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Appendix

A Proofs

A.1 Proof of Proposition 1

Proof. By standard results on Gaussian conditioning and marginalization

z | y ∼ N (Kz(y − Cµ),Σz), (A.1a)
y ∼ N (Cµ,S), (A.1b)

where

Σ−1
z = I + (R

−1/2CΠ
1/2)∗R

−1/2CΠ
1/2, (A.2a)

Kz = Σz(R
−1/2CΠ

1/2)∗R
−1/2, (A.2b)

R
−1/2SR

−∗/2 = R
−1/2CΠ

1/2(R
−1/2CΠ

1/2)∗ + I. (A.2c)

Substituting for the singular value decomposition of (R−1/2CΠ1/2)∗ gives the conditional covariance

Σz =
(
I + UD2U∗)−1

=
(
U(I + D2)U∗)−1

= U(I + D2)−1U∗, (A.3)

the Kalman gain

Kz = U(I + D2)−1U∗UDV∗R
−1/2 = U(I + D2)−1DV∗R

−1/2, (A.4)

and the marginal measurement covariance matrix

R
−1/2SR

−∗/2 = VD2V∗ + I. (A.5)

This gives the result on marginalization and conditioning. To obtain the expression for the marginal
likelihood, which is given by

N (y; Cµ,S) = −m
2
log 2π − 1

2
log|S| − 1

2
(y − Cµ)∗S−1(y − Cµ). (A.6)

The log determinant is given by

log|S| = log
∣∣∣R1/2(VD2V∗ + I)R

∗/2
∣∣∣ = 2 log |R1/2|+ log |VD2V∗ + I| . (A.7)

Let Vk be the k-th column vector of V then it is an eigenvector of VD2V∗ + I with eigenvalue
D2
kk + 1. Furthermore, any vector in the orthogonal complement to the column space of V is also an

eigenvector with eigenvalue 1. Therefore,

log |VD2V∗ + I| =
r∑

k=1

log(D2
kk + 1). (A.8)

It remains to obtain the desired expression for the quadratic form. Start by inserting the expression
for S

(y − Cµ)∗S−1(y − Cµ) = (y − Cµ)∗R
−∗/2(VD2V∗ + I)−1R

−1/2(y − Cµ)

= e∗(VD2V∗ + I)−1e.
(A.9)

Now e∗(VD2V∗ + I)−1e = e∗b, where we define the vector b such that

(VD2V∗ + I)b = e. (A.10)
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Multiplying from the left by V∗ gives

(D2 + I)V∗b = V∗e, (A.11)

therefore,
V∗b = (D2 + I)−1V∗e. (A.12)

Inserting this in the original definition of b gives

VD2(D2 + I)−1V∗e + b = e, (A.13)

from which it follows that

e∗(VD2V∗ + I)−1e = e∗b =∥e∥2 − e∗VD(D2 + I)−1DV∗e. (A.14)

A.2 Proof of Proposition 2

In the following, the computational complexity of the low-rank filtering recursion is analyzed in
detail, which proves Proposition 2 and Corollary 2. In the best case, the cost of the proposed filtering
algorithms scales linearly in the state dimension n and the measurement dimension m. For this to
hold, we assume that

(a) the maps x 7→ Ax, x 7→ Φx, and x 7→ BB∗x can be evaluated in O(n),
(b) the map x 7→ Cx can be evaluated in O(m), and

(c) the map x 7→ R−1/2x and the log-determinant log |R1/2| can be evaluated in O(m).

We refer to the situation in which (a) or (b) do not apply as the “worst case”. Assumption (c) is taken
for granted as the measurement-noise covariance R is often a diagonal matrix, which implies that
sensor errors are uncorrelated. This is not only realistic but also commonly imposed in modelling.

Proof. The best-case cost of the approximate filtering scales linear in the state dimension n and the
measurement dimension m. In the worst case, the complexity scales quadratically in n and m.

Prediction We begin by analyzing the cost for the approximate integration of the low-rank process-
noise covariance Q1/2. This amounts to the cost of the dynamical low-rank approximation (DLRA)
algorithm for a symmetric Lyapunov equation. Appendix C gives a detailed description of how
this algorithm is used as part of the RRKF recursions. Let the matrix-valued flow field be F (Q) =
AQ + QA∗ + BB∗. Given an initial factorization Q0 ≈ Y0 = U0D

2
0U

∗
0, with U0 ∈ Rn×r and

D0 ∈ Rr×r, the cost for integrating this matrix equation using DLRA is as follows:

1. K-step

(a) Flow-field evaluation

F (t,K(t)U∗
0)U0 = A(K(t)U∗

0)U0 +K(t)U∗
0A

∗U0 +BB∗U0 (A.15a)
= AK(t) + K(t)(U∗

0(A
∗U0)) + BB∗U0, (A.15b)

(b) QR factorization of tall n× r matrix

QR
(
K(t+ h)

)
, (A.16)

(c) Compute
M = U∗

hU0. (A.17)

2. S-step

(a) Compute initial D(t0)
D(t0) = MD0M

∗, (A.18)
(b) Flow-field evaluation

U∗
hF (t,UhD(t)U∗

h)Uh = U∗
h

(
AUhD(t)U∗

h +UhD(t)U∗
hA

∗ +BB∗)Uh (A.19a)

= U∗
h(A(UhD(t))) + (D(t)U∗

h)(A
∗Uh) + U∗

h(BB
∗Uh).
(A.19b)
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Table A.1: Time complexity of reduced-rank filtering: The prediction step
Step

Eq. Operation Best case Worst case

(A.15)
AK(t) O(nr) O(n2r)
K(t)(U∗

0(A
∗U0)) O(nr2) O(n2r + nr2)

BB∗U0 O(nr) O(n2r)

(A.16) QR
(
K(t+ h)

)
O(nr2) O(nr2)

(A.17) M = U∗
hU0 O(nr2) O(nr2)

(A.18) D(t0) = MD0M
∗ O(r3) O(r3)

(A.19)
U∗
h(A(UhD(t))) O(nr2) O(n2r + nr2)

(D(t)U∗
h)(A

∗Uh) O(nr2) O(n2r + nr2)
U∗
h(BB

∗Uh) O(nr2) O(n2r + nr2)

(A.20) Dl = D
1/2
l D

∗/2
l O(r3) O(r3)

(A.21) Φlµl−1 O(n) O(n2)

(A.22) ΦlΣ
1/2
l−1 O(nr) O(n2r)

(ΦlΣ
1/2
l−1 Q

1/2
l ) ≈ ŨlD̃lṼ

∗
l O(nr2) O(nr2)

The above steps 1. and 2. are repeated according to how many DLRA integration steps are
performed in the respective prediction step. Therefore, their cost has to be multiplied by
that (typically small) constant.

3. Using DLRA integration we obtain a low-rank factorization of the process-noise covariance
matrix Ql ≈ Yl = UlDlU

2
l . It remains to compute a matrix square root Q

1/2
l = UlD

1/2
l and

thus a matrix square root of Dl ∈ Rr×r

Dl = D
1/2
l D

∗/2
l . (A.20)

Now, having obtained Q
1/2
l , we proceed to

4. predict the mean
µ−
l = Φlµl−1, (A.21)

5. and the low-rank factor Π
1/2
l of the predicted covariance matrix. This amounts to building

the rank-2r square-root factor and truncating it at its r-th largest singular value (i.e. , a
truncated SVD of a tall n× 2r matrix):(

ΦlΣ
1/2
l−1 Q

1/2
l

)
≈ ŨlD̃lṼ

∗
l . (A.22)

The computational complexities of the respective steps can be found in Table A.1.

Correction step Now, the cost of the correction step is analyzed. First, we compute an SVD of a
wide r ×m matrix

(R
−1/2CΠ

1/2
l )∗ = UlDlV

∗
l . (A.23)

Given this decomposition and the whitened residual

el = R
−1/2(yl − Cµ−

l ), (A.24)

we proceed to

1. update the mean

∆µl = Klel = Π
1/2
l (Ul((I + D2

l )
−1(Dl(V

∗
l el)))), (A.25)

16



Table A.2: Time complexity of reduced-rank filtering: The correction step
Step

Eq. Operation Best case Worst case

(A.23) R−1/2(CΠ
1/2
l ) O(mr) O(m2r)

(R−1/2CΠ
1/2
l )∗ = UlDlV

∗
l O(mr2) O(mr2)

(A.24) el = R−1/2(yl − Cµ−
l ) O(m) O(mn+m2)

(A.25) Π
1/2
l (Ul((I + D2

l )
−1(Dl(V

∗
l el)))) O(mr + nr2) O(mr + nr2)

(A.26) Π
1/2
l (Ul(I + D2

l )
−1/2) O(nr2) O(nr2)

(23)

log |R1/2| O(m) O(m)∑r
k=1 log((Dl)

2
kk + 1) O(r) O(r)

∥el∥2 O(r) O(r)
(e∗lVl)(Dl((D

2
l + I)−1Dl))(V

∗
l el) O(mr) O(mr)

2. and compute the low-rank factor of the filtering covariance

Σ
1/2
l = Π

1/2
l (Ul(I + D2

l )
−1/2). (A.26)

Finally, the marginal predictive log-likelihood log p(yl | y1:l−1) is computed as in Eq. (23).

The computational complexities of the respective steps can be found in Table A.2. Together, Tables A.1
and A.2 prove the stated asymptotic complexities of the low-rank filtering recursion.

A.3 Proof of Proposition 3

This section analyzes the computational complexity of the low-rank smoothing recursion in detail,
which proves Proposition 3.

Proof. The best-case cost of the approximate smoothing scales linear in the state dimension n. In the
worst case, the complexity is quadratic in n.

Approximate backwards kernel Factorizations of Σ
1/2
l−1 and Π

1/2
l are already given from filtering.

For the smoothing gain, it remains to compute

Γl = Σ
∗/2
l (Φ∗

l+1(Π
1/2
l+1)

+). (A.27)

Then, we proceed to compute the shift vector

vl = µl −Glµ
−
l+1 = µl − Σ

1/2
l (Γl((Π

∗/2
l+1)

+µ−
l+1)), (A.28)

and the low-rank factor P
1/2
l of the backwards-process-noise covariance matrix. Therefore, a truncated

SVD of a tall n× 2r matrix is computed:(
(I−GlΦl+1)Σ

1/2
l GlQ

1/2
l+1

)
≈ ÛlD̂lV̂

∗
l . (A.29)

Backwards prediction (smoothing) Smoothing amounts to consecutive predictions with the
backwards kernel. For this prediction, the low-rank factor of the process-noise covariance matrix does
not come from DLRA, but can be directly computed from the smoothing gain and the process-noise
covariance matrix (see Eqs. (29) and (30)).

The smoothing mean is therefore given as

ξl = Glξl+1 + vl = Σ
1/2
l (Γl((Π

∗/2
l+1)

+ξl+1)) + vl, (A.30)
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Table A.3: Time complexity of reduced-rank smoothing
Step

Eq. Operation Best case Worst case

(A.27) Γl = Σ
∗/2
l−1(Φ

∗
l (Π

1/2
l )+) O(nr2) O(n2r + nr2)

(A.28) Glµ
−
l+1 = Σ

1/2
l (Γl((Π

∗/2
l+1)

+µ−
l+1)) O(nr + r2) O(nr + r2)

(A.29)
GlΦl+1Σ

1/2
l = Σ

1/2
l (Γl((Π

∗/2
l+1)

+(Φl+1Σ
1/2
l ))) O(nr2 + r3) O(n2r + nr2 + r3)

GlQ
1/2
l = Σ

1/2
l−1(Γl((Π

∗/2
l )+Q

1/2
l )) O(nr2 + r3) O(nr2 + r3)

((I−GlΦl+1)Σ
1/2
l GlQ

1/2
l+1) ≈ ÛlD̂lV̂

∗
l O(nr2) O(nr2)

(A.30) Glξl = Σ
1/2
l−1(Γl((Π

∗/2
l )+ξl)) O(nr + r2) O(nr + r2)

(A.31) GlΛ
1/2
l+1 = Σ

1/2
l (Γl((Π

∗/2
l+1)

+Λ
1/2
l+1)) O(nr2 + r3) O(nr2 + r3)

(GlΛ
1/2
l+1 P

1/2
l ) ≈ ŪlD̄lV̄

∗
l O(nr2) O(nr2)

and the low-rank factor of the smoothing covariance as Λ
1/2
l = ŪlD̄l, where(

GlΛ
1/2
l+1 P

1/2
l

)
≈ ŪlD̄lV̄

∗
l (A.31)

is the truncated SVD of a tall n× 2r matrix.

The computational complexities of the respective steps can be found in Table A.3, which shows
that—in the best case—the cost of approximate low-rank smoothing never exceeds O(nr2 + r3), as
stated by Proposition 3. It also shows that in the worst case, the complexity is quadratic in n.

B Efficient inference for the case r > m

This section gives an inference scheme that can be used in the correction step in case the low-rank
dimension r exceeds the measurement dimension m at a time point tl. This is not generally the
designated use case of the algorithm, since in most applications, we assume r ≪ m ≤ n. However,
if at a given time point tl, there are less than usual measurements available (e.g. due to missing data
at that time), it is still useful to have an inference scheme in place for this case. This is provided by
the following proposition.

Proposition B.1. Let m < r ≤ n and Π
1/2
l ∈ Rn×r and R1/2 ∈ Rm×m. An approximate update is

then obtained according to the standard Kalman filter update rules:

Sl = CΠ
1/2
l (CΠ

1/2
l )∗ +R

1/2R
∗/2, (B.1a)

Kl = Π
1/2
l (CΠ

1/2
l )∗S+, (B.1b)

∆µl = Kl(yl − Cµl), (B.1c)
Σl = Πl −KlSlK

∗
l . (B.1d)

The marginal measurement covariance, Sl, is obtained by a singular value decomposition

UslD
s
l (V

s
l )

∗ =
(
CΠ

1/2
l R1/2

)
, (B.2a)

S = Usl (D
s
l )

2(Usl )
∗, (B.2b)

where the matrix on the right-hand side of the first equation ism× (r+m). Hence, Usl ∈ Rm×(r+m),
and Dsl ,V

s
l ∈ R(r+m)×(r+m). The Moore–Penrose pseudoinverse S+l is then given by

S+l = Usl (D
s
l )

−2(Usl )
∗. (B.3)

The gain matrix is thus obtained as

K̃l = (CΠ
1/2
l )∗Us(Ds)−1, (B.4a)

Kl = Π
1/2
l K̃l(D

s)−1(Us)∗, (B.4b)
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where K̃l ∈ Rr×(r+m). The updated covariance is obtained by
Σl = Πl −KlSlK

∗
l

= Πl −Π
1/2
l K̃l(D

s
l )

−1(Usl )
∗UslD

s
l (U

s
l )

∗(Π
1/2
l K̃l(D

s
l )

−1(Usl )
∗)∗

= Πl −Π
1/2
l K̃l(Π

1/2
l K̃l)

∗

= Π
1/2
l

(
I− K̃lK̃

∗
l

)
Π

∗/2
l .

(B.5)

Consider the singular value decomposition of K̃l
K̃l = Ukl D

k
l (V

k
l )

∗, (B.6)

where Ukl ,D
k
l ∈ Rr×r and Vkl ∈ Rr×r+m. The covariance update in low-rank form is then given by

Σ
1/2 = Π

1/2
(
I−Ukl (D

k
l )

2(Ukl )
∗)1/2

,

= Π
1/2

(
Ukl (U

k
l )

∗ −Ukl (D
k
l )

2(Ukl )
∗)1/2

,

= Π
1/2Ukl

(
I− (Dkl )

2
)1/2

.

(B.7)

The marginal predictive log likelihood p(yl | y1:l−1) = N (Cµ−
l ,Sl) can be cheaply evaluated given

the factorization of Sl from Eq. (B.2).

C Dynamical-low-rank approximation algorithm for Lyapunov equations

Following Ceruti and Lubich [8], we give the procedure for one DLRA integration step, adapted to
our specific case of a symmetric Lyapunov equation

F (t,Q(t)) = AQ(t) + Q(t)A∗ +B(t)B(t)∗. (C.1)
Let an initial rank-r factorization Q0 ≈ Y0 = U0D0U

∗
0, with an orthogonal matrix U0 ∈ Rn×r and

a symmetric matrix D0 ∈ Rr×r, be given at time t0. For a temporal step size h, a rank-r factorization
Q(t+ h) ≈ Yh = UhDhU

∗
h at the next integration step t0 + h is computed as follows.

K-step: Update U0 → Uh.
Integrate from t = t0 to t0 + h the n× r matrix differential equation

K̇(t) = F (t,K(t)U∗
0)U0, K(t0) = U0D0. (C.2)

Orthogonalize K(t+ h) by computing a QR decomposition, yielding the orthogonal matrix
Uh. Then, compute the r × r matrix M = U∗

hU0.
S-step: Update D0 → Dh.
Integrate from t = t0 to t0 + h the r × r matrix differential equation

Ḋ(t) = U∗
hF (t,UhD(t)U∗

h)Uh, D(t0) = MD0M
∗, (C.3)

and set Dh = D(t+ h)

Remark C.1. The terms “K-step” and “S-step” can be confusing due to conflicting notation
conventions in the Kalman-filtering and dynamical-low-rank-approximation literature, respectively.
The matrix K and the term “S-step” are not related to the Kalman gain K and the marginal
measurement covariance matrix S from the Kalman filter update step described in Section 3.2
and Appendix B.

The n × r and r × r matrix differential equations in the K-step and S-step can be solved using a
standard numerical integrator, e.g., a Runge-Kutta method or an exponential integrator.

It is useful to note that the matrix equation in the S-step itself is a symmetric Lyapunov equation:

Ḋ(t) = U∗
hF (t,UhD(t)U∗

h)Uh (C.4a)

= U∗
h

(
AUhD(t)U∗

h +UhD(t)U∗
hA

∗ +BB∗)Uh (C.4b)

= (U∗
hAUh)D(t) + D(t)(U∗

hAUh)
∗ +U∗

hBB
∗Uh (C.4c)

= ADD(t) + D(t)A∗
D +BDB

∗
D, (C.4d)

where the final step defines the parameters of the Lyapunov equation for D(t) as AD = U∗
hAUh and

BD = U∗
hB. Since D(t) ∈ Rr×r is small, this equation can be solved exactly with little computational

cost using matrix-fraction decomposition [40, 3].
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D Details on experimental setups

This section gives more details regarding the experimental setups used in Section 4. For all results of
the proposed RRKF algorithm, only a single DLRA step was used in the prediction step to compute
the low-rank factorization of the process noise covariance matrix Q1/2.

D.1 Linear advection model

This section provides more details on the data assimilation setting that is considered in Section 4.1.

We consider a spatial grid of n = 1024 uniformly spaced points and a temporal grid of 800 uniformly
spaced time points. Unit step sizes ∆t = ∆x = 1 are assumed on the spatio-temporal grid. To
generate an initial ground-truth state we sample an initial sinusoidal curve ψ(0) according to the
description by Sakov and Oke [33]

ψi(0) =

25∑
k=0

ak sin

(
2πk

1000
i+ φk

)
, (D.1)

where i = 1, . . . , 1024 is an index into the spatial grid and ak ∼ Unif(0, 1), φk ∼ Unif(0, 2π). The
initial state is normalized as described by Sakov and Oke [33]. To generate a ground-truth trajectory
from this initial state, the linear-advection dynamics ∂ψ

∂t = −α∂ψ∂x are simulated on the finite spatial
grid. We assume constant unit velocity α = 1 and periodic boundary conditions in space. As data,
10 equidistant state components are observed every 5 time steps. Each observation is corrupted by
additive Gaussian noise.

An initial ensemble of size r = n is built by successive sampling according to Eq. (D.1). The exact
sampling process follows the more detailed description by Evensen [14, Section 3.1]. From this
Rn×n ensemble matrix, the sample covariance matrix is computed and used as the initial covariance
for the Kalman filter. The initial factorization of the RRKF is obtained by a spectral decomposition of
the sample covariance matrix truncated at the r-th largest eigenvalue. Selecting the r first ensembles
serves as an initial ensemble for the EnKF and the ETKF.

Figure 2a shows the deviations of the individual low-rank approximations to the optimal KF estimate
on the described data assimilation problem.

D.2 London air-quality regression

The experimental setup and the data used in Section 4.2 is provided by Hamelijnck et al. [20]. The
model is selected via the log-likelihood estimation of the exact Kalman filter. The RMSE of the
Kalman filter mean to the test data is 9.96791 (cf. Hamelijnck et al. [20]). For r = n the RRKF also
obtains this RMSE up to numerical error, as shown in Fig. 2b.

D.3 Spatio-temporal Matérn process with varying spatial lengthscale

Section 4.3 evaluates the low-rank approximation quality in approximate on-model spatio-temporal
GP regression with varying strength of interaction between the state components. In this experiment,
we consider a spatio-temporal GP with separable covariance structure, as described in Section 4.3
with hand-picked hyperparameters. The time domain is a uniform grid on the interval [0.1, 10] with
step size ∆t = 0.1. The spatial domain is a uniform grid on [0, 2]× [0, 2] with step size ∆x = 0.1.

Over the experiment, the spatial lengthscale is varied in order to evaluate low-rank approximation
quality given how much correlation between the respective state components is encoded in the prior.
The smaller the spatial lengthscale, the less interactions between the spatial point and the worse the
low-rank approximation is expected to be for small r. We test the values ℓx ∈ {0.01, 0.1, 0.25, 1.0}.
For each of those values, we proceed as follows. First, a realization of the prior dynamics is drawn
from the spatio-temporal Matérn process. At every temporal grid point, the entire state vector of the
prior draw at that point is corrupted by additive Gaussian noise to generate data. Then, the Kalman
filter estimate and the respective low-rank filtering estimates are computed for increasing values of
r. Figure 3 shows for increasing spatial lengthscales and varying r (i) the resulting RMSE of the
approximate filter means to the Kalman filter mean and (ii) the time-averaged Frobenius distance
between the approximate filter covariance matrices to the Kalman filter covariance matrix.
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D.4 Runtime

This section details the respective experimental setups used to evaluate the best-case and worst-case
computational complexity of the approximate low-rank filters with respect to the state dimension n,
as described in Section 4.4. We analyze the asymptotic computational complexity with respect to the
state dimension n both for the linear-in-n case (Fig. 4, left) and for the quadratic-in-n case (Fig. 4,
right). The elapsed wall time is always measured using the BenchmarkTools.jl software package3

with default settings, which computes sample statistics over multiple runs automatically to prevent
distortions by background processes. The setups for both analyzed cases differ only marginally from
already encountered setups.

Linear-in-n case We use a setting that is similar to what is described in Section 4.1 and Ap-
pendix D.1. The state dimension is varied in order to evaluate computational complexity with respect
to n. The measurement dimension is fixed at m = 100 and the low-rank dimension at r = 5. The
temporal domain is a grid on the interval [0, 100] with unit step size ∆t = 1. Noisy observations are
generated from the ground truth trajectory at every 5 time points.

The discretized linear advection dynamics with periodic boundary conditions amount to multiplication
with a circulant matrix. The shift direction depends on the advection velocity, which we chose as
α = 1. Multiplication with a circulant matrix can be carried out in linear complexity via multiplication
in the Fourier space. Since there is no process noise assumed, the matrix BB∗ is the zero matrix.
Hence, Assumption 1 is satisfied by the dynamics model.

The measurement operator selects m = 100 uniformly spaced spatial points from the state vector
and the measurement noise covariance matrix is a diagonal matrix. Hence, the measurement model
fulfills Assumptions 2 and 3.

Quadratic-in-n case Here, we use a setting that is similar to what is described in Section 4.3
and Appendix D.3. The measurement dimension is fixed at m = 100 and the low-rank dimension
at r = 5. The temporal domain is a grid on the interval [0, 10] with step size ∆t = 0.1. The spatial
domain are n equidistant points in an interval in R, where n varies. The generated data are noisy
observations from a ground-truth realization of the prior at 20 time points, each measuring m = 100
state components. We evaluate the runtime of solving a spatio-temporal regression problem with this
prior and the generated data.

Assumption 1 is not fulfilled by the dynamics model in this setting, in that evaluating the map
x 7→ BB∗x costs O(n2). By modeling spatial diffusion with a dense spatial kernel matrix, the
inhomogeneity in the Lyapunov equation for the process-noise covariance matrix is also a dense
matrix. Concretely, BB∗ = (B̃K1/2

x )(B̃K1/2
x )∗, where B̃ is the temporal dispersion matrix and Kx

denotes the spatial kernel matrix. Since Kx is dense, so is BB∗, which violates a part of Assumption 1.
The cost of the low-rank prediction step thus scales quadratically in the state dimension n.

The observation model is a sparse selection operator that projects the state onto m = 100 points and
the measurement noise covariance is a diagonal matrix. Hence, Assumptions 2 and 3 are still fulfilled
by the observation model.

Figure 4 demonstrates that the theoretical complexities are empirically verified.

D.5 Large-scale spatio-temporal GP regression on rainfall data

This section provides further details on the large-scale low-rank approximation to spatio-temporal
GP regression, described in Section 4.5.

We select the prior model via the log-likelihood estimate of the RRKF, as given in Eq. (23). For
the model selection, the data set is distinct from the data used in the filtering/smoothing problem
(Fig. 5). We use the time period from 25 January, 2010 through 5 March, 2010 and each data point
is downsampled to a lower spatial resolution using cubic-spline interpolation. This reduces the
state dimension to n = 4350 spatial points during model selection. Further, for model selection the
low-rank dimension is set to r = 200.

3https://github.com/JuliaCI/BenchmarkTools.jl
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Figure E.1: Z-score distribution for the low-rank filters with varying low-rank dimensions r. In
this on-model GP regression problem, we assume the Z-scores to be Chi(1) distributed. For the
approximate low-rank filters, the Z-score distribution has too much mass in the high regimes,
indicating overconfident estimates. For r = n, the Z-scores of the RRKF and the KF align.

E Z-scores of (approximate) Gaussian state estimates

This sections investigates a limitation of the proposed algorithm, which is addressed in Section 5.
When truncating covariance information between the state components, we expect this to be reflected
by a higher uncertainty in the resulting estimate. However, the algorithm does not account for that
missing information and tends to return overconfident estimates for small values of r.

We analyze the distribution of the Z-scores of Gaussian state estimates on a Gaussian model. We
expect the absolute values of the Z-scores to be distributed according to a Chi(1) distribution. A
spatio-temporal GP regression problem in an on-model setting, similar to the setting described in
Appendix D.3, is solved to investigate this. A ground truth realization is drawn from a spatio-temporal
Matérn-1/2 process in the temporal domain [0, 50] with a step size of ∆t = 0.1. Data is generated
by adding zero-mean Gaussian noise to m = 150 state components at 100 randomly sampled time
points. The spatial grid is a uniformly spaced grid in the interval [0, 20] with spatial step size of
∆x = 0.1.

Figure E.1 visualizes the distribution of the vector of Z-scores µN−x⋆
N

σN
, where µN and σN are the

final-step filtering/smoothing mean and standard deviation, respectively. x⋆N is the ground-truth state
at time tN . The Z-scores are computed for increasing values of r. The first r = 50 eigenvalues of the
final-step Kalman filter covariance matrix account for around 97.8% of the spectrum. No covariance
inflation [6, Section 4.4] is used for the ensemble methods.

It becomes apparent that—especially for very small values of r—there are significantly more high
Z-scores than expected. This indicates that too many states are estimated poorly and divided by a
small standard deviation. In their naïve implementation, all examined low-rank algorithms exhibit
this behavior. For the RRKF, it is left for future work to find a principled solution to account for
missing covariance information in a computationally efficient manner.

F Error as a Function of Raw Computation Time

In addition to the previous anaylsis of the error in the approximate filtering estimate with varying
low-rank dimensions, Figures F.1a and F.1b show the error as a function of wall-clock computation
times for the linear-advection model (Section 4.1) and the spatio-temporal Matérn model (Section 4.3),
respectively.
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(a) Linear advection dynamics (true rank = 51).
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(b) London air-quality regression.

Figure F.1: Error of the low-rank filters as a function of wall-clock computation time. The raw
computational expenses are comparable to those of the ensemble methods. The lower-left corner is
the optimal setting with low error and low computation time. All methods approach this region of the
plot for faster decays of the spectrum, while the RRKF performs better most of the time.
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