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Appendix

1 Behaviour decoder

As mentioned in Section 3, the choice of behaviour decoder can dramatically change the learned
relevant latents. Figure 5 shows TNDM trained with both the one-to-one Gaussian behaviour decoder
introduced in PSID and with the flexible, casual decoder introduced in this work. As can be seen
with the one-to-one Gaussian decoder, TNDM’s behaviourally relevant factors perfectly replicate
the behaviour. This is because there is so little flexibility for the decoder to model the behaviour
that replicating the behaviour is the best option (despite the potential negative effect to neural
reconstruction). This forces the irrelevant factors to encode behavioural information as the neural
reconstruction will largely depend on the irrelevant factors (see Figure 6). With the causal linear
decoder, TNDM is able to extract behaviourally relevant factors that explain the behaviour while still
contributing meaningfully to the neural reconstruction (see Figure 6). The irrelevant factors, in this
case, do not need to encode behavioural information and can instead encode aspects of the neural
activity unrelated to the specific behaviour. We find that with only one irrelevant factor, the neural
reconstruction suffers for the one-to-one decoder and improves steadily as you add more irrelevant
factors.
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Figure 5: Visualizations of the predicted behaviour and latent factors for TNDM trained with two
different decoders. On top, TNDM is trained with a one-to-one Gaussian decoder (introduced in
Section 2). As can be seen, the lack of flexibility in the decoder forces the relevant factors to simply
replicate the behaviour. This means that the irrelevant factors have to encode behavioural information
since they are primarily used for neural reconstruction. On bottom is the causal linear decoder
introduced in this work. Here, the relevant factors capture more structure in the neural activity
while still allowing for good behaviour reconstruction. This lets the irrelevant factors encode less
behavioural information.
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Figure 6: Visualization of the learned neural reconstruction weight matrices for the factors shown in
Figure 5. These matrices transform the learned factors into neural firing rates. On top is the neural
weight matrix for TNDM trained with a one-to-one Gaussian decoder and on bottom is the neural
weight matrix for TNDM trained with the linear causal decoder. In both cases, their are four factors
that are transformed into the firing rates of 70 neurons (the top two factors are relevant and the bottom
two are irrelevant). Interestingly, for TNDM trained with the one-to-one decoder, the relevant factors
are barely used for neural reconstruction (i.e. low magnitude weights). This implies that the learned
factors are not informative of neural activity and that the irrelevant factors are mainly being used. For
TNDM trained with the linear causal decoder, however, the relevant factors play a much larger role in
the neural reconstruction (i.e. higher magnitude weights).
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2 Premotor cortex results
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Figure 7: Visualization of initial conditions and latent dynamical factors for a model of premotor
cortex (PMd) activity. The activity was recorded simultaneously with the motor cortex (M1) activity
shown in Figure 3, main text. As in that figure, TNDM (left) has two relevant and two irrelevant
factors, and LFADS (right) four factors. On the left inferred initial conditions for each method
are shown after reducing the dimension to 2 with T-SNE. There is a clear distinction between the
conditions relating to different movement directions (indicated by different colours) in the relevant
factors, but unlike for M1 the irrelevant factors also contain some structure that distinguish trial types.
The LFADS initial conditions for PMd show some distinction between behaviours, but similar to the
M1 data this is much weaker than for the relevant factors in TNDM. Condition-averaged inferred
latent dynamical factors (along with the single-trial factors; plots on the right) again show a clear
distinction between different behaviours for the relevant factors, while this information is mixed in
the irrelevant factors. As for M1, there is no clear behaviour separation in the factors of LFADS.
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Figure 8: Behaviour and activity reconstruction accuracy for TNDM, LFADS, and PSID for monkey
premotor cortex (PMd) activity during the center-out reaching task. The data used here was recorded
simultaneously with the M1 activity shown in Figure 2 (main text). Each plot shows performance
as a function of the total number of latent factors, averaged over five fits with different initialisation
(random seeds) and different random training-test data splits. Error bars show standard error of the
mean. For TNDM and PSID, the reconstruction performed by the behaviour decoder (with only the
relevant factors) is shown, while for LFADS a ridge regression was used to decode the behaviour ex
post factor. Behaviour reconstruction and log-likelihood were computed on held out test data, and the
firing rate RMSE on the whole data set to allow for more reliable averaging. Similar to M1, TNDM
requires at least two relevant factors for saturating behaviour reconstruction accuracy for all model
sizes. LFADS gradually reaches peak accuracy, saturating at 5 factors, and PSID requires at least
five relevant factors. As in M1, neural activity reconstruction in TNDM solely depends on the total
number of factors, irrespective of the fraction of relevant factors.
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3 Hyperparameters

Table 1 shows the hyperparameters of LFADS and TNDM used for the main experiments. We did
not run an exhaustive search over these parameters. For LFADS, we used default parameters for all
regularization terms. For TNDM, we used a small value for λb such that the behaviour likelihood was
smaller than the neural likelihood (the neural reconstruction was the primary goal). The dropout for
TNDM was set to be slightly higher than for LFADS so as to not overfit the behaviour; we found that
this higher dropout was not helpful for LFADS. We also set the batchsize to 16 for TNDM and 10 for
LFADS; we found that LFADS latent factors were less informative about behaviour when using a
higher batch size. We qualitatively found that both models provided a good fit to the neural data with
these parameters (see Figures 3, 8)

Table 1: Hyperparameters of LFADS and TNDM (adapted from [17]).
’N’ - number of units in generator (irrelevant generator for TNDM). ’rel N’ - number of units in
relevant generator. ’g0’ - initial conditions (irrelevant initial conditions for TNDM). ’rel g0’ - relevant
initial conditions. ’E’ - encoder. ’G’ - decoder (irrelevant decoder for TNDM). ’rel G’ - relevant
decoder. ’λb’ - weight for behaviour likelihood. ’λQ’ - weight for disentanglement loss. ’KP’ - keep
probability for dropout. ’B’ - batch size.

Model N rel N g0 E dim rel g0 E dim G L2 rel G L2 KP λb λQ B
LFADS 64 N/A 64 64 2000 N/A .95 N/A N/A 10
TNDM 64 64 64 64 2000 2000 .85 .2 1000 16
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4 Ablation study of disentanglement penalty

The primary aim of TNDM is to disentangle the behaviourally relevant and the behaviourally irrelevant
latent dynamics underlying neural activity. Although there will naturally be some separation between
the two sets of factors in TNDM (since the behaviourally relevant factors must reconstruct the
behaviour), the factors may still share information. To further encourage disentanglement of the
relevant and irrelevant factors, we introduce a disentanglement penalty on the initial condition
distributions (described in Section 3 of the main text). Although we did not confirm the efficacy
of this penalty exhaustively, in Figure 9 we show TNDM with and without the disentanglement
penalty for a specific example. As can be seen, with 2 relevant and 2 irrelevant factors, the penalty
forces the irrelevant factors to encode less information about the behaviour and the relevant factors
to encode less behaviourally irrelevant information. This is quantified in Table 2. Although there is
some evidence that this disentanglement penalty is useful, there is room for improvement as it is only
applied to the initial condition distributions and not the factors themselves.
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Figure 9: Visualizations of the relevant and irrelevant latents for two runs of TNDM with and without
the disentanglement penalty. In each box, we plot the condition-averaged inferred latent dynamical
factors (along with the single-trial factors). On top, TNDM is applied to the neural data and behaviour
with no disentanglement penalty. On bottom, TNDM is applied to the neural data and behaviour with
a disentanglement penalty that is weighted by λQ = 1000. As can be seen, when the disentanglement
penalty is applied, the irrelevant factors contain less behavioural information (condition-averaged
irrelevant latents are less separated). Also, the relevant factors seem to share less information with
the irrelevant factors.

Table 2: Behavioural prediction using the relevant and irrelevant factors shown in Figure 9. To
determine how much behavioural information is stored in the relevant and irrelevant factors, we
regress the inferred training relevant and irrelevant latents (with a linear ridge regression) to the
training behaviours . We then report the test R2 of the regression using the test relevant and irrelevant
latents and the test behaviours. As can be seen, the irrelevant factors learned by TNDM with no
disentanglement penalty contain more behavioural information (higher test R2).

Rel Facs (λQ = 1000) Irrel Facs (λQ = 1000) Rel Facs (λQ = 0) Irrel Facs (λQ = 0)
0.890 0.245 .883 0.373
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5 Preferential subspace identification failure mode

In this supplement, we perform two experiments that provide evidence that PSID does not learn latent
dynamics that are informative about the neural activity for our M1 dataset. As there are very few
adjustable hyperparameters for PSID, we only had to set the number of block-rows in (i.e. "future
horizon" and "past horizon") and the smoothing method for the spiking data. For the horizon, we
set the value to the default of 10 (although changing this parameter seemed to have little effect) and
for the smoothing we used a Gaussian filter with a standard deviation of 50 ms. We perform our
analysis of PSID with 2 behaviourally relevant factors. All code for these analyses can be found at
https://github.com/HennigLab/psid_technical_report.

The first experiment we run is training PSID normally on the center-out reach dataset and then
inspecting the learned state-transition matrix A. According to the Sani et al. [25], the state-transition
matrix A "[characterizes] the behaviourally relevant neural dynamics". As can be seen in Table 3 and
Figure 10, the learned state-transition matrix A is approximately the identity with eigenvalues that
have real value 1 and an insignificant complex component. To better understand if the state-transition
matrix A being an identity matrix still meaningfully characterizes the neural activity, we also train
PSID on time shuffled and trial shuffled neural data. In both cases, the state-transition matrix A is
again approximately the identity matrix with an insignificant complex component. These experiments
suggest that the learned identity matrix is not informative about the neural activity for PSID.

We postulate that the state-transition matrix A is uninformative about the neural activity due to the
nonlinear behaviour. The behaviour is nonlinear across all trials due to the 8 different reach directions.
To test if this is the case, we train PSID multiple times with 1 to 8 reach directions. As can be seen in
Table 4 and Figure 11, the state-transition matrix A matrix quickly collapses to the identity matrix as
the number of reach directions increases past 1. This implies that the multi-reaching behaviour is
difficult for PSID to model with linear dynamics.

Table 3: In this table, we show the eigenvalues of the state-transition matrix A for PSID trained
with 2 behaviourally relevant factor and 0 behaviourally irrelevant factors (the lack of behaviourally
irrelevant factors should have no affect on the behaviourally relevant factors). When trained normally,
with trial shuffled data, and with time shuffled data, the eigenvalues of A is always close to 1 with an
insignificant complex component.

Experiment Normal Trial Shuffled Time Shuffled
Eigenvalues of A 1.01 + 0.0016j, 1.01 - 0.0016j 1.01 + 0.0015j 1.01 - 0.0015j 1.016, 1.018

Table 4: In this table, we demonstrate how the state-transition matrix A of PSID approaches the
identity matrix as the number of reach directions increases. We again ran this experiment for PSID
trained with 2 behaviourally relevant factors and 0 behaviourally irrelevant factors.

# reach directions 1 2 3 4 5 6 7 8
2 norm of A matrix 1.06 1.01 1.01 1.01 1.01 1.01 1.01 1.01
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Figure 10: Visualizations of the relevant latents and behavioural predictions of PSID (using a Kalman
filter prediction approach) on regular and shuffled neural data. On top, visualizations are shown
from PSID when trained on the neural data and behaviour normally. The behaviour prediction
resembles random walks and the A matrix is close to the identity. In the middle and the bottom plots,
visualizations are shown from PSID when trained on shuffled neural data (by trial and in time) and
behaviour. While the behaviour prediction is significantly worse, the A matrix is again close to the
identity. These experiments suggest that PSID is finding latent dynamics that are uninformative about
the neural activity.
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Figure 11: Visualization of the 2 norm of the state-transition matrix A when PSID is trained on 1 to 8
different reach directions. As the number of reach directions increases past 1, the 2 norm quickly
collapses to 1 which implies that the A matrix is close to the identity. This experiment suggests that
the nonlinear multi-reaching behaviour is challenging for PSID to model as it is a linear dynamical
model.
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6 Simulated data results

To validate TNDM on simulated data, we run both TNDM and LFADS on synthetic spike trains
generated from a Lorenz system, a common benchmark for state space models of neural activity. The
spike trains are stochastically generated from a 3-dimensional Lorenz system which is partitioned into
behaviourally relevant and irrelevant factors. We transform the relevant factors into the behaviours
using a linear transformation and then we transform all the factors into the neural firing rates using
a separate linear transformation. The neural firing rates are then transformed into a spike train
through an exponential nonlinearity and a Poisson random variable. For our analysis, we set the
number of neurons to 30, the number of behaviour dimensions to 4, and the number of behaviourally
relevant factors to 2 (out of 3). The initial conditions for the Lorenz system are sampled from a
Uniform distribution and the behaviour is corrupted with additive noise sampled from a standard
Normal distribution. The code we used for generating the synthetic spike trains can be found at:
https://github.com/HennigLab/tndm/blob/main/tndm/lorenz/lorenz_generator.py.

For training, we evaluate the performance of TNDM and LFADS when trained with 50, 100, and
200 trials. Each trial consists of a single initial condition that is evolved into the three latent factors
and then into the behaviour and neural activity. We also evaluate each model across three baseline
neural firing rates: 5, 10, and 15 Hz. The results are summarized in Table 5. TNDM is competitive
with LFADS across all numbers of trials and baseline firing rates. There is evidence that TNDM
outperforms LFADS on the lowest firing rate trials, however, we did not perform an exhaustive
hyperparameter search so it is likely that the hyperparameters of LFADS can be adjusted to obtain
better results in these cases.

For this analysis, as the relationship between the latent factors and the behaviour has no time lag,
we utilize a behaviour decoder for TNDM that has no time lag. This is in contrast to the decoder
that we use on real data which allows for capturing arbitrary lags. Also, we utilize a Tensorflow2 re-
implementation of the original TNDM and LFADs model for this analysis. These re-implementations
can be found at the following repository: https://github.com/HennigLab/tndm. We are currently
working on improving and extending this implementation so the commit that should reproduce this
analysis is 58a0a71b529f5fbe72ce3f6516daed83ce5885ca.

Table 5: In this table, we report the results of TNDM and LFADS when run on the synthetic Lorenz
system data. The average R2 of TNDM and LFADS is reported for 3 runs of each model on each of
the training conditions.

Firing Rate 5 10 15
Train Trials 50 100 200 50 100 200 50 100 200

LFADS .52 .86 .88 .54 .88 .92 .50 .87 .92
TNDM .71 .83 .88 .66 .86 .92 .67 .86 .93
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7 Leave one direction out results

To illustrate that TNDM learns an interpretable and meaningful latent space, we run an experiment
where we leave out one reach direction during training. We train TNDM on 7 out of the 8 reach
directions and then we see if we can infer the initial conditions, latent factors, and behaviour of the
held-out reach condition. The results are shown in Figure 12. Although not perfect, TNDM recovers
initial conditions, latent factors, and behaviours for the held-out reach condition that are close to the
model that is trained with all 8 reach conditions. This suggests that TNDM is able to learn latent
dynamics that meaningfully capture the behavioural/neural manifold of reach. We imagine this result
can be improved with more trials (∼100 trials is quite limited) and with more hyperparameter tuning.
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Figure 12: We train TNDM on 7 out of the 8 reach directions and then we see if we can infer the
initial conditions, latent factors, and behaviour of the held-out reach condition. TNDM is able to
recover these fairly well despite the small number of training trials (∼100 trials).
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