4 31.4 24.2 29.3
FSDR (CVPR’21) [18] DG ✓ 44.8 41.2 43.4 24.8 36.5

SAN-SAW (CVPR’22) [37] DG ✓ 45.3 41.1 40.7 23.1 35.0
SHADE (ECCV’22) [69] DG ✓ 46.6 43.6 45.5 29.1 39.4

CROTS [32] SFDA ✗ 53.7 24.9 29.9 19.6 28.1
DTST [66] SFDA ✗ 55.4 27.5 23.7 17.1 23.4

SFDASEG [24] DG+SFDA ✗ 53.6 30.9 33.7 19.6 28.1
DTST [66] + SHADE [69] DG+SFDA ✗ 53.9 33.5 36.9 20.1 30.2

RKP (Ours) G-SFDA ✗ 59.3 41.7 41.6 26.6 36.6
RKP (Ours) + SHADE [69] G-SFDA ✗ 59.5 44.9 46.1 29.9 40.3

Table 2: Comparison of model’s generalization on unseen
domains, BDD-100K, Mapillary (Map.), ACDC. DG means
given labeled GTA data and SFDA means only given pre-
trained segmentation model and unlabeled Citysacpes data.

Also, in terms of performance both on the target and source do-
mains, RKP establishes a new state-of-the-art in Generalized SFDA
(G-SFDA). Besides, we conduct Unseen Domain Generalization (DG)
experiments in Table 2 to validate the generalization capability of
our method on unseen domains. On three challenging unseen do-
mains, our approach significantly improves the model performance
without accessing labeled source data. Moreover, using DGmethods
as pre-train, our approach even achieves superior performance on
unseen domains compared to the state-of-the-art DG methods.
GTA → Cityscapes. When using ResNet-101 and MiT-B back-
bones, our method respectively improves upon the best published
results by +2.9% and +3.8% on the target domain, and by +5.8% and
+2.8% on the source domain. Overall, our method has increased the
sota performance set in G-SFDA by 5.4% and 3.3%, respectively. In
contrast, existing SFDA methods, e.g., Crossmath[59] and VPT[33],
while achieving notable performance gains on the target domain,
often do so at the expense of the source domain and do not fully
exploit the pre-trianed segmentation model’s capabilities.
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EXP
-ID LAM UFT Syn-

target
Syn-out
-target

ST-
Warm 𝑚𝐼𝑜𝑈𝑇 𝑚𝐼𝑜𝑈𝑆 𝑚𝐼𝑜𝑈𝐻

#1 36.8 71.9 48.7
#2 ✓ 53.7 53.1 53.4
#3 ✓ ✓ ✓ 56.1 53.9 55.0
#4 ✓ ✓ ✓ 55.1 59.6 57.3
#5 ✓ ✓ ✓ 54.9 58.7 56.7
#6 ✓ ✓ ✓ ✓ 57.7 60.2 58.9
#7 ✓ ✓ ✓ ✓ 56.6 59.4 58.0
#8 ✓ ✓ ✓ ✓ ✓ 59.3 61.4 60.3

Table 3: Ablation studies on GTA→Cityscapes.𝑚𝐼𝑜𝑈𝑇 /𝑚𝐼𝑜𝑈𝑆
is the model’s performance on Cityscapes/GTA. LAM is
Layout-Aware Mixing. UFT is Uncertainty Guided Fine-
Tuning. Syn-target is synthesizing target-style images. Syn-
out-target is synthesizing out-of-target images. ST-Warm is
using the self-training-based method [66] as a warm-up.

SYNTHIA → Cityscapes. In this benchmark, the performance re-
sults are consistent with the previous scenario. Ourmethod achieves
state-of-the-art accuracy for both backbones ResNet-101 and MiT-
B. Compared to the SOTA results, our method improves by 2.2%
and 2.3% on the target domain and by 3.1% and 4.2% on the source
domain using ResNet-101 and MiT-B backbones respectively.
Generalization to Unseen Domains. We test our method’s gen-
eralization on unseen domains in Table 2. Existing SFDA methods
struggle with unseen domains, even with top DG methods like
SHADE as pre-training, failing to maintain model generalization.
Our approach, using SHADE as pre-training, outperforms SFDA
methods by 10.1% mIoU on average across three unseen domains. It
even improves DG methods’ performance on new domains by 0.9%
mIoU. Despite only using models trained on the source (GTA) and
unlabeled target (Cityscapes) data, our method matches SHADE’s
performance on three unseen domains.

4.3 Ablation Study and Analysis
To understand the effectiveness of our framework, we conduct
the ablation study using the ResNet-101 backbone in the GTA5
→ Cityscapes. We perform experiments with variations of each
component, termed #1-#8, and report the results in Table 3.

In Table 3, the non-adapted source model (#1) achieves 71.9%
mIoU on the source domain but only 36.8% mIoU on the target
domain. Using LAM (#2) for reliable prediction and mixing, and
retraining the source model using the mixed data, we improve mIoU
on the target domain by 16.9%. However, LAM cannot maintain
performance on the source domain, and themIoU score of the source
is reduced to 53.1%. Then, fine-tuning the diffuse model (UFT) and
synthesizing target domain data (#3) brings a 2.4% mIoU gain in
target performance and some source domain income with 0.8%
mIoU. Further, generating multi-domain data for domain-invariant
learning (#6), yields performance gains of 7.1% and 4.0% on the
source and target domains, respectively. Although the state-of-the-
art performance has been achieved at this time, the performance can
be further enhanced by using the self-training-based method [66] as
a warm-up to provide LAM with more reliable segment candidates
(#8). Finally, the full RKP framework results in an average gain of
11.6% compared to the source model across both domains.
Effectiveness of Layout-Aware Mixing (LAM). The effective-
ness of LAM can be inferred from two experiments: #1→#2 and

Figure 5: Comparison of our LAM with the existing CutMix
[62] or Copy-paste (CP) [5, 14, 44] method on the GTA →
Cityscapes task. We use ProDA [64] and DAFormer [17] as
UDA baselines, and DTST [66] as the SFDA baseline.

#7→#8. Comparing #1 and #2, even without using the synthetic
data, LAM still effectively improves the baseline method, which
suggests that the mixed reliable data can independently work and
benefit existing pseudo-label methods. For #7 and #8, removing
LAM significantly reduces the gains obtained from synthesized
data, resulting in a decrease of 2.0% and 2.7% on the source and
target domains, respectively. This indicates that LAM effectively
enhances the quality of synthesized data.
Effectiveness of Uncertainty Guided Fine-Tuning (UFT). The
effectiveness of UFT can be validated from experiments #5 → #6.
Using our UFT, the model achieve performance improvements of
1.5% and 2.8% on the source and target domains, respectively. This
confirms the effectiveness of UFT in enhancing the gains from
synthesized data.
Effectiveness of SynthesizedMulti-DomainData.The effective-
ness of synthesized data can be validated from experiments #4→#6
and #3→#6. Adding synthesized target-style data in #4→#6 signif-
icantly improves the model’s performance on the target domain,
similar conclusions are drawn in #3→#6 for the source domain.
Random CutMix/Copy-paste v.s. Layout-Aware Mixing. Fig. 5
further verifies LAM by comparing it with some competitors. We
upload traditional Unsupervised Domain Adaptation (UDA) meth-
ods as well as SFDA. We compare random CutMix [55, 62], random
class-level Copy-paste [5, 14, 44], and our LAM on top of traditional
UDA methods and SFDA methods. In both UDA and SFDA, our
LAM achieves significant performance improvements compared to
competitors in cross-domain segmentation using ResNet-101 and
MiT-B5 as backbones. This indicates that our optimized way of
constructing samples results in a more reasonable layout, while
random pasting methods may disrupt the original layout structure,
hence yielding more noticeable performance improvements.
Combination with other SFDA Methods. We combined our
method with various types of SFDA methods, such as the initially
poorly adapted method URMDA [11] and the better feature extrac-
tion network Swin-transformer [31], as shown in Fig. 8. After com-
bining with these methods, our approach significantly improved
their performance on both the source and target domains. This
further demonstrates the compatibility of our method.
Different Text Prompts Generators. Table 4 compares fixed
template prompts, like ’A photo of [class name],’ to those generated
by the Large Language Model (LLM) (e.g., ChatGPT) using class
names. Results show fixed templates perform similarly in the target
domain but degrade performance in the source domain. This may
be due to their simplicity, causing overfitting during fine-tuning
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fog snow hail rain heatwave night windy cold_snapReliable layout
Figure 7: High-quality multi-domain synthesized images. Sampling from our fine-tuned text-to-image diffusion model using
the reliable layout as space conditions and text prompt as style condition.

Figure 8: The performance improvement of our method inte-
grated into different SFDA baselines, URMDA [11], SFDASEG
[24] and VPT [33]. Swin means using Swin-Transfomer [31]
as the base segmentation model.

Method 𝑚𝐼𝑜𝑈𝑇 𝑚𝐼𝑜𝑈𝑆 𝑚𝐼𝑜𝑈𝐻
‘A picture of [class name]’ 59.1 58.7 58.9

LLM [1] 59.3 61.4 60.3

Table 4: Comparison of different text caption generators.

of ControlNet and hindering the model’s ability to learn strong
generalization.

4.4 Qualitative Assessment
Fig. 6 shows that our LAM can blend discrete segments according
to the semantics of the layout and effectively reduce prediction
uncertainty. This provides data support for activating the text-
to-image Diffusion model. Fig. 7 shows the high-quality multi-
domain results synthesized by ourmethod. It shows that ourmethod
effectively activates the diffusion model and empowers it with
the ability to synthesize domain-specific data. Moreover, with the
prompts of the domain text factor, realistic images conforming to
the given semantic layout are still synthesized. More results can be
found in the Appendix.

4.5 Hyper-parameter Analysis
We explore the impact of the number of synthesized instances 𝑁syn
and domain text prompts 𝑁d in Fig. 9. The left figure shows that as

Figure 9: The effect of the number of synthesized images and
domain factors on the adaptability of G-SFDA.

the number of synthesized data 𝑁syn increases, the model’s perfor-
mance gradually improves on both the source and target domains,
stabilizing within a certain range. This illustrates that our synthetic
target-style data can effectively improve the generalization ability
of the model. The right figure shows that, with the increase in the
number of domain text prompts 𝑁d, the model’s performance on
the source domain gradually improves, indicating that the model
gradually learns domain-invariant representations benefiting from
our synthetic out-of-target data. Moreover, after reaching a certain
range, the number of domain text prompts 𝑁d overall has little
impact on the target domain.

5 CONCLUSION
In this paper, we focus on Generalized SFDA (G-SFDA) for seman-
tic segmentation, aiming for robust performance across source
and target domains. Our framework, Reliable Knowledge Propa-
gation (RKP), leverages a text-to-image diffusion model to prop-
agate reliable semantic knowledge from the segmentation model.
By aggregating scattered reliable segments into complete layouts,
RKP activates the diffusion model for conditional generation. This
approach enables synthesis of diverse training images with mul-
tiple domain factors, enhancing source model adaptability across
domains and achieving state-of-the-art performance on SFDA seg-
mentation benchmarks. We hope that our work will bring new
thinking to the community about model generalization.
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