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A Code Submission536

In the supplementary submission, we provide the complete code to reproduce all the experiments,537

including QMP (ours) and baselines on all the environments.538

B Environment Details539

B.1 Multistage Reacher540

We implement our multistage reacher tasks on top of the Open AI Gym (Brockman et al., 2016a)541

Reacher environment by defining a sequence of 3 subgoals per task which are specified in Table 1.542

For all tasks, the reacher is initialized at the same start position with a small random perturbation543

sampled uniformly from [�0.01, 0.01] for each coordinate. The observation includes the agent’s544

proprioceptive state and how many sub-goals have been reached but not subgoal locations, as they545

must be inferred from the respective task’s reward function.546

We set up the tasks to ensure that we can evaluate behavior sharing when the task rewards are547

qualitatively different (see Figure 3a):548

• For every task except Task 3, the reward function is the default gym reward function based549

on the distance to the goal, plus an additional bonus for every subgoal completed.550

• For Task 1, the reward is shifted by -2 at every timestep.551

• Task 3 receives only a sparse reward of 1 for every subgoal reached.552

• Task 4 has one fixed goal set at its initial position.553

Subgoal 1 Subgoal 2 Subgoal 3
T0 (0.2, 0.3, 0.5) (0.3, 0, 0.3) (0.4, -0.3, 0.4)
T1 (0.2, 0.3, 0.5) (0.3, 0, 0.3) (0.4, 0.3, 0.2)
T2 (0.3, 0, 0.3) (0.4, 0.3, 0.2) (0.4, -0.3, 0.4)
T3 (0.3, 0, 0.3) (0.4, -0.3, 0.4) (0.2, 0.3, 0.5)
T4 initial initial initial

Table 1: Coordinates of subgoal locations for each task in Multistage Reacher. Shared subgoals are
highlighted in the same color. For Task 4, the only goal is to stay in the initial position.

QMP-Domain: Section 6.2 ablates the importance of an adaptive and state-dependent Q-switch by554

replacing it with a domain-dependent distribution over other tasks based on apparent task similarity.555

Specifically, to define the mixture probabilities for QMP-Domain in Multistage Reacher, we use the556

domain knowledge of the subgoal locations of the tasks to determine the mixture probabilities. We557

use the ratio of shared sub-goal sequences between each pair of tasks (not necessarily the shared558

subgoals) over the total number of sub-goal sequences, 3, to calculate how much behavior must559

be shared between two tasks. For that ratio of shared behavior, we distribute the probability mass560

uniformly between all task policies that share that behavior. For Task 4, the conflicting task, we do561

not do any behavior sharing and only use ⇡4 to gather data.562

Each Task Ti consists of 3 sub-goal sequences {S0, S1, S2} (e.g. [initial ! Subgoal 1], [Subgoal563

1 ! Subgoal 2], and [Subgoal 2 ! Subgoal 3]). For each sequence s 2 {S0, S1, S2}, we divide564

equally the contribution of each task Tj’s policy ⇡j that shares the sequence s (i.e. if T0 and T1 both565

contain sequence s, where we use the notation (s 2 Ti) as the indicator function for whether Task566

Ti contains sequence s, then ⇡0 and ⇡1 both have 1
2 contribution for s). Each sequence contributes567

equally to the overall mixture probabilities for Task i (i.e. all policies that shares sequence Si568

contributes in total 1
3 to the mixture probability for the behavior policy of Task Ti). Thus, the569

contribution probability of Policy ⇡j to Task Ti is:570

pj!i =
X

s2{S0,S1,S2}

1

3
· (s 2 Tj)P

k (s 2 Tk)

⇡mix
i =

X

j

pj!i ⇡j
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Reusing notation for mixture probabilities, we have,571

⇡mix
0 =

2

3
⇡0 +

1

3
⇡1

⇡mix
1 =

1

3
⇡0 +

2

3
⇡1

⇡mix
2 =

5

6
⇡2 +

1

6
⇡3

⇡mix
3 =

1

6
⇡2 +

5

6
⇡3

⇡mix
4 = ⇡4

B.2 Maze Navigation572

The layout and dynamics of the maze follow Fu et al. (2020), but since their original design aims to573

train a single agent to reach a fixed goal from multiple start locations, we modified it to have both574

start and goal locations fixed in each task, as in Nam et al. (2022). The start location is still perturbed575

with a small noise to avoid memorizing the task. The observation consists of the agent’s current576

position and velocity. But, it lacks the goal location, which should be inferred from the dense reward577

based on the distance to the goal. The layout we used is LARGE_MAZE which is an 8⇥11 maze with578

paths blocked by walls. The complete set of 10 tasks is visualized in Figure 12, where green and red579

spots correspond to the start and goal locations, respectively. The environment provides an agent580

a dense reward of exp(�dist) where dist is a linear distance between the agent’s current position581

and the goal location. It also gives a penalty of 1 at each timestep in order to prevent the agent from582

exploiting the reward by staying near the goal. The episode terminates either as soon as the goal is583

reached by having dist < 0.5 or when 600 timesteps have passed.584

Figure 12: Ten tasks defined for the Maze Navigation. The start and goal locations in each task are
shown in green and red spots, respectively, and an example path is shown in green.

B.3 Meta-World Manipulation585

We reproduce the Meta-world environment proposed by Yu et al. (2021) using the Meta-world586

codebase (Yu et al., 2019), where the door and drawer are both placed side-by-side on the tabletop for587

all tasks (see Figure 3c). The observation space consists of the robot’s proprioceptive state, the drawer588

handle state, the door handle state, and the goal location, which varies based on the task. Unlike Yu589

et al. (2021), we additionally remove the previous state from the observation space so the policies590

cannot easily infer the current task, making it a challenging multi-task environment. The environment591

also uses the default Meta-World reward functions which is composed of two distance-based rewards:592

distance between the agent end effector and the object, and distance between the object and its593

goal location. We use this modified environment instead of the Meta-world benchmark because our594

problem formulation of simultaneous multi-task RL requires a consistent environment across tasks.595

15



C Additional Results and Analysis596

C.1 Multistage Reacher Per Task Results597

Additional results and analysis on Multistage Reacher are shown in Figure 8. QMP outperforms all598

the baselines in this task set, as shown in Figure 4. Task 3 receives only a sparse reward and, thus,599

can benefit the most from shared exploration. We observe that QMP gains the most performance600

boost due to selective behavior-sharing in Task 3. The No-Shared-Behavior baseline is unable to601

solve Task 3 at all due to its sparse reward nature. The other baselines which share uniformly suffer602

at Task 3, likely because they also share behaviors from other conflicting tasks, especially Task 4. We603

explore this further in the following Section C.2.604

For all tasks, QMP outperforms or is comparable to No-Shared-Behavior, which shows that selective605

behavior-sharing can help accelerate learning when task behaviors are shareable and is robust when606

tasks conflict. Fully-Shared-Behavior especially underperforms in Tasks 2 and 3, which require607

conflicting behaviors upon reaching Subgoal 1, as defined in Table 1. In contrast, it excels at the608

beginning of Task 0 and Task 1 as their required behaviors are completely shared. However, it suffers609

after Subgoal 2, as the task objectives diverge.610

QMP(Ours) No-Share Fully-Share DnC (reg-only)DnC

QMP(Ours) No-Shared-Behavior Fully-Shared-Behavior DnC (reg-only)DnC

Figure 8: Success rates for individual tasks in Multistage Reacher. Our method especially helps in
learning Task 3, which requires extra exploration because it only receives a sparse reward.

C.2 QMP Behavior Sharing Analysis611

QMP learns to not share from conflicting tasks: We visualize the mixture probabilities per task612

of other policies in Figure 9 for Multistage Reacher, highlighting the conflicting Task 4 in red.613

Throughout the training, we see that QMP learns to generally share less behavior from Policy 4 than614

other policies in Tasks 0-3 and shares the least total cross-task behavior in Task 4. This supports our615

claim that the Q-switch can identify conflicting behaviors that should not be shared. We also note616

that Task 3 has a relatively larger amount of sharing than other tasks. The sparse reward nature of617

Task 3 makes it benefit the most from exploration via selective behavior-sharing from other tasks.618

Behavior-sharing reduces over training: Figure 9 shows that the total amount of behavior-sharing619

decreases over the course of training in all tasks, which demonstrates a naturally arising preference in620

the Q-switch for the task-specific policy as it becomes more proficient at its own task.621
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Multistage Reacher % Behavior Shared from Other Tasks in Mixture Policy

Policies 0-3
Policy 4

We highlight policy 4 because Task 4 requires different behaviors than the other tasks.  Throughout learning, we see that QMP generally shares 
less behavior from Policy 4 than other policies in Tasks 0-3 and shares the least total behavior in Task 4.  Furthermore, total behavior sharing 
decreases throughout training in all tasks.

Figure 9: Mixture probabilities per task of other policies over the course of training for Multistage
Reacher. The conflicting task Policy 4, which requires staying stationary, is highlighted in red.

C.3 Qualitative Visualization of Behavior-Sharing622

We qualitatively analyze behavior sharing by visualizing a rollout of QMP during training for the623

Drawer Open task in Meta-World Manipulation (Figure 10). We see that it (i) switches between all 4624

task policies as it approaches the drawer (as they all bring the robot end effector physically closer to625

the drawer), (ii) uses drawer-specific policies as it grasps the drawer-handle, and (iii) uses Drawer626

Open and Door Open policies as it pulls the drawer open. This suggests that in addition to ignoring627

conflicting behaviors, QMP is able to identify helpful behaviors to share. We note that QMP is not628

perfect at policy selection throughout the entire rollout, and it is also hard to interpret these shared629

behaviors exactly because the policies themselves are only partially trained, as this rollout is from the630

middle of training. However, in conjunction with the overall results and analysis, this supports our631

claim that QMP can effectively identify shareable behaviors between tasks.632
Step 250 Every Transition mod 10

Drawer Open

Step 80

Door Open

Step 110

Drawer Open

Step 130

Door Open

Step 140

Step 1

Door Close

Step 11

Door Open

Step 21

Drawer Open Door Open

Step 41

Drawer Close

Step 61 Step 71

Drawer Open

Drawer Open
Drawer Close

Door Open
Door Close

Policy Used

Drawer Open Task: Grasping Drawer Handle

Drawer Open Task:  Pulling Drawer Handle

We visualize a QMP rollout during training for the Drawer Open task where we label each transition to a new policy.  We break the episode into two subtasks: grasping the drawer 
handle (top row) and pulling the drawer handle (bottom row).  To learn to grasp the drawer handle, QMP uses all policies to approach the handle and then the drawer policies as 
the agent nears the handle.  To learn to pull the drawer open, QMP uses only Drawer Open and Door Open policies. For clarity, we first subsample the episode timesteps by 10.Figure 10: We visualize a QMP rollout during training (before the policy fully learns the task) for

the Drawer Open task in Meta-World Manipulation by labeling each transition to a different task
policy. For clarity, we first subsample the episode timesteps by 10. We qualitatively split the episode
into three subtasks: (i) reaching the drawer (top row; Steps 1-60), (ii) grasping the drawer handle
(top row; Steps 61-80), and (iii) pulling the drawer handle (bottom row). QMP uses all policies to
approach the handle and then only the drawer-specific policies to grasp the handle as the agent nears
the handle. To learn to pull the drawer open, QMP uses only Drawer Open and Door Open policies.

17



C.4 Results on Non-Conflicting Fully-Shareable Task Set633

Walker2D is a 9 DoF bipedal walker agent with the multi-task set containing 4 locomotion tasks634

proposed in Lee et al. (2019): walking forward, walking backward, balancing, and crawling under635

a ceiling. Each of these tasks involves different gaits or body positions to accomplish successfully636

without any obviously identifiable shared behavior in the optimal policies. Behavior sharing can637

still be effective during training to aid exploration and share helpful intermediate behaviors, like638

balancing. However, there is no obviously identifiable conflicting behavior either in this task set.639

Because each task requires a different gait, it is unlikely for states to recur between tasks and even640

less likely for states that are shared to require conflicting behaviors. For instance, it is common for all641

policies to struggle and fall at the beginning of training, but all tasks would require similar stabilizing642

and correcting behavior over these states.643

In this environment, we found that QMP still outperforms No-Shared-Behavior or Fully-Shared-644

Behavior baselines, but DnC (Reg. only) works best (see Figure 11). DnC benefits from an645

additional tunable hyperparameter for the policy regularization coefficient, which dictates the strength646

of behavior sharing. In non-conflicting task sets such as this environment, DnC can fully leverage647

behavior-sharing with a high regularization coefficient without harming any individual task policies,648

which would be the case if there are any conflicting behaviors. In contrast, QMP selectively and649

adaptively shares behaviors through the Q-filter, so the amount of shared behavior can be more650

conservative in comparison to a well-tuned DnC in non-conflicting task sets. This is a trade-off for651

our behavior-sharing algorithm that is more robust to possibly conflicting task behaviors and has652

fewer hyperparameters to tune. In purely non-conflicting and fully-shareable task sets, tuning the653

regularization strength in DnC is likely the best method. However, in task sets with the presence of654

conflicting behaviors or where the similarity in task behaviors is not clear or known a priori, we find655

QMP to be the best option as it is a more robust form of behavior sharing compared to all baselines.656
QMP(Ours) No-Share Fully-Share DnC (reg-only)DnC

QMP(Ours) No-Shared-Behavior Fully-Shared-Behavior DnC (reg-only)DnC

QMP(Ours) No-Shared-Behavior Fully-Shared-Behavior DnC (reg)DnC UDS

QMP(Ours) No-Shared-Behavior Fully-Shared-Behavior DnC (reg)

Figure 11: Average Return in Walker2d multi-task set which consists of 4 tasks: walk forward, walk
backward, balance, and crawl. The return is averaged over 10 evaluation episodes per task and we
report the learning curves over 3 seeds for each algorithm.

D Implementation Details657

The SAC implementation we used in all our experiments is based on the open-source implementation658

from Garage (garage contributors, 2019). We used fully connected layers for the policies and Q-659

functions with the default hyperparameters listed in Table 2. For DnC baselines, we reproduced the660

method in Garage to the best of our ability with minimal modifications.661

We used PyTorch (Paszke et al., 2019) for our implementation. We run the experiments primarily on662

machines with either NVIDIA GeForce RTX 2080 Ti or RTX 3090. Most experiments take around663

one day or less on an RTX 3090 to run. We use the Weights & Biases tool (Biewald, 2020) for664

logging and tracking experiments. All the environments were developed using the OpenAI Gym665

interface (Brockman et al., 2016b).666
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D.1 Hyperparameters667

Table 2 details the list of important hyperparameters on all the 3 environments.668

Table 2: QMP hyperparameters.

Hyperparameter Multistage Maze Meta-World
Reacher Navigation Manipulation

# Layers in ⇡ and Q 2 2 2
Activation function tanh tanh tanh
Hidden dimension 256 256 256

Minimum buffer size (per task) 10000 3000 10000
# Environment steps per update (per task) 1000 600 500
# Gradient steps per update (per task) 100 100 50
Batch size 32 256 256
Learning rates for ⇡, Q and ↵ 0.0003 0.0003 0.0015
Target update frequency 1 1 1
Target update tau (⌧ ) 0.995 0.995 0.995
Discount factor (�) 0.99 0.99 0.99

D.2 No-Shared-Behaviors669

All T networks have the same architecture with the hyperparameters presented in Table 2.670

D.3 Fully-Shared-Behaviors671

Since it is the only model with a single policy, we increased the number of parameters in the network672

to match others and tuned the learning rate. The hidden dimension of each layer is 600 in Multistage673

Reacher, 834 in Maze Navigation, and 512 in Meta-World Manipulation, and we kept the number674

of layers at 2. The number of environment steps as well as the number of gradient steps per update675

were increased by T times so that the total number of steps could match those in other models. For676

the learning rate, we tried 4 different values (0.0003, 0.0005, 0.001, 0.0015) and chose the most677

performant one. The actual learning rate used for each experiment is 0.0003 in Multistage Reacher678

and Maze Navigation, and 0.001 in Meta-World Manipulation.679

This modification also applies to the Shared Multihead baseline, but with separate tuning for the680

network size and learning rates. In Multistage Reacher, we used layers with hidden dimensions of681

512 and 0.001 as the final learning rate. In Maze Navigation, we used 834 for hidden dimensions and682

0.0003 for the learning rate.683

D.4 DnC684

We used the same hyperparameters as in Separated, while the policy distillation parameters and the685

regularization coefficients were manually tuned. Following the settings in the original DnC (Ghosh686

et al., 2018), we adjusted the period of policy distillation to have 10 distillations over the course of687

training. The number of distillation epochs was set to 500 to ensure that the distillation is completed.688

The regularization coefficients were searched among 5 values (0.0001, 0.001, 0.01, 0.1, 1), and we689

chose the best one. Note that this search was done separately for DnC and DnC with regularization690

only. For DnC, the coefficients we used are: 0.001 in Multistage Reacher and Maze Navigation,691

and 0.001 in Meta-World Manipulation. For Dnc with regularization only, the values are: 0.001 in692

Multistage Reacher, 0.0001 in Maze Navigation, and 0.001 in Meta-World Manipulation.693

D.5 QMP (Ours)694

Our method also uses the default hyperparameters. We experimented with an optional ‘mixture695

warmup period’ hyperparameter to decide when to start using the mixture of policies in exploration.696

Before warmup, each agent collects data using its own policy as an exploration policy. We searched697
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over 3 values: 0, 50, or 100 iterations. We found the option of 0 warmup iterations to perform the698

best across all the environments.699

Like in Baseline Multihead (Parameters-Only), the QMP Multihead architecture (Parame-700

ters+Behaviors) also required a separate tuning. Since QMP Multihead effectively has one network,701

we increased the network size in accordance with Baseline Multihead and tuned the learning rate in702

addition to the mixture warmup period. The best-performing combinations of these parameters we703

found are 0 and 0.001 in Multistage Reacher, and 100 and 0.0003 in Maze Navigation, respectively.704

D.6 Online UDS705

Yu et al. (2022) proposes an offline multi-task RL method (UDS) that shares data between tasks if706

their conservative Q value falls above the kth percentile of the task data. Specifically, before training,707

you would go through all the tasks’ data and share some data from Task j to Task i if the Task i Q708

value of that data is greater than k% of the Q values of Task i’s data. UDS does not require access to709

task reward functions like other data-sharing approaches. It simply re-labels any shared data with710

the minimum task reward, making it applicable to our problem setting as we also do not assume that711

reward relabeling is possible.712

In order to adapt UDS to online RL, instead of doing data sharing once on the given multi-task dataset,713

we apply UDS data sharing before every training iteration to the data in the multi-task replay buffers.714

Concretely, we implement this on-the-fly for every batch of sampled data by sampling one batch of715

data from Task i’s replay buffer, �i, and one batch of data from the other task’s replay buffers �j 6=i.716

Then following UDS, we would form the effective batch �eff
i by sharing data from �j 6=i if it falls717

above the kth percentile of Q values for �i:718

UDSonline : (s, a, ri, s
0) ⇠ �j 6=i 2 �eff

i

if �⇡(s, a) := Q̂⇡(s, a, i)� Pkth [Q̂⇡(s0, a0, i) : s0, a0 ⇠ �i] � 0

Note the differences here: (i) the ‘data’ used for data-sharing is the sampled replay buffer batch719

instead of the offline dataset, and (ii) we use the standard Q-function to evaluate data instead of the720

conservative Q-function since we are doing online (not offline) RL. We implement it this way as a721

practical approximation to avoid having to process the entire replay buffer every training iteration.722

Figure 12: Various data sharing approaches on
Multistage Reacher. Online data sharing is very ef-
ficient when given task reward functions (all CDS
versions), but suffers without (all UDS versions).

We use the same default hyperparameters as the723

other baseline methods. Additionally, we need724

to tune the sharing percentile k. For this, we725

tried 0th percentile (sharing all data) and 80th726

percentile, and chose the best-performing one.727

In Figure 12, we report multiple sharing per-728

centiles for UDS and for CDS (Yu et al., 2021)729

which assumes access to ground truth task re-730

ward functions which it uses to re-label the731

shared data. When the shared data is relabeled732

with task reward functions, thereby bypassing733

the conflicting behavior problem, online data734

sharing approaches can work very well. But735

when unsupervised, we see that online data shar-736

ing can actually harm performance in environ-737

ments with conflicting tasks, with the more con-738

servative data sharing approach (UDS k=80) out-739

performing sharing all data.740

741
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