501

502
503

504
505

506

507

508

509
510
511
512

513
514
515
516
517

518
519
520
521
522
523

524
525
526

527

528

529

530

531

532

533

534

535

Appendix

Result videos: https://sites.google.com/view/qmp-mtrl
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A Code Submission

In the supplementary submission, we provide the complete code to reproduce all the experiments,
including QMP (ours) and baselines on all the environments.

B Environment Details

B.1 Multistage Reacher

We implement our multistage reacher tasks on top of the Open AI Gym (Brockman et al.|, [2016a)
Reacher environment by defining a sequence of 3 subgoals per task which are specified in Table|I.
For all tasks, the reacher is initialized at the same start position with a small random perturbation
sampled uniformly from [—0.01, 0.01] for each coordinate. The observation includes the agent’s
proprioceptive state and how many sub-goals have been reached but not subgoal locations, as they
must be inferred from the respective task’s reward function.

We set up the tasks to ensure that we can evaluate behavior sharing when the task rewards are
qualitatively different (see Figure [3a):

* For every task except Task 3, the reward function is the default gym reward function based
on the distance to the goal, plus an additional bonus for every subgoal completed.

* For Task 1, the reward is shifted by -2 at every timestep.
* Task 3 receives only a sparse reward of 1 for every subgoal reached.
 Task 4 has one fixed goal set at its initial position.

Subgoal 1 Subgoal 2 Subgoal 3
To (0.2,0.3,0.5)  (0.3,0,0.3) (0.4,-0.3,0.4)
Ty (0.2,0.3,0.5)  (0.3,0,0.3) (0.4,0.3,0.2)
T,  (0.3,0,0.3) (04,03,0.2) (0.4,-0.3,0.4)
T3  (0.3,0,0.3) (0.4,-0.3,04) (0.2,0.3,0.5)
Ty initial initial initial

Table 1: Coordinates of subgoal locations for each task in Multistage Reacher. Shared subgoals are
highlighted in the same color. For Task 4, the only goal is to stay in the initial position.

QMP-Domain: Section|6.2]ablates the importance of an adaptive and state-dependent Q-switch by
replacing it with a domain-dependent distribution over other tasks based on apparent task similarity.
Specifically, to define the mixture probabilities for QMP-Domain in Multistage Reacher, we use the
domain knowledge of the subgoal locations of the tasks to determine the mixture probabilities. We
use the ratio of shared sub-goal sequences between each pair of tasks (not necessarily the shared
subgoals) over the total number of sub-goal sequences, 3, to calculate how much behavior must
be shared between two tasks. For that ratio of shared behavior, we distribute the probability mass
uniformly between all task policies that share that behavior. For Task 4, the conflicting task, we do
not do any behavior sharing and only use 74 to gather data.

Each Task 7; consists of 3 sub-goal sequences {Sp, S1, 52} (e.g. [initial — Subgoal 1], [Subgoal
1 — Subgoal 2], and [Subgoal 2 — Subgoal 3]). For each sequence s € {Sg, S1, 52}, we divide
equally the contribution of each task T;’s policy 7; that shares the sequence s (i.e. if Ty and T both
contain sequence s, where we use the notation 1(s € T;) as the indicator function for whether Task
T; contains sequence s, then my and 71 both have % contribution for s). Each sequence contributes
equally to the overall mixture probabilities for Task ¢ (i.e. all policies that shares sequence S;
contributes in total % to the mixture probability for the behavior policy of Task 7;). Thus, the
contribution probability of Policy 7; to Task T; is:

1 I(seT))
I L
5€{50.51,55) 3 Zk ]].(S S Tk)

mix __
T =Y pji
J
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Reusing notation for mixture probabilities, we have,

, 2 1
Ty = §7T0 + 5771
T = —mg + 271'1

! 3 3
ﬂ,mim’ = 79+ 171'3
2 6 6

- 1

mir __ <
T3 = 671'2 + 671'3
T =Ty

B.2 Maze Navigation

The layout and dynamics of the maze follow (2020), but since their original design aims to
train a single agent to reach a fixed goal from multiple start locations, we modified it to have both
start and goal locations fixed in each task, as in[Nam et al. (2022). The start location is still perturbed
with a small noise to avoid memorizing the task. The observation consists of the agent’s current
position and velocity. But, it lacks the goal location, which should be inferred from the dense reward
based on the distance to the goal. The layout we used is LARGE_MAZE which is an 8 x 11 maze with
paths blocked by walls. The complete set of 10 tasks is visualized in Figure[2] where green and red
spots correspond to the start and goal locations, respectively. The environment provides an agent
a dense reward of exp(—dist) where dist is a linear distance between the agent’s current position
and the goal location. It also gives a penalty of 1 at each timestep in order to prevent the agent from
exploiting the reward by staying near the goal. The episode terminates either as soon as the goal is
reached by having dist < 0.5 or when 600 timesteps have passed.

Figure 12: Ten tasks defined for the Maze Navigation. The start and goal locations in each task are
shown in green and red spots, respectively, and an example path is shown in green.

B.3 Meta-World Manipulation

We reproduce the Meta-world environment proposed by |Yu et al. using the Meta-world
codebase (Yu et al.l[2019), where the door and drawer are both placed side-by-side on the tabletop for
all tasks (see Figure[3c). The observation space consists of the robot’s proprioceptive state, the drawer
handle state, the door handle state, and the goal location, which varies based on the task. Unlike
(2021), we additionally remove the previous state from the observation space so the policies
cannot easily infer the current task, making it a challenging multi-task environment. The environment
also uses the default Meta-World reward functions which is composed of two distance-based rewards:
distance between the agent end effector and the object, and distance between the object and its
goal location. We use this modified environment instead of the Meta-world benchmark because our
problem formulation of simultaneous multi-task RL requires a consistent environment across tasks.
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C Additional Results and Analysis

C.1 Multistage Reacher Per Task Results

Additional results and analysis on Multistage Reacher are shown in Figure (8] QMP outperforms all
the baselines in this task set, as shown in Figure . Task 3 receives only a sparse reward and, thus,
can benefit the most from shared exploration. We observe that QMP gains the most performance
boost due to selective behavior-sharing in Task 3. The No-Shared-Behavior baseline is unable to
solve Task 3 at all due to its sparse reward nature. The other baselines which share uniformly suffer
at Task 3, likely because they also share behaviors from other conflicting tasks, especially Task 4. We
explore this further in the following Section [C.2!

For all tasks, QMP outperforms or is comparable to No-Shared-Behavior, which shows that selective
behavior-sharing can help accelerate learning when task behaviors are shareable and is robust when
tasks conflict. Fully-Shared-Behavior especially underperforms in Tasks 2 and 3, which require
conflicting behaviors upon reaching Subgoal 1, as defined in Table [Tl In contrast, it excels at the
beginning of Task 0 and Task 1 as their required behaviors are completely shared. However, it suffers
after Subgoal 2, as the task objectives diverge.

Reacher: Task 0 Reacher: Task 1 Reacher: Task 2
100 100 100
< 801 g 80 g 80
Q ] Q
T 60 T 60 T 60
o o -4
@ @ @
O 404 o 40 o 40
o o o
o o 1)
3 3 3
20 20 @ 20
0 0
0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0
Environment steps (1M) Environment steps (1M) Environment steps (1M)
Reacher: Task 3 Reacher: Task 4
100 100
R w0 ISR
[ 1
T 60 T 60
-4 o
0 %]
@ 40 & 409
o jo)
v 1)
3 =]
@ 20 A 20
0 0
0.0 0.5 1.0 15 2.0 0.0 0.5 1.0 1.5 2.0
Environment steps (1M) Environment steps (1M)
C QMP(Ours) No-Shared-Behavior Fully-Shared-Behavior DnC DnC (reg-only) )

Figure 8: Success rates for individual tasks in Multistage Reacher. Our method especially helps in
learning Task 3, which requires extra exploration because it only receives a sparse reward.

C.2 QMP Behavior Sharing Analysis

QMP learns to not share from conflicting tasks: We visualize the mixture probabilities per task
of other policies in Figure [9 for Multistage Reacher, highlighting the conflicting Task 4 in red.
Throughout the training, we see that QMP learns to generally share less behavior from Policy 4 than
other policies in Tasks 0-3 and shares the least total cross-task behavior in Task 4. This supports our
claim that the Q-switch can identify conflicting behaviors that should not be shared. We also note
that Task 3 has a relatively larger amount of sharing than other tasks. The sparse reward nature of
Task 3 makes it benefit the most from exploration via selective behavior-sharing from other tasks.

Behavior-sharing reduces over training: Figure 9 shows that the total amount of behavior-sharing
decreases over the course of training in all tasks, which demonstrates a naturally arising preference in
the Q-switch for the task-specific policy as it becomes more proficient at its own task.

16



622

623
624
625
626
627
628
629
630
631
632

Task 0 Task 1 Task 2

24+

18
18+

12
124

o
o

Policy Percentage in Mixture
Policy Percentage in Mixture
Policy Percentage in Mixture

0.0 0.5 1.0 15 2.0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0
Environment steps (1M) Environment steps (1M) Environment steps (1M)
Task 3 Task 4

24
mmm Policies 0-3

18 m— Policy 4

18

12

o
o

Policy Percentage in Mixture
Policy Percentage in Mixture
-

S

0 0
0.0 0.5 1.0 15 2.0 0.0 0.5 1.0 1.5 2.0
Environment steps (1M) Environment steps (1M)

Figure 9: Mixture probabilities per task of other policies over the course of training for Multistage
Reacher. The conflicting task Policy 4, which requires staying stationary, is highlighted in red.

C.3 Qualitative Visualization of Behavior-Sharing

We qualitatively analyze behavior sharing by visualizing a rollout of QMP during training for the
Drawer Open task in Meta-World Manipulation (Figure [T0). We see that it (i) switches between all 4
task policies as it approaches the drawer (as they all bring the robot end effector physically closer to
the drawer), (ii) uses drawer-specific policies as it grasps the drawer-handle, and (iii) uses Drawer
Open and Door Open policies as it pulls the drawer open. This suggests that in addition to ignoring
conflicting behaviors, QMP is able to identify helpful behaviors to share. We note that QMP is not
perfect at policy selection throughout the entire rollout, and it is also hard to interpret these shared
behaviors exactly because the policies themselves are only partially trained, as this rollout is from the
middle of training. However, in conjunction with the overall results and analysis, this supports our
claim that QMP can effectively identify shareable behaviors between tasks.

Drawer Open Task: Grasping Drawer Handle
Step 11 Step 21 Step 41 Step 61 Step 71

Step 140 Policy Used

Drawer Open

Drawer Close

Door Open

Door Close

Drawer Open Door Open Drawer Open Door Open

Figure 10: We visualize a QMP rollout during training (before the policy fully learns the task) for
the Drawer Open task in Meta-World Manipulation by labeling each transition to a different task
policy. For clarity, we first subsample the episode timesteps by 10. We qualitatively split the episode
into three subtasks: (i) reaching the drawer (top row; Steps 1-60), (ii) grasping the drawer handle
(top row; Steps 61-80), and (iii) pulling the drawer handle (bottom row). QMP uses all policies to
approach the handle and then only the drawer-specific policies to grasp the handle as the agent nears
the handle. To learn to pull the drawer open, QMP uses only Drawer Open and Door Open policies.
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C.4 Results on Non-Conflicting Fully-Shareable Task Set

Walker2D is a 9 DoF bipedal walker agent with the multi-task set containing 4 locomotion tasks
proposed in |Lee et al. (2019): walking forward, walking backward, balancing, and crawling under
a ceiling. Each of these tasks involves different gaits or body positions to accomplish successfully
without any obviously identifiable shared behavior in the optimal policies. Behavior sharing can
still be effective during training to aid exploration and share helpful intermediate behaviors, like
balancing. However, there is no obviously identifiable conflicting behavior either in this task set.
Because each task requires a different gait, it is unlikely for states to recur between tasks and even
less likely for states that are shared to require conflicting behaviors. For instance, it is common for all
policies to struggle and fall at the beginning of training, but all tasks would require similar stabilizing
and correcting behavior over these states.

In this environment, we found that QMP still outperforms No-Shared-Behavior or Fully-Shared-
Behavior baselines, but DnC (Reg. only) works best (see Figure [II). DnC benefits from an
additional tunable hyperparameter for the policy regularization coefficient, which dictates the strength
of behavior sharing. In non-conflicting task sets such as this environment, DnC can fully leverage
behavior-sharing with a high regularization coefficient without harming any individual task policies,
which would be the case if there are any conflicting behaviors. In contrast, QMP selectively and
adaptively shares behaviors through the Q-filter, so the amount of shared behavior can be more
conservative in comparison to a well-tuned DnC in non-conflicting task sets. This is a trade-off for
our behavior-sharing algorithm that is more robust to possibly conflicting task behaviors and has
fewer hyperparameters to tune. In purely non-conflicting and fully-shareable task sets, tuning the
regularization strength in DnC is likely the best method. However, in task sets with the presence of
conflicting behaviors or where the similarity in task behaviors is not clear or known a priori, we find
QMP to be the best option as it is a more robust form of behavior sharing compared to all baselines.

Walker Non-conflicting Tasks

3500 -
£ 2800+
S5
)
[0}
o 2100
()
g 1400 1
a No-Shared
> Fully-Shared
< 7001 DnC (reg.)
QMP
0 T T T
0.0 1.5 3.0 4.5 6.0
Environment steps (1M)
( QMP(Ours) No-Shared-Behavior Fully-Shared-Behavior DnC (reg) )

Figure 11: Average Return in Walker2d multi-task set which consists of 4 tasks: walk forward, walk
backward, balance, and crawl. The return is averaged over 10 evaluation episodes per task and we
report the learning curves over 3 seeds for each algorithm.

D Implementation Details

The SAC implementation we used in all our experiments is based on the open-source implementation
from Garage (garage contributors| 2019). We used fully connected layers for the policies and Q-
functions with the default hyperparameters listed in Table [2] For DnC baselines, we reproduced the
method in Garage to the best of our ability with minimal modifications.

We used PyTorch (Paszke et al.|[2019) for our implementation. We run the experiments primarily on
machines with either NVIDIA GeForce RTX 2080 Ti or RTX 3090. Most experiments take around
one day or less on an RTX 3090 to run. We use the Weights & Biases tool 2020) for
logging and tracking experiments. All the environments were developed using the OpenAl Gym
interface (Brockman et al.,[2016b).
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D.1 Hyperparameters

Table [2|details the list of important hyperparameters on all the 3 environments.

Table 2: QMP hyperparameters.

Multistage Maze Meta-World

Hyperparameter Reacher  Navigation Manipulation
# Layers in 7 and @) 2 2 2
Activation function tanh tanh tanh
Hidden dimension 256 256 256
Minimum buffer size (per task) 10000 3000 10000
# Environment steps per update (per task) 1000 600 500
# Gradient steps per update (per task) 100 100 50
Batch size 32 256 256
Learning rates for 7,  and « 0.0003 0.0003 0.0015
Target update frequency 1 1 1
Target update tau (7) 0.995 0.995 0.995
Discount factor () 0.99 0.99 0.99

D.2 No-Shared-Behaviors

All T networks have the same architecture with the hyperparameters presented in Table [2]

D.3 Fully-Shared-Behaviors

Since it is the only model with a single policy, we increased the number of parameters in the network
to match others and tuned the learning rate. The hidden dimension of each layer is 600 in Multistage
Reacher, 834 in Maze Navigation, and 512 in Meta-World Manipulation, and we kept the number
of layers at 2. The number of environment steps as well as the number of gradient steps per update
were increased by 7' times so that the total number of steps could match those in other models. For
the learning rate, we tried 4 different values (0.0003, 0.0005, 0.001, 0.0015) and chose the most
performant one. The actual learning rate used for each experiment is 0.0003 in Multistage Reacher
and Maze Navigation, and 0.001 in Meta-World Manipulation.

This modification also applies to the Shared Multihead baseline, but with separate tuning for the
network size and learning rates. In Multistage Reacher, we used layers with hidden dimensions of
512 and 0.001 as the final learning rate. In Maze Navigation, we used 834 for hidden dimensions and
0.0003 for the learning rate.

D4 DnC

We used the same hyperparameters as in Separated, while the policy distillation parameters and the
regularization coefficients were manually tuned. Following the settings in the original DnC (Ghosh
et al.,2018), we adjusted the period of policy distillation to have 10 distillations over the course of
training. The number of distillation epochs was set to 500 to ensure that the distillation is completed.
The regularization coefficients were searched among 5 values (0.0001, 0.001, 0.01, 0.1, 1), and we
chose the best one. Note that this search was done separately for DnC and DnC with regularization
only. For DnC, the coefficients we used are: 0.001 in Multistage Reacher and Maze Navigation,
and 0.001 in Meta-World Manipulation. For Dnc with regularization only, the values are: 0.001 in
Multistage Reacher, 0.0001 in Maze Navigation, and 0.001 in Meta-World Manipulation.

D.5 QMP (Ours)
Our method also uses the default hyperparameters. We experimented with an optional ‘mixture

warmup period’ hyperparameter to decide when to start using the mixture of policies in exploration.
Before warmup, each agent collects data using its own policy as an exploration policy. We searched
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over 3 values: 0, 50, or 100 iterations. We found the option of 0 warmup iterations to perform the
best across all the environments.

Like in Baseline Multihead (Parameters-Only), the QMP Multihead architecture (Parame-
ters+Behaviors) also required a separate tuning. Since QMP Multihead effectively has one network,
we increased the network size in accordance with Baseline Multihead and tuned the learning rate in
addition to the mixture warmup period. The best-performing combinations of these parameters we
found are 0 and 0.001 in Multistage Reacher, and 100 and 0.0003 in Maze Navigation, respectively.

D.6 Online UDS

Yu et al.|(2022) proposes an offline multi-task RL method (UDS) that shares data between tasks if
their conservative Q value falls above the k*" percentile of the task data. Specifically, before training,
you would go through all the tasks’ data and share some data from Task j to Task ¢ if the Task ¢ Q
value of that data is greater than k% of the Q values of Task 4’s data. UDS does not require access to
task reward functions like other data-sharing approaches. It simply re-labels any shared data with
the minimum task reward, making it applicable to our problem setting as we also do not assume that
reward relabeling is possible.

In order to adapt UDS to online RL, instead of doing data sharing once on the given multi-task dataset,
we apply UDS data sharing before every training iteration to the data in the multi-task replay buffers.
Concretely, we implement this on-the-fly for every batch of sampled data by sampling one batch of
data from Task 4’s replay buffer, 3;, and one batch of data from the other task’s replay bufters 5;;.
Then following UDS, we would form the effective batch Bfff by sharing data from 3;; if it falls
above the k' percentile of Q values for j3;:

UDSonline : (37 a, T, S/) ~ 6]751 € 5§ff
if A™(s,a) == Q™ (s,a,i) — Pu[Q7(s',a',i) : s',a' ~ 3] >0
Note the differences here: (i) the ‘data’ used for data-sharing is the sampled replay buffer batch
instead of the offline dataset, and (ii) we use the standard Q-function to evaluate data instead of the

conservative Q-function since we are doing online (not offline) RL. We implement it this way as a
practical approximation to avoid having to process the entire replay buffer every training iteration.

We use the same default hyperparameters as the
other baseline methods. Additionally, we need

to tune the sharing percentile k. For this, we Multistage Reacher
tried 0" percentile (sharing all data) and 80 100 1

percentile, and chose the best-performing one. ;\3

In Figure [I2, we report multiple sharing per- ; %0

centiles for UDS and for CDS (Yuetal|2021) & 604

which assumes access to ground truth task re- &

ward functions which it uses to re-label the & 201 UDS k=0
shared data. When the shared data is relabeled O YRS =80
with task reward functions, thereby bypassing S 5 | gg: :fg o
the conflicting behavior problem, online data Y DS k;SO
sharing approaches can work very well. But 0 \ ; ;

when unsupervised, we see that online data shar- 0.0 0.5 1.0 1.5 2.0
ing can actually harm performance in environ- Environment steps (1M)

ments with conflicting tasks, with the more con-

servative data sharing approach (UDS k=80) out- Figure 12: Various data sharing approaches on

performing sharing all data. Multistage Reacher. Online data sharing is very ef-
ficient when given task reward functions (all CDS
versions), but suffers without (all UDS versions).
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