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0.1 Specific Algorithm of our LAM
The core design of LAM is described in the original paper, and we
will elaborate on more specific implementation details. Affine trans-
formations can achieve translation and rotation, but the semantic
spatial layout in street scenes is relatively fixed. Therefore, when
implementing LAM, we impose angle constraints on the mixed
segments to prevent drastic angle changes. Given the affine trans-

formation matrix 𝜔 =

(
𝜔11 𝜔12 𝜔13
𝜔21 𝜔22 𝜔23

)
, the rotation angle can

be obtained using the following formula: 𝜃 = atan2(𝜔21, 𝜔11) · 180𝜋 .
Furthermore, LAM can be exploited multiple times to fill in unre-
liable regions of prediction with reliable segments. Thus, we use
the Mixing process iteratively and set the termination conditions.
Stop mixing when the mean uncertainty falls below 10%. The mean
uncertainty is defined as mean(𝑢) = 1

𝐻×𝑊
∑𝐻
ℎ=1

∑𝑊
𝑤=1 𝑢ℎ𝑤 ,𝑊 and

𝐻 is the height and width. The details are in Algorithm 1:

Algorithm 1 LAM Algorithm
Input: Reliable discrete segment set 𝑅 = {(𝑥𝑖𝑡𝑟 , 𝑟 𝑖 )}, and the

prediction result set 𝐷𝑡 = {(𝑥𝑖𝑡 , 𝑦𝑖𝑡 , 𝑢𝑖𝑡 )} for target data
Output: Set of reliable mixed samples {(𝑥𝑖𝑡𝑚, 𝑦𝑖𝑡𝑚, 𝑢𝑖𝑡𝑚)}

1: for each target data {𝑥𝑖𝑡 , 𝑦𝑖 , 𝑢𝑖𝑡 } in 𝐷𝑡 do
2: if mean uncertainty𝑚𝑒𝑎𝑛(𝑢) is less than 10% then
3: continue
4: Perform connected component analysis on the predicted

uncertainty 𝑢𝑖𝑡 to obtain the mask O for the largest area
5: Find suitable segment 𝑟𝑑 in the set R using Eq. (3)
6: Initialize the localization network 𝐿(𝜔)
7: Optimize 𝐿(𝜔) using Eq. (5) with 𝑟𝑑 and 𝑢𝑖𝑡 to obtain the

optimal affine transformation parameters 𝜔̃
8: Calculate the learned rotation angle 𝜃
9: if −20◦ > 𝜃 𝑜𝑟 𝜃 > 20◦ then
10: continue
11: Perform mixing according to Eq. (6), Eq.(7), Eq.(8) using 𝜔̃
12: Obtain the mixed prediction set {(𝑥𝑖𝑡𝑚, 𝑦𝑖𝑡𝑚, 𝑢𝑖𝑡𝑚)}

0.2 More Visualization of LAM
We provide more visualizations of the mixed target images, mixed
pseudo-labels, and mixed uncertainties generated by our LAM in
Fig. A. As shown in the second column of Fig. A, the regions in
the yellow rectangular boxes of pseudo-labels are those with high
uncertainty, i.e., corresponding to the brighter regions in our uncer-
tainty maps of the third column. Subsequently, the most appropriate
reliable segments associated with these high-uncertainty regions
are selected and cover on them, obtaining mixed target images,
mixed pseudo-labels, and mixed uncertainties, as shown in the

𝜏 0.10 0.25 0.50 0.75

G → C: Source 60.1 61.0 61.4 60.9

G→ C: Target 58.5 58.8 59.3 58.6
Table A: The impact of hyper-parameter 𝜏 on the adaptation
performance (mIoU %) in the GTA→ Cityscapes task.

last three columns of Fig. A. By comparing the third and sixth
columns of Fig. A, we can see that the high-uncertainty regions
in the pseudo-labels has almost been replaced. By comparing the
second and fifth columns of Fig. A, the mixed pseudo-labels have
less noise while maintaining the complete semantic layout. The
generated high-quality paired data provides support for fine-tuning
the diffusion model to the target domain, driving the synthesis of
target-style and out-of-target style data.

0.3 More Synthesized Data via Our Fine-tuned
text-to-image Diffusion Model

We provide more visualizations of the data synthesized by our
fine-tuned diffusion model in Fig. B and Fig. C. These data are
synthesized based on mixed layouts and reliable layouts, respec-
tively. In addition to the semantic layouts, given various domain
factors ‘fog’, ‘snow’, ‘hail’, ‘rain’, ‘heatwave’, ‘night’, ‘windy’, and
‘cold_snap’ as prompts, the synthesized data significantly exhibit
different out-of-domain styles and well maintains the essential se-
mantic content (i.e., undistorted). These synthesized high-quality
out-of-domain data provide supporting material for the model to
learn strong generalization capabilities.

0.4 Impact of Hyper-parameter 𝜏
In Table A, we provide sensitivity analysis of the hyper-parameter 𝜏
by setting it from 0.10 to 0.75. Table A shows that larger or smaller
𝜏 causes a slight degradation in network performance. We analyze
that this is because when 𝜏 is large, too much noise is introduced;
when 𝜏 is small, the segment candidates are less rich. Finally, we
choose 𝜏 as 0.5 for all adaptation tasks.

0.5 More Comparisons of Segmentation Results
Between our method and the existing SFDA method DTST [4], we
provide more comparisons of their segmentation results on the
unseen domain BDD-100K [3] in Fig. D. As shown in Fig. D, under
various weather conditions, our method consistently produces more
accurate predictions than the DTST method and our results have a
more complete semantic structure. This contributes to the fact that
our network achieves strong generalization ability by retraining
on data with multi-domain characteristics.
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Figure A: More visualization of our proposed LAM, including mixed target images, mixed pseudo-labels, and mixed uncertainty.

0.6 Details on Unseen Domain Datasets.
BDD-100K Dataset [3]. The BDD-100K dataset is an urban dataset
of real scenes collected from dashcam video frames in various
locations of the United States. It consists of 7,000 training, 1,000
validation, and 2,000 testing images of resolution 1, 280 × 720.
Mapillary Dataset [1]. The Mapillary dataset contains tens of
thousands of real images collected from street scenes all around
the world. Pixel-level labels with 66 classes are provided, but only
19 classes shared are used in our experiments. The training and
validation sets consist of 18,000 and 2,000 images. The resolution
of the image is 1, 920 × 1, 080.

ACDC Dataset [2]. The ACDC dataset shares the same semantic
classes with Cityscapes and is collected in four different adverse
visual conditions: Fog, Night, Rain, and Snow. It comprises 1,600
training, 406 validation, and 2,000 test images with a resolution of
1, 920 × 1, 080.
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Figure C: More visualization of the synthesized image based on reliable layouts.
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Figure D: More visualization of adaptation results on unseen domain. Comparison of our method and the SFDA method DTST
[4] on unseen domain BDD-100K [3] with various weather conditions.
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