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Abstract1

Molecular property prediction is a fundamental task in AI-driven drug discovery.2

Deep learning has achieved great success in this task, but relies heavily on abundant3

annotated data. However, annotating molecules is particularly costly because it4

often requires lab experiments conducted by experts. Active Learning (AL) tackles5

this issue by querying (i.e., selecting) the most valuable samples to annotate, ac-6

cording to two criteria: uncertainty of the model and diversity of data. Combining7

both criteria (a.k.a. hybrid AL) generally leads to better performance than using8

only one single criterion. However, existing best hybrid methods rely on some9

trade-off hyperparameters for balancing uncertainty and diversity, and hence need10

to carefully tune the hyperparameters in each experiment setting, causing great11

annotation and time inefficiency. In this paper, we propose a novel AL method12

that jointly models uncertainty and diversity without the trade-off hyperparameters.13

Specifically, we model the joint distribution of the labeled data and the model14

prediction. Based on this distribution, we introduce a Minimum Maximum Prob-15

ability Querying (MMPQ) strategy, in which a single selection score naturally16

captures how the model is uncertain about its prediction, and how dissimilar the17

sample is to the currently labeled data. To model the joint distribution, we adapt18

the energy-based models to the non-Euclidean molecular graph data, by learning19

chemically-meaningful embedding vectors as the proxy of the graphs. We perform20

extensive experiments on binary classification datasets. Results show that our21

method achieves superior AL performance, outperforming existing methods by a22

large margin. We also conduct ablation studies to verify different design choices.23

1 Introduction24

AI-driven drug discovery is an important application of machine learning. In drug discovery pipeline,25

a fundamental step is to use computational methods to predict the molecular properties (e.g., toxicity26

and binding specificity) of candidate compounds [1, 2]. Recently, deep learning models have achieved27

great success in molecular property prediction [1, 3–5], but their high performance relies on a large28

amount of annotation. However, annotating molecules is particularly time-consuming and costly,29

since it often requires lab experiments or complex computation [3, 6].30

One promising way to alleviate this problem is Active Learning (AL) [7], which aims at finding a31

strategy for iteratively querying (i.e., selecting) the most valuable data samples to annotate, so as to32

maximize model performance under a low annotation budget. AL strategies query samples mainly33

based on two criteria: uncertainty of the model [8], and diversity of queried data [9]. Strategies taking34

into account both criteria (a.k.a. hybrid strategies) are recently shown to outperform methods based on35

only uncertainty or diversity in many learning tasks [10–12]. Existing best hybrid methods generally36

rely on some trade-off hyperparameters for balancing uncertainty and diversity [11–15]. For example,37

WAAL [12] requires manually-tuned coefficients to obtain a weighted sum of its uncertainty and38

diversity terms. EADA [13] relies on two selection ratios for its two-step selection process. These39

trade-off hyperparameters are crucial to the AL performance and hence need to be carefully tuned for40

each experiment setting.41
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However, tuning trade-off hyperparameters can cause substantial inefficiency in AL. For one thing,42

since these hyperparameters have a large influence on the outcome of corresponding AL strategies,43

the selected samples under different choices of the hyperparameters often vary a lot, and thus the44

total annotation cost needed for tuning will greatly exceed the budget. For another, the tuning45

process can take a long time, since each AL experiment iterates between query selection and and46

model (re)training for several rounds. One possible way of addressing this drawback is to tune47

the hyperparameters in advance on a dataset with small annotation cost. However, this would be48

problematic when the dataset used for tuning is not representative. Indeed, for molecular property49

prediction, finding a representative dataset for tuning would be difficult, since the properties of50

interest vary a lot.51

In this paper, we propose a novel AL strategy that naturally takes into account uncertainty and52

diversity without the need of trade-off hyperparameters. Our strategy is based on a joint distribution53

q(x, y) ≜ p(y|x)p(x), which contains information about both uncertainty and diversity: p(y|x) is the54

prediction distribution of the model (with input x and prediction y), which is widely used to define55

uncertainty metrics [7, 8, 16]; p(x) is the density of the currently annotated data, which is shown to56

be useful for identifying samples that can effectively increase data diversity [11, 12, 17].57

Specifically, our strategy operates by first maximizing q(x, y) via varying y, and then minimizing58

maxy q(x, y) via varying x. We thus name our strategy Minimum Maximum Probability Querying59

(MMPQ). Importantly, we show that the selection score of MMPQ can be viewed as the product of60

two terms — the first term leads to samples on which the model has low prediction confidence, while61

the second favors samples that are dissimilar to labeled data. In this way, the selected samples are62

naturally those that the model is most uncertain about, while at the same time being able to increase63

the data diversity.64

For modelling the joint distribution, we propose to use an Energy-Based Model (EBM) [18, 19], since65

it can explicitly output the desired probability value. For training the EBM, we need to tackle one key66

challenge in our setting: the variable x in the joint distribution has a non-Euclidean data structure (i.e.,67

a molecule graph), which renders the commonly-used EBM training scheme inapplicable [19, 20].68

To address this challenge, we take a learned embedding vector z as a proxy of the non-Euclidean69

input x, which allows us to train the EBM on z and y with the commonly-used EBM training70

scheme. Specifically, inspired from [21, 22], we learn the embeddings by training an autoencoder71

to reconstruct the input SMILES strings, which is an expert-defined sequence representation of72

molecules. The EBM is trained by Denoising Score Matching (DSM) [20, 23], i.e., to learn the “Stein73

score” [24] of q(x, y), which has been shown to be an efficient and robust EBM training scheme.74

To evaluate our MMPQ strategy, we apply it to actively train a commonly-used Graph Neural75

Network (GNN) [4] on various benchmark datasets of binary molecular property classification.76

Extensive results show that MMPQ enables the GNN to achieve high performance with limited77

annotation budget, significantly outperforming other competitive AL methods. We conduct ablation78

studies to verify different design choices of our method. In particular, we show that the uncertainty79

and diversity terms make complementary contributions to the good performance: the diversity term80

is important in early iterations of AL, while the uncertainty term is essential in later iterations.81

Anonymized code is available at https://anonymous.4open.science/r/MMPQ-5E8D/.82

2 Related Works83

Molecular property prediction is a critical step in drug discovery [1, 2, 5]. Traditional methods (e.g.,84

based on density function theory [25]) are too slow to be applied in practice. To resolve this problem,85

deep learning methods [1, 3, 4, 26, 27] have been widely proposed, which can be categorized into86

two types: (1) descriptor-based methods [26, 27] that represent the input molecules as expert-crafted87

molecular descriptors (e.g., fingerprints [28]), and (2) GNN-based methods [1, 3, 4] that directly take88

molecule graphs as input. As found in [1, 5], GNNs generally outperform descriptor-based methods,89

and thus this work focuses on GNN-based molecular property prediction.90

Active learning improves annotation efficiency by iteratively querying samples based on two criteria:91

uncertainty of the task learner [8, 16, 29, 30], and/or diversity of queried data [9, 17, 21]. Uncertainty-92

based methods define various uncertainty metrics for querying data [8, 10, 16, 30], while diversity-93

based methods aim to find a representative subset of the whole dataset by querying diverse samples [9,94

21]. Compared to using only uncertainty or diversity, recent works find that combining the two95
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criteria (a.k.a. hybrid methods) leads to better performance [10, 11, 13–15]. However, existing hybrid96

approaches generally need to balance uncertainty and diversity via some trade-off hyperparameters.97

For example, WAAL [12] uses manually-tuned coefficients to weight its uncertainty term and98

diversity term. EADA [13] adopts a two-stage querying approach, where each stage requires a99

prefixed selection ratio. We note that EADA also trains an EBM for active selection. Our method100

differs from EADA mainly in 3 aspects. First, the motivation of EADA to adopt EBMs is to101

identify out-of-distribution samples, while we use EBMs for modelling the distribution capturing102

both uncertainty and diversity. Second, they train their EBM via contrastive divergence [31], while103

we use denoising score matching [20]. Third, they need two separate selection steps with different104

selection scores, and require two hyperparameters to trade off between uncertainty and diversity,105

while we only have one single selection score that naturally captures both uncertainty and diversity.106

Apart from the above, some other hybrid methods rely on trade-off hyperparameters during their107

model training process [11, 14, 15]. We note that there is an existing hybrid strategy, BADGE [10],108

that is also free from trade-off hyperparameters like ours. However, BADGE [10] assumes that task109

learner’s prediction is a faithful proxy of the ground-truth label. This may not hold in early AL110

iterations on (typically) small molecule datasets, since the task learner would be inaccurate due to111

limited training data.112

Energy-based models are a class of powerful methods of explicit generative modeling. Recently,113

some works [32–35] leverage EBMs for modelling molecular data. To tackle difficulties caused by114

the discrete nature of molecule graphs, [32] leverages a dequantization technique, and [33] designs a115

diffusion process based on stochastic differential equations. Different from [32, 33], we propose to116

train our EBM on a continuous embedding space of molecules. On the other hand, [34, 35] focuses on117

molecule conformation generation, which is essentially a continuous problem, since the conformation118

of a molecule is represented by the 3D space coordinates of its atoms.119

3 Preliminaries120

Problem Setting. We consider batch-mode pool-based active learning [7], a practical setting for121

deep models. In each AL round, a batch of samples from the unlabeled pool DU are queried according122

to a strategy, annotated by an oracle, and added to the labeled pool DL. The updated DL is then used123

to train the task learner. A more formal description of this setting is in Appx. A.1.124

Notations. A molecule is represented as a graph G = (V,E), with nodes V and edges E corre-125

sponding to atoms and chemical bonds. As in [4, 36–38], we are interested in n binary molecular126

properties (e.g., toxicity), which are denoted by a label vector y = (y1, · · · , yn) ∈ {0, 1}n, where127

yi = 1 or 0 means the molecule has the i-th property or not. A task learner h(·) is trained to predict128

the properties. The i-th output of the task learner, h(G)i, specifies a distribution p(yi|G) over the129

predicted label of the i-th property of G, which is essentially a Bernoulli distribution with success130

probability h(G)i (denoted as Ber(h(G)i)).131

Energy-Based Models. EBMs [18] specify probability density or mass functions as follows:132

pθ(x) =
exp(−Eθ(x))

Zθ
, (1)

where x ∈ RD is a random sample, Eθ(x) is the energy function with learnable parameters θ,133

and Zθ =
∫
exp(−Eθ(x)) dx is a normalizing constant. By learning θ, we can use an EBM to134

approximate a real data distribution, i.e., pθ ≈ pdata.135

Denoising Score Matching. DSM [23, 39] is an efficient approach for training EBMs. Here, the136

“(Stein) score” of a distribution f(x) is defined as the log-probability’s first-order gradient function137

w.r.t. x, i.e., ∇x log f(x). DSM first disturbs pdata(x) with a pre-defined noise distribution pN (x̃|x),138

and then trains the EBM via139

E x∼pdata(x)
x̃∼pN (x̃|x)

[
1

2
∥∇x log pθ(x̃)−∇x log pN (x̃|x)∥22

]
. (2)

With a proper pN (x̃|x), we can easily obtain ∇xpN (x̃|x) [39].140
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4 Method141

4.1 The Minimum-Maximum-Probability Query Strategy142

Our proposed query strategy is based on the joint distribution of two key probability distributions143

used in existing works. The first is the prediction distribution of the task learner, i.e., p(y = ŷ|G)144

(abbreviated as p(ŷ|G)), which is widely used to define different uncertainty metrics [7, 8, 16].145

The second is the distribution of currently labeled pool DL, denoted as pL(G). As shown in146

[11, 12, 17, 21], pL(G) is useful for identifying samples that are dissimilar to the labeled ones, and147

annotating these samples effectively increases data diversity. Inspired by these works, we propose to148

model the joint distribution of p(y = ŷ|G) and pL(G).149

Formally, let q(G, ŷ) denote the joint distribution:150

q(G, ŷ) ≜ p(ŷ|G)pL(G), (3)

where we use the boldface ŷ because we may be interested in more than 1 tasks. Note that ŷ is a151

random variable following p(ŷ|G), not the ground-truth label of G.152

Then, we perform active selection by first maximizing q(G, ŷ) via varying ŷ for each single G, and153

then selecting a batch of G that minimizes the obtained maxŷ q(G, ŷ). Denote the selected batch as154

B = {G1, · · · , Gb}. Our strategy is formalized as:155

B = argmin
G1,··· ,Gb∈DU

(
max
ŷ

q(G1, ŷ), · · · ,max
ŷ

q(Gb, ŷ)

)
. (4)

We name our strategy Minimum-Maximum-Probability Querying (MMPQ). The whole active learning156

process with MMPQ strategy is summarized in Appx. A.4.157

4.1.1 MMPQ as a Tuning-Free Hybrid Strategy158

Here we show that MMPQ naturally captures both uncertainty of the task learner and diversity w.r.t.159

the whole data space in a tuning-free manner. First, from Eqn. (4) and Eqn. (3), we can see that the160

selection score of MMPQ is:161

max
ŷ

q(G, ŷ) =

(
max
ŷ

p(ŷ|G)

)
pL(G). (5)

Then, let pM = maxŷ p(ŷ|G), and it can be seen that the MMPQ strategy essentially selects data162

with smaller pM and smaller pL(G).163

▶ Uncertainty. Smaller pM corresponds to samples that the task learner is less confident about.164

Specifically, let ŷ∗ = (ŷ∗1 , · · · , ŷ∗n) denote the prediction that achieves pM (i.e., pM = p(ŷ∗|G)),165

and ŷ′ = (ŷ′1, · · · , ŷ′n) denote any other prediction that is different from ŷ∗. Note that, since166

p(ŷ∗|G)+
∑

ŷ′∈{0,1}n,ŷ′ ̸=ŷ∗ p(ŷ′|G) = 1, smaller pM means that pM is closer to the second-largest167

(and all other) predictions, implying that the task learner is more uncertain about its prediction on168

molecule G.169

▶ Diversity. Smaller pL(G) means that G lies in low-density regions of the distribution of currently170

labeled data, and hence is dissimilar to the labeled data. Thus, querying those with small pL(G)171

increases the diversity of the obtained labeled pool Dt
L [11, 12, 17, 21].172

Based on above reasoning, samples with lowest selection score (i.e., those taken by the argmin173

operation in Eqn. (4)) are naturally those the model is most uncertain about, while at the same time174

being able to increase data diversity. As such, MMPQ does not need a hyperparameter to trade off175

between uncertainty and diversity.176

4.1.2 Implementation of MMPQ177

Since MMPQ is based on the value of q(G, ŷ), we need to model q(G, ŷ) with an explicit deep178

generative model. In particular, we instantiate an Energy-Based Model (EBM) using a neural network,179

since EBMs have been shown to be quite expressive and stable in distribution modelling [39, 40].180

Formally, q(G, ŷ) is modelled by181

q(G, ŷ) =
exp(−E(G, ŷ))

Z
, (6)

4
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Figure 1: Model design and data flow. Colored in blue are inputs and outputs of the labeled pool and
corresponding objective. Those corresponding to unlabeled pool are in red.

where E(G, ŷ) is the energy value given by the EBM, and Z is a normalizing constant.182

In this subsection, we focus on how to implement MMPQ with the EBM, and thus here we assume183

that the EBM is already trained and fixed. Model design and training of the EBM will be presented184

later in Sec. 4.2.185

From Eqn. (6), we have186

argmin
G

(
max
ŷ

q(G, ŷ)

)
=argmin

G

(
max
ŷ

(log q(G, ŷ)+logZ)

)
=argmin

G

(
−min

ŷ
E(G, ŷ)

)
=argmax

G

(
min
ŷ

E(G, ŷ)

)
.

(7)

This reveals that we can implement MMPQ based on the learned energy values, without the need to187

calculate the normalizing constant Z.188

One may argue that, minŷ E(G, ŷ) would be difficult to compute for large n, as it involves all189

2n possible combinations of (ŷ1, · · · , ŷn). We show in Appx. A.2 that, based on the conditional190

independence assumption of labels [41], minŷ E(G, ŷ) can be computed in a task-wise manner.191

4.2 Model Design and Training of the EBM192

4.2.1 Model Design193

Designing an EBM for learning q(G, ŷ) is not trivial, since the two variables have different data194

structure: G is an attributed graph, while ŷ is a vector. Moreover, learning EBMs for attributed195

graphs is itself a challenging open problem, due to the non-Euclidean and discrete nature [32, 42].196

To address the above issues, we propose to embed molecules graphs G into a learned embedding space,197

and then build the EBM model on ŷ and embeddings z (see Fig. 1). Inspired by Sinha et al. [21], we198

learn the space by training an Auto-Encoder (AE) to reconstruct its inputs. However, due to graph199

isomorphism, directly reconstructing molecule graphs is difficult [22, 43, 44]. We thus propose to200

train the AE to reconstruct the molecules’ SMILES strings [45], as shown in Fig. 1. SMILES is a201

sequence representation of molecules, where the sub-strings correspond to chemically-meaningful202

substructures in molecules (e.g., functional groups). Such a sequence-based reconstruction task203

enables the auto-encoder to learn molecules embeddings without struggling to reconstruct graphs.204

Formally, let Enc(·) and Dec(·) denote the encoder and decoder respectively, and let Sml(·) denote205

the operation of retrieving the SMILES string of a molecule (which can be easily pre-computed206

using open-sourced cheminformatics libraries). Then, for a molecule G, the ground-truth and the207

reconstructed SMILES strings are208

S ≜ Sml(G), Ŝ ≜ Dec(Enc(Sml(G))). (8)

For learning high-quality embeddings, we use both labeled and unlabeled data to train the AE:209

Lrec=EG∈DL

[
d(S, Ŝ)

]
+EG′∈DU

[
d(S′, Ŝ′)

]
, (9)
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where d(·, ·) is a distance between sequence pairs.210

In the rest of this paper, we take z ≜ Enc(Sml(G)) as a proxy of G in some cases, and use x to211

denote the tuple (z, ŷ), which is implemented by concatenating z and ŷ.212

Following previous works [39, 40], we instantiate the EBM as a “score net” sθ(x), which learns the213

score of the target distribution q(x), i.e., ∇x log q(x). When sθ(x) is trained, we use summation to214

approximate integral over ∇x log q(x) (see Appx. A.3). An alternative choice is to approximate the215

energy function Eθ(x), which however is more difficult than modeling the score, as experimentally216

shown in Sec. 5.3.3.217

4.2.2 Model Training218

We train the EBM sθ(x) via denoising score matching. With the noise pN (x̃|x) = N (x̃|x, σ2, I),219

we have ∇xpN (x̃|x) = − x̃−x
σ2 [39]. Then, the DSM objective is:220

LDSM = E x∈DL,
x̃∼N (x̃|x,σ)

[∥∥∥∥sθ(x̃) + x̃− x

σ2

∥∥∥∥2
2

]
, (10)

where we slightly abuse the notation, using x ∈ DL to denote x ∈ {(Enc(Sml(G)), ŷ)|G ∈ DL}.221

Note that the second term in the target distribution (Eqn. (3)) is the density of the labeled data only.222

Therefore, in Eqn. (10), we calculate LDSM only on the labeled pool DL (cf . the reconstruction223

objective in Eqn. (9)).224

One challenge of calculating LDSM is that it requires (G, ŷ) pairs i.i.d. sampled from q(G, ŷ), but225

we do not have such samples at hand. To address this challenge, we propose a two-step sampling226

method: first randomly pick G from DL; then draw a sample ŷ = {ŷ1, · · · , ŷn} from p(ŷ|G), which227

can be implemented by drawing a ŷi ∼ Ber(h(G)i) for all i (under the conditional-independence228

assumption of labels).229

The EBM and the AE are jointly trained via230

Ljoint = LDSM + Lrec. (11)

Pseudo code of model training process is summarize in Appx. A.4.231

5 Experiments232

5.1 Experiment Setup233

We run experiments under the batch-mode pool-based AL setting (elaborated in Appx. A.1). The234

labeled pool is initialized by randomly selecting 10% samples of the entire training; the initial235

unlabeled pool is the rest 90%. Then 10 AL rounds are performed; in each round, an unlabeled236

batch of 4% samples of the entire training set is queried, so the total annotation budget is 50%237

of the training set. We use the BACE, BBBP, HIV and SIDER datasets from the widely-used238

MoleculeNet benchmark [5] (also included in the Open Graph Benchmark [46]). Statistics and239

detailed descriptions of the datasets are in Appx. A.5. Following [4], we use scaffold split, with240

train/val/test = 80%/10%/10%. We use AUROC as the performance metric, as suggested in [5].241

Please refer to Appx. A.6 for implementation details.242

5.2 Active Learning Performance243

We compare MMPQ against following 8 baselines, with U, D and H denoting Uncertainty-based,244

Diversity-based and Hybrid methods respectively: Random (random selection), Entropy (U) (se-245

lecting samples with the largest prediction entropy), MC-Dropout (U) [8], CoreSet (D) [9], ASGN246

(D) [47], BADGE (H) [10], WAAL (H) [12], EADA (H) [13]. Among them, ASGN is the only247

existing method that investigates AL in molecular property prediction. BADGE, WAAL and EADA248

are representative hybrid methods, and are the state-of-the-arts on many image classification datasets.249

We note that there are other hybrid methods [11, 14, 15], but their code is not or only partly released.250

We fail to reproduce their results, and hence do not include them for comparison.251
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Figure 2: Active learning performance of MMPQ (ours) and baseline hybrid methods. “Round
0” corresponds to the performance on initial labeled pool. Note y-axis has an off-set for clear
comparison.

Figure 3: Active learning performance of MMPQ (ours) and uncertainty-based or diversity-based
methods. “Round 0” corresponds to the performance on initial labeled pool. Note y-axis has an
off-set for clear comparison.

To avoid cluttered presentation, we show results of baseline hybrid methods in Fig. 2, and those of252

uncertainty-based or diversity-based methods in Fig. 3. In both figures, we include results of our253

MMPQ and the Random baseline.254

Results: From the figures we can see that our MMPQ outperforms the baselines on all 4 datasets.255

Specifically, on HIV, our MMPQ achieves 0.7302 AUROC in the 3-rd active round (using only 22%256

annotations of the entire training set), which is very close to the performance of using 100% of the257

annotations (0.7344). This also explains why the performance of MMPQ almost saturates after the258

3-rd round. Furthermore, the performance of hybrid methods requiring trade-off hyperparameters, i.e.,259

WAAL and EADA, is not stable. In particular, though WAAL achieves performance comparable to260

our proposed MMPQ on BACE, it performs quite unsatisfactorily on HIV. Similarly, EADA performs261

well on SIDER but is the worst baseline on HIV. By contrast, our method achieves consistently262

superior performance. One may note that the performance of WAAL and EADA at round 0 is quite263

different from that of other methods. The reason is that, in other methods, the task learner is only264

trained with classification loss on the currently labeled data. Contrarily, in WAAL and EADA, apart265

from classification loss, the task learner is also trained with some auxiliary loss (i.e., adversarial loss266

in WAAL, and free-energy alignment loss in EADA). Therefore, even though the training data at267

round 0 are the same across all methods, the WAAL and EADA can have different performance.268

5.3 Ablation Studies269

Here we conduct ablative experiments on HIV, which is the largest dataset used (see Tab. 1).270

5.3.1 Uncertainty or Diversity Only271

In Sec. 4.1.1, we show that our MMPQ strategy captures both uncertainty and diversity through the272

two terms in Eqn. (5) respectively. Here we ablatively study the effectiveness of the two terms. Since273

we have only 1 target property on HIV, we use ŷ instead of ŷ. Specifically, under the setup described274

in Sec. 5.1, we compare our MMPQ with another two strategies based on the trained EBM:275

• The U.O. strategy that considers Uncertainty Only: querying data with minimum pM =276

maxŷ p(ŷ|G). Let ŷ∗ denote the predicted label that achieves pM . Then, based on the learned277

7
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Figure 4: (a) AL performance of MMPQ, U.O. and D.O. strategies. (b) Mean ground-truth-label loss
of data queried by MMPQ or D.O. strategy. (c) Mean average Tanimoto similarity of data queried by
MMPQ or U.O. strategy.

EBM, pM can be calculated by:278

pM =
exp(−E(G, ŷ∗))∑

ŷ∈{0,1} exp(−E(G, ŷ))
. (12)

• The D.O. strategy that considers Diversity Only: querying those with minimum pL(G):279

pL(G) ∝
∑

ŷ{0,1}
exp(−E(G, ŷ)). (13)

In Fig. 4 (a), as AL proceeds, the performance of the U.O. strategy rises slower than that of MMPQ280

or the D.O. strategy, though the final performance of U.O. (at round 10) is as good as MMPQ.281

On the other hand, the D.O. strategy reaches a peak very quickly (i.e., at the 2-nd AL round),282

but then its performance degrades as more data are annotated for training. One possible reason283

for such degradation is that the data queried in later rounds cannot provide the task learner with284

useful information about the learning task. Adding these data to the training pool may lead to285

overfitting, since more data means more training iterations. This shows that uncertainty and diversity286

are complementary to each other — diversity is important in early AL stages, while uncertainty is287

critical in later stages. Interestingly, this corroborates the finding in [48].288

Furthermore, we then dig deeper into the advantages of the MMPQ strategy, by examining how289

the two terms in Eqn. (5) affect the queried data. For studying the effectiveness of the uncertainty-290

based term maxŷ p(ŷ|G), we examine whether the queried data of the MMPQ strategy have higher291

uncertainty than those of the D.O. strategy (since MMPQ and D.O. only differ in this term). Note292

that, since HIV has only 1 property of interest, this term becomes p(ŷ|G). For measuring uncertainty,293

distribution-based metrics such as entropy and classification margin are often used. However, for294

binary classification (as our case), these metrics are equivalent to selecting those with smallest295

p(ŷ|G). Therefore, instead of these metrics, we adopt the ground-truth-label loss, as used in [30].296

For the t-th AL round, we calculate the mean loss of data in the current queries Dt
L. As shown in297

Fig. 4 (b), compared with the D.O. strategy, queries of our MMPQ have larger ground-truth-label298

loss, suggesting larger uncertainty of the task learner.299

For the diversity-based term pL(G), we examine whether queries of MMPQ have smaller chemical300

similarity (i.e., larger diversity) than those of U.O. strategy (since of MMPQ and U.O. only differ in301

this term). We adopt the Tanimoto similarity [49], which is a widely used expert-defined molecular302

similarity metric. Formally, let Tij denote the Tanimoto similarity between molecule Gi and Gj , we303

calculate the mean Average Similarity (mAS) among molecules in Dt
L:304

mAS =
1

N t
L(N

t
L − 1)

∑
Gi,Gj∈Dt

L,j ̸=i
Tij . (14)

Fig. 4 (c) shows that queries of MMPQ are less chemically similar than those of U.O., implying305

larger diversity.306

5.3.2 Robustness of Energy Calculation307

In this part, we investigate the robustness of MMPQ w.r.t. how energy is calculated. Specifically, we308

consider the choice of zero-energy point, and the number of points for approximating the integral309

(i.e., K in Eqn. (18)).310
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Figure 5: Performance of different (z0, ŷ0, K). Figure 6: DSM loss of modeling score or energy.

In above experiments, we set the zero-energy point as (z0 = z̄U , ŷ0 = 0), where z̄U is the where z̄U311

is the mean embedding of the unlabeled pool, and let K = 100. We name this setting the “default312

setting”, and denote it with the triple (z̄U , 0, 100).313

Then, based on (z̄U , 0, 100), we vary one of the three hyperparameters while keeping the other two314

unchanged, and run AL experiments under the setup described in Sec. 5.1. Specifically, we set (1)315

z0 ∈ {z̄L, z̄F }, where z̄L and z̄F are the mean embedding of the Labeled pool and that of the Full316

training set; (2) ŷ0 = 1; (3) K ∈ {50, 500}. Fig. 5 shows the AL performance of the above settings317

and the default one. We can see that the AL performance of different settings are similar, which318

demonstrates that the MMPQ strategy is robust to the above hyperparameters.319

5.3.3 Implementing EBM by Modeling Energy320

321

As introduced in Sec. 4.2, we instantiate the EBM as a score net learning the score of the true322

distribution. An alternative is to implement the EBM as an energy net modelling the energy function.323

We try this alternative in our experiments, but find that the training process fails to converge. Specifi-324

cally, the energy net is also built on the embedding space of the AE, and has the same architecture as325

the score net, except that the final layer has a output dimension of 1 and a ReLU activation (since the326

energy is a non-negative scalar). The training objective of the energy net (denoted as Eθ) is327

E x∈DL,
x̃∼N (x̃|x,σ)

[∥∥∥∥−∇xEθ(x̃) +
x̃− x

σ2

∥∥∥∥2
2

]
. (15)

Fig. 6 shows the loss curve (in a log scale) under best tuned hyperparameters (i.e., those yielding328

lowest loss). For comparison, the loss curve on HIV of our score net used in the MMPQ experiment329

in Sec. 5.2 is also given. We can see that, even with the best tuned hyperparameters, the training330

process of Eθ cannot converge well.331

6 Conclusion and Limitation332

We propose Maximum Minimum Probability Querying (MMPQ), a hybrid active learning method333

for molecular property prediction, without the need of manually trading off between uncertainty and334

diversity. The strategy is based on an EBM that models the joint distribution of labeled data and335

task learner’s prediction. The EBM is built in an embedding space learned by an auto-encoder that336

reconstructs molecules’ SMILES string. We propose training the EBM via denoising score matching.337

Once the EBM is trained, MMPQ selects data according to one single selection criterion that naturally338

captures uncertainty of the task learner and high diversity w.r.t. in the data space.339

One limitation of our approach is that it is only applicable to binary classification tasks. This is340

because we use the maximum prediction probability as an uncertainty metric, which is equivalent341

to the commonly-used entropy metric only in the binary case. When extending to categorical342

classification or regression, our used metric may not well reflect model uncertainty. In Appx. A.8, we343

discuss one possible solution to address this limitation by utilizing a new uncertainty metric.344

9



Jointly Modelling Uncertainty and Diversity for Active Molecular Property Prediction

References345

[1] Kevin Yang, Kyle Swanson, Wengong Jin, Connor Coley, Philipp Eiden, Hua Gao, Angel346

Guzman-Perez, Timothy Hopper, Brian Kelley, Miriam Mathea, et al. Analyzing learned molec-347

ular representations for property prediction. Journal of chemical information and modeling, 59348

(8):3370–3388, 2019. 1, 2349

[2] Gregory Sliwoski, Sandeepkumar Kothiwale, Jens Meiler, and Edward W Lowe. Computational350

methods in drug discovery. Pharmacological reviews, 66(1):334–395, 2014. 1, 2351

[3] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural352

message passing for quantum chemistry. In International conference on machine learning,353

pages 1263–1272. PMLR, 2017. 1, 2354

[4] W Hu, B Liu, J Gomes, M Zitnik, P Liang, V Pande, and J Leskovec. Strategies for pre-training355

graph neural networks. In International Conference on Learning Representations, 2020. 2, 3, 6,356

15357

[5] Zhenqin Wu, Bharath Ramsundar, Evan N Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S358

Pappu, Karl Leswing, and Vijay Pande. Moleculenet: a benchmark for molecular machine359

learning. Chemical science, 9(2):513–530, 2018. 1, 2, 6, 14, 15360

[6] Andreas Mayr, Günter Klambauer, Thomas Unterthiner, Marvin Steijaert, Jörg K Wegner, Hugo361

Ceulemans, Djork-Arné Clevert, and Sepp Hochreiter. Large-scale comparison of machine362

learning methods for drug target prediction on chembl. Chemical science, 9(24):5441–5451,363

2018. 1364

[7] Burr Settles. Active learning literature survey. 2009. 1, 2, 3, 4, 13365

[8] Yarin Gal, Riashat Islam, and Zoubin Ghahramani. Deep bayesian active learning with image366

data. In International Conference on Machine Learning, pages 1183–1192. PMLR, 2017. 1, 2,367

4, 6368

[9] Ozan Sener and Silvio Savarese. Active learning for convolutional neural networks: A core-set369

approach. In International Conference on Learning Representations, 2018. 1, 2, 6370

[10] Jordan T Ash, Chicheng Zhang, Akshay Krishnamurthy, John Langford, and Alekh Agarwal.371

Deep batch active learning by diverse, uncertain gradient lower bounds. In International372

Conference on Learning Representations, 2019. 1, 2, 3, 6373

[11] Kwanyoung Kim, Dongwon Park, Kwang In Kim, and Se Young Chun. Task-aware variational374

adversarial active learning. In Proceedings of the IEEE/CVF Conference on Computer Vision375

and Pattern Recognition, pages 8166–8175, 2021. 1, 2, 3, 4, 6376

[12] Changjian Shui, Fan Zhou, Christian Gagné, and Boyu Wang. Deep active learning: Unified and377

principled method for query and training. In International Conference on Artificial Intelligence378

and Statistics, pages 1308–1318. PMLR, 2020. 1, 2, 3, 4, 6379

[13] Binhui Xie, Longhui Yuan, Shuang Li, Chi Harold Liu, Xinjing Cheng, and Guoren Wang.380

Active learning for domain adaptation: An energy-based approach. AAAI conference on artificial381

intelligence, 2022. 1, 3, 6382

[14] Beichen Zhang, Liang Li, Shijie Yang, Shuhui Wang, Zheng-Jun Zha, and Qingming Huang.383

State-relabeling adversarial active learning. In 2020 IEEE/CVF Conference on Computer Vision384

and Pattern Recognition (CVPR), pages 8753–8762. IEEE Computer Society, 2020. 3, 6385

[15] Shuo Wang, Yuexiang Li, Kai Ma, Ruhui Ma, Haibing Guan, and Yefeng Zheng. Dual386

adversarial network for deep active learning. In Computer Vision–ECCV 2020: 16th European387

Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXIV 16, pages 680–696.388

Springer, 2020. 1, 3, 6389

[16] Jongwon Choi, Kwang Moo Yi, Jihoon Kim, Jinho Choo, Byoungjip Kim, Jinyeop Chang,390

Youngjune Gwon, and Hyung Jin Chang. Vab-al: incorporating class imbalance and difficulty391

with variational bayes for active learning. In 2021 IEEE/CVF Conference on Computer Vision392

and Pattern Recognition (CVPR). IEEE, 2021. 2, 4393

[17] Daniel Gissin and Shai Shalev-Shwartz. Discriminative active learning. arXiv preprint394

arXiv:1907.06347, 2019. 2, 4395

[18] Yann LeCun, Sumit Chopra, Raia Hadsell, M Ranzato, and F Huang. A tutorial on energy-based396

learning. Predicting structured data, 1(0), 2006. 2, 3397

10



Jointly Modelling Uncertainty and Diversity for Active Molecular Property Prediction

[19] Yang Song and Diederik P Kingma. How to train your energy-based models. arXiv preprint398

arXiv:2101.03288, 2021. 2399

[20] Aapo Hyvärinen and Peter Dayan. Estimation of non-normalized statistical models by score400

matching. Journal of Machine Learning Research, 6(4), 2005. 2, 3401

[21] Samrath Sinha, Sayna Ebrahimi, and Trevor Darrell. Variational adversarial active learning.402

In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pages 5971–5980.403

IEEE Computer Society, 2019. 2, 4, 5404

[22] Orion Dollar, Nisarg Joshi, David AC Beck, and Jim Pfaendtner. Attention-based generative405

models for de novo molecular design. Chemical Science, 2021. 2, 5, 15406

[23] Pascal Vincent. A connection between score matching and denoising autoencoders. Neural407

computation, 23(7):1661–1674, 2011. 2, 3408

[24] Qiang Liu, Jason Lee, and Michael Jordan. A kernelized stein discrepancy for goodness-of-fit409

tests. In International conference on machine learning, pages 276–284. PMLR, 2016. 2410

[25] Pierre Hohenberg and Walter Kohn. Inhomogeneous electron gas. Physical review, 136(3B):411

B864, 1964. 2412

[26] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. Gated graph sequence neural413

networks. In International Conference on Learning Representations, 2016. 2414

[27] Sheng Wang, Yuzhi Guo, Yuhong Wang, Hongmao Sun, and Junzhou Huang. Smiles-bert:415

Large scale unsupervised pre-training for molecular property prediction. In Proceedings of416

the 10th ACM International Conference on Bioinformatics, Computational Biology and Health417

Informatics, 2019. 2418

[28] David Rogers and Mathew Hahn. Extended-connectivity fingerprints. Journal of chemical419

information and modeling, 50(5):742–754, 2010. 2420

[29] William H Beluch, Tim Genewein, Andreas Nürnberger, and Jan M Köhler. The power of421

ensembles for active learning in image classification. In Proceedings of the IEEE conference on422

computer vision and pattern recognition, pages 9368–9377, 2018. 2423

[30] Donggeun Yoo and In So Kweon. Learning loss for active learning. In Proceedings of the424

IEEE/CVF conference on computer vision and pattern recognition, pages 93–102, 2019. 2, 8425

[31] Tijmen Tieleman. Training restricted boltzmann machines using approximations to the likeli-426

hood gradient. In Proceedings of the 25th international conference on Machine learning, pages427

1064–1071, 2008. 3428

[32] Meng Liu, Keqiang Yan, Bora Oztekin, and Shuiwang Ji. Graphebm: Molecular graph genera-429

tion with energy-based models. arXiv preprint arXiv:2102.00546, 2021. 3, 5430

[33] Jaehyeong Jo, Seul Lee, and Sung Ju Hwang. Score-based generative modeling of graphs431

via the system of stochastic differential equations. In Proceedings of the 39th International432

Conference on Machine Learning, volume 162 of Proceedings of Machine Learning Research,433

pages 10362–10383. PMLR, 17–23 Jul 2022. 3434

[34] Shitong Luo, Chence Shi, Minkai Xu, and Jian Tang. Predicting molecular conformation via435

dynamic graph score matching. Advances in Neural Information Processing Systems, 34, 2021.436

3437

[35] Chence Shi, Shitong Luo, Minkai Xu, and Jian Tang. Learning gradient fields for molecular438

conformation generation. In International Conference on Machine Learning, pages 9558–9568.439

PMLR, 2021. 3440

[36] Yaqing Wang, Abulikemu Abuduweili, Quanming Yao, and Dejing Dou. Property-aware441

relation networks for few-shot molecular property prediction. Advances in Neural Information442

Processing Systems, 34, 2021. 3, 15443

[37] Zaixi Zhang, Qi Liu, Hao Wang, Chengqiang Lu, and Chee-Kong Lee. Motif-based graph444

self-supervised learning for molecular property prediction. Advances in Neural Information445

Processing Systems, 34, 2021. 15446

[38] Shengchao Liu, Meng Qu, Zuobai Zhang, Huiyu Cai, and Jian Tang. Structured multi-task447

learning for molecular property prediction. In International Conference on Artificial Intelligence448

and Statistics, pages 8906–8920. PMLR, 2022. 3449

11



Jointly Modelling Uncertainty and Diversity for Active Molecular Property Prediction

[39] Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data450

distribution. Advances in Neural Information Processing Systems, 32, 2019. 3, 4, 6451

[40] Yang Song, Sahaj Garg, Jiaxin Shi, and Stefano Ermon. Sliced score matching: A scalable452

approach to density and score estimation. In Uncertainty in Artificial Intelligence, pages453

574–584. PMLR, 2020. 4, 6454

[41] Haoran Wang, Weitang Liu, Alex Bocchieri, and Yixuan Li. Can multi-label classification455

networks know what they don’t know? Advances in Neural Information Processing Systems,456

34, 2021. 5457

[42] Chenhao Niu, Yang Song, Jiaming Song, Shengjia Zhao, Aditya Grover, and Stefano Ermon.458

Permutation invariant graph generation via score-based generative modeling. In International459

Conference on Artificial Intelligence and Statistics, pages 4474–4484. PMLR, 2020. 5460

[43] Jaechang Lim, Seongok Ryu, Jin Woo Kim, and Woo Youn Kim. Molecular generative461

model based on conditional variational autoencoder for de novo molecular design. Journal of462

cheminformatics, 10(1):1–9, 2018. 5463

[44] Rafael Gómez-Bombarelli, Jennifer N Wei, David Duvenaud, José Miguel Hernández-Lobato,464

Benjamín Sánchez-Lengeling, Dennis Sheberla, Jorge Aguilera-Iparraguirre, Timothy D Hirzel,465

Ryan P Adams, and Alán Aspuru-Guzik. Automatic chemical design using a data-driven466

continuous representation of molecules. ACS central science, 4(2):268–276, 2018. 5467

[45] David Weininger. Smiles, a chemical language and information system. 1. introduction to468

methodology and encoding rules. Journal of chemical information and computer sciences, 28469

(1):31–36, 1988. 5470

[46] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele471

Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs.472

Advances in neural information processing systems, 33:22118–22133, 2020. 6473

[47] Zhongkai Hao, Chengqiang Lu, Zhenya Huang, Hao Wang, Zheyuan Hu, Qi Liu, Enhong Chen,474

and Cheekong Lee. Asgn: An active semi-supervised graph neural network for molecular475

property prediction. In Proceedings of the 26th ACM SIGKDD International Conference on476

Knowledge Discovery & Data Mining, pages 731–752, 2020. 6477

[48] Yao Zhang et al. Bayesian semi-supervised learning for uncertainty-calibrated prediction of478

molecular properties and active learning. Chemical science, 10(35):8154–8163, 2019. 8479

[49] Dávid Bajusz, Anita Rácz, and Károly Héberger. Why is tanimoto index an appropriate choice480

for fingerprint-based similarity calculations? Journal of cheminformatics, 7(1):1–13, 2015. 8481

[50] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu Philip. A482

comprehensive survey on graph neural networks. IEEE transactions on neural networks and483

learning systems, 32(1):4–24, 2020. 13484

[51] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,485

Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information486

processing systems, pages 5998–6008, 2017. 15487

[52] Vinod Nair and Geoffrey E. Hinton. Rectified linear units improve restricted boltzmann488

machines. In ICML, pages 807–814. Omnipress, 2010. 15489

[53] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint490

arXiv:1607.06450, 2016. 15491

12



Jointly Modelling Uncertainty and Diversity for Active Molecular Property Prediction

A Appendix492

A.1 Pool-based batch-mode active learning setting493

In this setting, we are given an initial pool of labeled data D0
L of size N0

L, and an unlabeled pool D0
U494

of size N0
U > N0

L. Our goal is to design an AL algorithm that performs T rounds of querying [7].495

In the t-th round (1 ⩽ t ⩽ T ), a batch of b samples, denoted as Bt, are selected from Dt−1
U . Then,496

an oracle (e.g., in our case, a chemist) annotates the queried samples, which are then moved from497

the unlabeled pool to the labeled pool. Formally, let Bt
anno denote annotated selected batch, and then498

the pools are updated by Dt
L = Dt−1

L ∪ Bt
anno, and Dt

U = Dt−1
U \ Bt; accordingly N t

L = N t−1
L + b,499

N t
U = N t−1

U −b. The obtained Dt
L is then used to train a task learner h(·) — the model that performs500

the target learning task at hand (e.g., molecular property prediction in our case). In this paper, the501

task learner is a Graph Neural Networks (GNN) [50].502

Note that, the union of Dt
L and Dt

U is always the whole training set, i.e., Dtrain = Dt
L ∪ Dt

U ,∀t ⩾ 0.503

Aside from Dtrain, we also have a validation set Dval and a test set Dtest, which are held-out and504

disjoint from Dtrain, for performing model selection and evaluation on the task learner. For brevity,505

we omit the round index t unless necessary.506

A.2 Calculating minimum energy for large n507

As mentioned in Sec. 4.1.2, we can calculate minŷ E(G, ŷ) in a task-wise manner, under the508

assumption that the n labels are conditionally independent. Here we elaborate on the calculation.509

In multi-label classification, the n labels are often assumed to be independent given the input. In our510

case, this is formulated as: p(ŷ|G) =
∏n

i=1 p(yi|G). Thus, we have511

argmin
ŷ

E(G, ŷ)

= argmax
ŷ

q(G, ŷ)

= argmax
ŷ

p(ŷ1, · · · , ŷn|G)pL(G)

= argmax
ŷ

(∏n

i=1
p(ŷi|G)

)
=

(
argmax

ŷ1

p(ŷ1|G), · · · , argmax
ŷn

p(ŷn|G)

)
.

(16)

This shows that we can calculate argminŷ E(G, ŷ) by simply taking512 (
argmaxŷ1

p(ŷ1|G), · · · , argmaxŷn
p(ŷn|G)

)
, without the need of calculating the energy513

for all 2n possible combinations of (ŷ1, · · · , ŷn).514

A.3 Energy calculation515

Our EBM models the score ∇x log q(x) instead of the energy E(x). For obtaining the energy value516

E(x), we use summation to approximate integral over ∇x log q(x) after training the EBM.517

Specifically, the energy of any point x can be calculated through the following line integral:518

E(x) = E(x0) +

∫
P

∇x log q(x) · dx, (17)

where · denotes a vector inner product. The two terms on the right hand side are explained as follows.519

The first term E(x0) is the energy of an arbitrarily chosen reference point x0. For selecting queries,520

we only need the relative energy value. Therefore, without loss of generality, we can take any521

reference point x0 as the zero-energy point, i.e., letting E(x0) = 0.522

The second term is an integral along a path P from x0 to x. Since the true score ∇x log q(x) is a523

conservative vector field, the integral result does not depend on the choice of P (assuming that the524

EBM approximates ∇x log q(x) well). We thus calculate the integral along the directed line segment525

from x0 to x, denoted as
∫ x

x0
.526
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Finally, the (relative) energy of x can be calculated by527

E(x) =

∫ x

x0

∇x log q(x) · dx

≈
∑K

k=0
(xk+1 − xk) · ∇x log q(xk+1)

=
∑K

k=0
(xk+1 − xk) · sθ(xk+1),

(18)

where {x1, · · · ,xK} denote K points evenly distributed along the directed line segment, and xK+1 ≜528

x.529

A.4 Pseudo codes530

Alg. 1 and Alg. 2 show the pseudo codes of MMPQ and the model training process, respectively.531

Notations used can be found in Appx. A.1.

Algorithm 1 Active learning with MMPQ

Input: Initial labeled pool D0
L, unlabeled pool D0

U , number of rounds T , number of queries per
round b, EBM, task learner

1: Train task learner with D0
L, perform model selection using Dval, and test the learner on Dtest

2: for t ∈ {0, · · · , T} do
3: Train the EBM (Sec. 4.2.2)
4: // perform active selection
5: Select a batch of b samples Bt according to Eqn. (4)
6: Annotate Bt and obtain Bt

anno
7: Dt

L = Dt−1
L ∪ Bt

anno, Dt
U = Dt−1

U \ Bt

8: // train and test task learner
9: Train task learner with Dt

L, perform model selection using Dval, and test the learner on Dtest
10: end for
Output: Performance on Dtest for t ∈ {0, · · · , T}

532

Algorithm 2 Training process

Input: EBM sθ, AE encoder Enc and decoder Dec, and task learner h (trained and fixed)
1: while not converge do
2: Randomly sample G from DL, G′ from DU

3: Sample ŷ by drawing ŷi from Ber(h(G)i)
4: x = (Enc(Sml(G)), ŷ)
5: Calculate Ljoint with Eqn. (9), (10), (11)
6: Update sθ, Enc and Dec with Ljoint
7: end while

Output: Trained EBM and AE

A.5 Dataset information533

We use the BACE, BBBP, HIV and SIDER datasets from MoleculeNet [5]. Here we give a brief534

introduction to these datasets:535

• BACE: Human β-secretase 1 (a.k.a. BACE-1) is an enzyme in human body. It is recently found536

that inhibition of BACE-1 can slow down the development of Alzheimer’s disease. The BACE537

dataset contains experimentally measured binding (i.e., effective in inhibition) results (binarized)538

of 1,513 candidate inhibitors of BACE-1.539

• BBBP: The Blood–Brain Barrier (BBB) is a highly selective semipermeable border that prevents540

solutes in the blood from non-selectively crossing into the extracellular fluid of the central541

nervous system. For designing drugs to cure some brain disorder, one major challenge is to542

ensure that the obtained drug is able to go through BBB. The BBBP dataset provides binary543

labels for 2,039 molecules on their ability to permeate BBB.544
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• HIV: The HIV dataset provides the experimentally tested ability to inhibit HIV replication for545

41,127 molecules.546

• SIDER: SIDER is an abbreviation of Side Effect Resource, which is a database of marketed547

drugs and their adverse drug reactions (i.e., side effects). The SIDER dataset contains the results548

of 1,427 drugs on 27 kinds of side effects.549

Statistics of the datasets are in Tab. 1.

Table 1: Statistics of used datasets

BACE SIDER BBBP HIV

Number of Tasks 1 27 1 1
Number of Molecules 1,513 1,427 2,039 41,127

550

We note that the TOX21, TOXCAST, MUV and PCBA datasets in the MoleculeNet benchmark [5]551

are also often used. However, we find they contain a large number of molecules whose properties not552

fully provided by the dataset creator.553

To see this, for each property of the 4 datasets, we show in Fig. 7 the numbers of molecules whose554

ground truth labels are provided or not. We can see that, there are a large number of label-not-provided555

molecules for each property that needs to be predicted. This violates the general assumption in AL556

that the oracle can correctly annotate each query. Thus we do not run experiments on these datasets.557

Figure 7: Ratios of molecules whose ground truth properties are provided or not. The x-axis ticks
correspond to the index of properties. We sort the properties by the ratio of label-not-provided
molecules in ascending order.

A.6 Implementation details558

To obtain reliable results, we randomly sample 50 initial labeled pools in advance, and run each AL559

experiment with all these pools and 10 random seeds per pool. The reported performance is averaged560

across all initial pools and seeds (i.e., 50× 10 = 500 runs).561

The AE for reconstructing the SMILES strings is a Transformer [22, 51], which has been shown562

to be effective in sequence modeling. The EBM is a 5-layer Multi-Layer Perceptron with residual563

connections, ReLU activation function [52], and Layer Normalization [53] between each hidden564

layer. We use the RdKit library1 to pre-generate SMILES strings, and follow [22] to tokenize the565

strings. We instantiate the task learner with a 5-layer GINE architecture [4], which is widely used for566

molecular property prediction [4, 36, 37].567

Before the active learning procedure, the AE is pretrained on the dataset of interest for 5,000 epochs568

with learning rate of 5e-4. In each AL round, the auto-encoder and EBM are jointly trained with batch569

size of 128. The learning rates are 2e-4 for the auto-encoder and 1e-3 for the EBM. The standard570

deviation of the Gaussian noise used in DSM is 10. The criterion for training convergence is that571

there are 10 batches whose DSM loss (see Eqn. (10)) is no larger than 0.015, which is obtained in our572

pilot experiments. The maximum number of training epochs is 2500. The used optimizer is Adam.573

The task learner is trained for 50 epochs with batch size of 128, learning rate of 1e-3, and the Adam574

optimizer. Note that the task learner is re-initialized before it is trained and tested. For calculating the575

1https://www.rdkit.org/

15



Jointly Modelling Uncertainty and Diversity for Active Molecular Property Prediction

(relative) energy, we use points for approximation, i.e., K = 100 (see Eqn. (18)), and set zero-energy576

point as (z0 = z̄U , ŷ0 = 0), where z̄U is the mean embedding of the unlabeled pool:577

z̄U =
1

NU

∑
G∈DU

Enc(Sml(G)). (19)

A.7 Numerical results578

Tab. 2, Tab. 3, Tab. 4 and Tab. 5 show the numerical results (including mean and standard deviation)579

of Fig. 2 and Fig. 3. Tab. 6 shows the numerical results of Fig. 4. Tab. 7 shows the numerical results580

of Fig. 5.581

Table 2: Numerical results on BACE. “Round 0” corresponds to performance on initial labeled pools.
0 1 2 3 4 5

Random 0.5488 ± .0090 0.5477 ± .0233 0.5556 ± .0243 0.5513 ± .0204 0.5803 ± .0202 0.5975 ± .0196
Entropy 0.5489 ± .0122 0.5469 ± .0172 0.5525 ± .0166 0.5463 ± .0153 0.5566 ± .0161 0.5691 ± .0152
MC-Dropout 0.5510 ± .0110 0.5469 ± .0158 0.5460 ± .0172 0.5413 ± .0163 0.5581 ± .0142 0.5730 ± .0144
CoreSet 0.5497 ± .0113 0.5491 ± .0204 0.5591 ± .0225 0.5563 ± .0212 0.5731 ± .0216 0.5867 ± .0198
ASGN 0.5480 ± .0120 0.5570 ± .0234 0.5634 ± .0217 0.5572 ± .0220 0.5814 ± .0209 0.5934 ± .0219
WAAL 0.5557 ± .0076 0.5699 ± .0141 0.5882 ± .0136 0.6087 ± .0127 0.6108 ± .0155 0.6170 ± .0148
EADA 0.5704 ± .0085 0.5662 ± .0126 0.5685 ± .0101 0.5729 ± .0118 0.5762 ± .0104 0.5827 ± .0099
Badge 0.5501 ± .0118 0.5478 ± .0168 0.5606 ± .0136 0.5569 ± .0157 0.5795 ± .0156 0.5910 ± .0143
MMPQ (Ours) 0.5501 ± .0129 0.5690 ± .0175 0.5935 ± .0183 0.5904 ± .0172 0.6108 ± .0164 0.6160 ± .0152

6 7 8 9 10

Random 0.6032 ± .0201 0.6178 ± .0187 0.6246 ± .0190 0.6278 ± .0192 0.6309 ± .0188
Entropy 0.5749 ± .0149 0.5869 ± .0158 0.5958 ± .0163 0.6012 ± .0142 0.6077 ± .0156
MC-Dropout 0.5759 ± .0139 0.5846 ± .0132 0.5938 ± .0153 0.5989 ± .0137 0.6025 ± .0139
CoreSet 0.5885 ± .0186 0.5946 ± .0200 0.6062 ± .0189 0.6084 ± .0176 0.6107 ± .0191
ASGN 0.5952 ± .0175 0.6099 ± .0192 0.6237 ± .0208 0.6269 ± .0201 0.6355 ± .0188
WAAL 0.6223 ± .0147 0.6241 ± .0132 0.6244 ± .0130 0.6356 ± .0137 0.6357 ± .0119
EADA 0.5867 ± .0127 0.5918 ± .0101 0.5955 ± .0102 0.6050 ± .0087 0.6110 ± .0122
Badge 0.5965 ± .0117 0.6117 ± .0163 0.6191 ± .0151 0.6245 ± .0161 0.6314 ± .0144
MMPQ (Ours) 0.6176 ± .0133 0.6274 ± .0165 0.6286 ± .0143 0.6337 ± .0146 0.6381 ± .0142

Table 3: Numerical results on BBBP. “Round 0” corresponds to performance on initial labeled pools.
0 1 2 3 4 5

Random 0.5944 ± .0099 0.6059 ± .0212 0.6101 ± .0218 0.6214 ± .0213 0.6271 ± .0216 0.6344 ± .0183
Entropy 0.5950 ± .0085 0.6047 ± .0122 0.6055 ± .0156 0.6122 ± .0157 0.6125 ± .0139 0.6176 ± .0116
MC-Dropout 0.5945 ± .0088 0.6035 ± .0130 0.6023 ± .0172 0.6065 ± .0144 0.6071 ± .0153 0.6105 ± .0147
CoreSet 0.5931 ± .0087 0.6036 ± .0199 0.6088 ± .0195 0.6134 ± .0163 0.6169 ± .0182 0.6218 ± .0149
ASGN 0.5936 ± .0074 0.6013 ± .0176 0.6079 ± .0184 0.6231 ± .0161 0.6278 ± .0158 0.6379 ± .0145
WAAL 0.5852 ± .0102 0.5923 ± .0177 0.6076 ± .0169 0.6088 ± .0173 0.6134 ± .0159 0.6183 ± .0164
EADA 0.6014 ± .0075 0.6036 ± .0112 0.6058 ± .0137 0.6073 ± .0130 0.6122 ± .0136 0.6149 ± .0087
Badge 0.5923 ± .0068 0.6030 ± .0086 0.6060 ± .0104 0.6155 ± .0075 0.6191 ± .0092 0.6229 ± .0075
MMPQ (Ours) 0.5943 ± .0075 0.6349 ± .0121 0.6361 ± .0123 0.6389 ± .0126 0.6413 ± .0097 0.6454 ± .0087

6 7 8 9 10

Random 0.6373 ± .0198 0.6434 ± .0198 0.6458 ± .0185 0.6509 ± .0190 0.6533 ± .0184
Entropy 0.6202 ± .0123 0.6237 ± .0135 0.6267 ± .0105 0.6295 ± .0127 0.6312 ± .0125
MC-Dropout 0.6105 ± .0126 0.6164 ± .0133 0.6191 ± .0143 0.6243 ± .0122 0.6284 ± .0118
CoreSet 0.6245 ± .0153 0.6268 ± .0129 0.6300 ± .0151 0.6334 ± .0170 0.6363 ± .0166
ASGN 0.6396 ± .0142 0.6457 ± .0141 0.6470 ± .0145 0.6493 ± .0149 0.6516 ± .0152
WAAL 0.6231 ± .0144 0.6195 ± .0139 0.6257 ± .0171 0.6253 ± .0168 0.6287 ± .0139
EADA 0.6163 ± .0103 0.6180 ± .0115 0.6196 ± .0091 0.6211 ± .0095 0.6224 ± .0104
Badge 0.6234 ± .0091 0.6267 ± .0079 0.6288 ± .0094 0.6350 ± .0077 0.6364 ± .0076
MMPQ (Ours) 0.6465 ± .0083 0.6490 ± .0087 0.6530 ± .0112 0.6565 ± .0084 0.6585 ± .0082
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Table 4: Numerical results on SIDER. “Round 0” corresponds to performance on initial labeled
pools.

0 1 2 3 4 5

Random 0.5203 ± .0072 0.5248 ± .0165 0.5251 ± .0172 0.5279 ± .0150 0.5309 ± .0155 0.5339 ± .0138
Entropy 0.5205 ± .0081 0.5224 ± .0123 0.5261 ± .0168 0.5270 ± .0103 0.5289 ± .0119 0.5309 ± .0105
MC-Dropout 0.5197 ± .0084 0.5240 ± .0146 0.5255 ± .0144 0.5306 ± .0110 0.5333 ± .0115 0.5364 ± .0124
CoreSet 0.5205 ± .0073 0.5230 ± .0161 0.5271 ± .0184 0.5283 ± .0167 0.5305 ± .0161 0.5346 ± .0145
ASGN 0.5203 ± .0073 0.5217 ± .0163 0.5279 ± .0159 0.5314 ± .0161 0.5332 ± .0148 0.5354 ± .0159
WAAL 0.5262 ± .0064 0.5267 ± .0150 0.5299 ± .0159 0.5300 ± .0144 0.5348 ± .0137 0.5357 ± .0144
EADA 0.5269 ± .0069 0.5270 ± .0091 0.5295 ± .0100 0.5307 ± .0085 0.5337 ± .0104 0.5371 ± .0058
Badge 0.5213 ± .0067 0.5247 ± .0075 0.5258 ± .0100 0.5265 ± .0084 0.5310 ± .0068 0.5339 ± .0080
MMPQ (Ours) 0.5204 ± .0054 0.5246 ± .0087 0.5282 ± .0070 0.5308 ± .0087 0.5363 ± .0068 0.5421 ± .0068

6 7 8 9 10

Random 0.5313 ± .0134 0.5363 ± .0137 0.5399 ± .0150 0.5405 ± .0148 0.5463 ± .0164
Entropy 0.5290 ± .0124 0.5335 ± .0118 0.5369 ± .0107 0.5381 ± .0118 0.5420 ± .0094
MC-Dropout 0.5356 ± .0145 0.5408 ± .0124 0.5454 ± .0085 0.5455 ± .0105 0.5483 ± .0103
CoreSet 0.5330 ± .0155 0.5356 ± .0160 0.5388 ± .0148 0.5395 ± .0169 0.5423 ± .0146
ASGN 0.5339 ± .0136 0.5361 ± .0141 0.5388 ± .0140 0.5397 ± .0130 0.5410 ± .0125
WAAL 0.5351 ± .0130 0.5380 ± .0147 0.5418 ± .0130 0.5464 ± .0130 0.5473 ± .0121
EADA 0.5387 ± .0081 0.5405 ± .0080 0.5433 ± .0081 0.5436 ± .0090 0.5449 ± .0085
Badge 0.5322 ± .0084 0.5363 ± .0080 0.5410 ± .0081 0.5433 ± .0075 0.5468 ± .0070
MMPQ (Ours) 0.5405 ± .0066 0.5455 ± .0079 0.5494 ± .0066 0.5497 ± .0073 0.5519 ± .0065

Table 5: Numerical results on HIV. “Round 0” corresponds to performance on initial labeled pools.
0 1 2 3 4 5

Random 0.6928 ± .0109 0.6928 ± .0241 0.6967 ± .0260 0.6971 ± .0224 0.7015 ± .0244 0.7030 ± .0213
Entropy 0.6949 ± .0098 0.7005 ± .0199 0.7076 ± .0213 0.7094 ± .0158 0.7100 ± .0139 0.7097 ± .0164
MC-Dropout 0.6946 ± .0075 0.7016 ± .0118 0.7063 ± .0122 0.7106 ± .0140 0.7105 ± .0115 0.7123 ± .0114
CoreSet 0.6933 ± .0116 0.6954 ± .0194 0.6996 ± .0234 0.7014 ± .0206 0.7036 ± .0173 0.7037 ± .0200
ASGN 0.6940 ± .0070 0.6999 ± .0173 0.6980 ± .0206 0.6984 ± .0177 0.6989 ± .0169 0.6999 ± .0160
WAAL 0.6587 ± .0121 0.6849 ± .0202 0.6936 ± .0200 0.6973 ± .0200 0.6960 ± .0209 0.6991 ± .0171
EADA 0.6311 ± .0119 0.6558 ± .0170 0.6713 ± .0170 0.6810 ± .0175 0.6865 ± .0175 0.6899 ± .0145
Badge 0.6958 ± .0086 0.7019 ± .0119 0.7054 ± .0150 0.7080 ± .0095 0.7096 ± .0103 0.7125 ± .0097
MMPQ (Ours) 0.6954 ± .0073 0.7198 ± .0121 0.7262 ± .0125 0.7302 ± .0123 0.7302 ± .0103 0.7293 ± .0112

6 7 8 9 10

Random 0.7065 ± .0184 0.7107 ± .0198 0.7123 ± .0177 0.7144 ± .0211 0.7165 ± .0216
Entropy 0.7122 ± .0184 0.7135 ± .0152 0.7146 ± .0152 0.7161 ± .0154 0.7190 ± .0159
MC-Dropout 0.7128 ± .0132 0.7142 ± .0124 0.7142 ± .0126 0.7161 ± .0115 0.7164 ± .0109
CoreSet 0.7054 ± .0177 0.7072 ± .0170 0.7090 ± .0193 0.7111 ± .0188 0.7110 ± .0164
ASGN 0.7060 ± .0162 0.7101 ± .0155 0.7155 ± .0138 0.7196 ± .0119 0.7225 ± .0152
WAAL 0.7001 ± .0199 0.7019 ± .0159 0.7021 ± .0185 0.7063 ± .0166 0.7055 ± .0183
EADA 0.6929 ± .0146 0.6943 ± .0136 0.6957 ± .0122 0.6971 ± .0155 0.6970 ± .0157
Badge 0.7143 ± .0103 0.7153 ± .0091 0.7153 ± .0092 0.7155 ± .0107 0.7159 ± .0100
MMPQ (Ours) 0.7294 ± .0113 0.7291 ± .0109 0.7294 ± .0103 0.7300 ± .0099 0.7302 ± .0077
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Table 6: Numerical results of Fig. 4 (a). “Round 0” corresponds to performance on initial labeled
pools.

0 1 2 3 4 5

MMPQ 0.6954 ± .0073 0.7198 ± .0121 0.7262 ± .0125 0.7302 ± .0123 0.7302 ± .0103 0.7293 ± .0112
U.O. 0.6943 ± .0077 0.7074 ± .0116 0.7126 ± .0127 0.7172 ± .0111 0.7208 ± .0113 0.7216 ± .0102
D.O. 0.6947 ± .0069 0.7218 ± .0104 0.7192 ± .0110 0.7197 ± .0088 0.7193 ± .0085 0.7192 ± .0106

6 7 8 9 10

MMPQ 0.7294 ± .0113 0.7291 ± .0109 0.7294 ± .0103 0.7300 ± .0099 0.7302 ± .0077
U.O. 0.7239 ± .0075 0.7269 ± .0084 0.7274 ± .0090 0.7282 ± .0091 0.7288 ± .0098
D.O. 0.7191 ± .0127 0.7184 ± .0106 0.7177 ± .0097 0.7169 ± .0112 0.7160 ± .0105

Table 7: Numerical results of Fig. 5. “Round 0” corresponds to performance on initial labeled pools.
0 1 2 3 4 5

(z̄L, 0, 100) 0.6922 ± .0089 0.7176 ± .0115 0.7252 ± .0153 0.7291 ± .0103 0.7292 ± .0121 0.7291 ± .0138
(z̄F , 0, 100) 0.6941 ± .0097 0.7189 ± .0115 0.7245 ± .0151 0.7293 ± .0141 0.7296 ± .0132 0.7299 ± .0126
(z̄U , 0, 50) 0.6942 ± .0085 0.7217 ± .0108 0.7282 ± .0106 0.7283 ± .0106 0.7285 ± .0111 0.7292 ± .0110
(z̄U , 0, 500) 0.6940 ± .0096 0.7193 ± .0140 0.7248 ± .0162 0.7287 ± .0113 0.7281 ± .0125 0.7294 ± .0123
(z̄U , 1, 100) 0.6923 ± .0105 0.7208 ± .0119 0.7292 ± .0138 0.7301 ± .0126 0.7298 ± .0124 0.7293 ± .0124

6 7 8 9 10

(z̄L, 0, 100) 0.7299 ± .0150 0.7295 ± .0126 0.7291 ± .0121 0.7298 ± .0092 0.7294 ± .0133
(z̄F , 0, 100) 0.7290 ± .0125 0.7299 ± .0124 0.7293 ± .0106 0.7294 ± .0122 0.7291 ± .0122
(z̄U , 0, 50) 0.7290 ± .0091 0.7294 ± .0093 0.7293 ± .0110 0.7294 ± .0092 0.7294 ± .0091
(z̄U , 0, 500) 0.7298 ± .0124 0.7294 ± .0115 0.7292 ± .0137 0.7298 ± .0119 0.7295 ± .0102
(z̄U , 1, 100) 0.7299 ± .0119 0.7287 ± .0105 0.7297 ± .0111 0.7300 ± .0108 0.7305 ± .0114

A.8 Generalization to categorical classification or regression582

Recall that, in MMPQ, we use maxŷ p(ŷ|G) as a metric of model uncertainty. It is easy to see that,583

in the binary classification case, selecting those with small maxŷ p(ŷ|G) is equivalent to selecting584

those with a large prediction entropy, which is a widely-used uncertainty metric. However, this may585

not hold in categorical classification or regression tasks.586

We show in this subsection that, by choosing the KL-divergence between the prediction distribution587

and the uniform distribution as the uncertainty metric, we can generalize our approach to categorical588

classification or regression tasks. For simplicity, we take single-task categorical classification as an589

example.590

We start with categorical classification. Suppose that the are C classes in total, and denote pc =591

p(ŷ = c|G) (c ∈ C ≜ {1, · · · , C}). The KL-divergence between the prediction distribution p(ŷ|G)592

and a uniform distribution is593

DKL =

C∑
c=1

pc log(
pc
1
C

)

=

C∑
c=1

pc(log(pc) + log(C))

= log(C)− (−
C∑

c=1

pc log(pc))

= log(C)−H(p),

(20)

where H(p) is the entropy of the prediction distribution.594

Since log(C) is a constant, selecting those with a small DKL is equivalent to selecting those with a595

large H(p). This shows that, DKL is equivalent to H(p) in terms of measuring model uncertainty.596
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Then, by replacing maxŷ p(ŷ|G) with H(p) in Eqn. 5, we obtain a new selection score:597

H(p)pL(G) = −

(
C∑

c=1

pc log(pc)

)
pL(G)

= −
∑
ŷ∈C

q(G, ŷ) log(p(ŷ|G))

= −
∑
ŷ∈C

q(G, ŷ) log

(
q(G, ŷ′)∑

ŷ′∈C q(G, ŷ′)

)

∝ −
∑
ŷ∈C

exp(−E(G, ŷ)) log

(
exp(−E(G, ŷ′))∑

ŷ′∈C exp(−E(G, ŷ′))

)
.

(21)

The above equation shows that the selection score can also be computed using the EBM.598

With the same reasoning, the selection score for regression tasks is:599

−
∫
ŷ∈Y

exp(−E(G, ŷ)) log

(
exp(−E(G, ŷ′))∫

ŷ′∈Y
exp(−E(G, ŷ′)) dŷ′

)
dŷ, (22)

where Y is the support set.600

Note that, the above formulation requires computing the integration over Y , which is intractable.601

This might be approximated by sampling and summation.602
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A.9 Main results with unified y-axis scale603

For better comparison, the Fig. 8 and Fig. 9 show the results of Fig. 2 and Fig. 3 with the same y-axis604

scale for each dataset.

Figure 8: Active learning performance of MMPQ (ours) and baseline hybrid methods. “Round 0”
corresponds to the performance on initial labeled pool.

605

Figure 9: Active learning performance of MMPQ (ours) and uncertainty-based or diversity-based
methods. “Round 0” corresponds to the performance on initial labeled pool.
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