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Objectives

Build an LSTM-based model to predict Stress-strain data from indentation data

Analyze the effect of additional features on the performance of the model

Introduction

Obtaining stress-strain data is more cumbersome than micro-indentation data due sophistication

of procedure involved.

Stress-strain analysis necessitates specialized equipment, precise load-applying mechanical testing

machines, meticulous sample preparation, alignment to ensure consistent and reliable results.
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Figure 1. Micro to Macro: Inverse prediction.

Thus, we want to use Micro/Nano-indentation data to predict stress strain curves. In pursuit of this

we try working with an LSTM based model

Data Pre-processing

Using the experiments we performed on Irradiated Eurofer 97, we generate the dataset for various

temperatures.

To make the data easier to work with, and to better generalize, the following pre-processing steps were

applied

Smoothing: Reduce noise and irregularities

Uniform Sampling: Ensure a consistent length across all samples

Shifted: Calibrated to origin

Data preprocessing: micro-indentation
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Figure 2. Data-preprocesssing: (a)Micro-indentation, (b)Stress-strain

Why LSTM?

LSTM, a recurrent neural network architecture that captures long-term dependencies in

sequential data

Memory cells and gating mechanisms to selectively retain and forget information over time,

model learns and remembers patterns across sequence
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https://in.mathworks.com/help/deeplearning/ug/long-short-term-memory-networks.html
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Workflow

To check the effect of features, additional features can be added or not.

The data for one temperature is held off as test

Micro-indentation data
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Stress-strain curves
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Additional features
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20 300 317 106
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Figure 3. Workflow of Data and Model

Results

Figure 4. Results: Features v/s No Features

Summary

LSTMs powerful enough to learn good mappings from P-h curves to Stress Strain (SS) curves

using very few data points.

Extra Features are critical for learning good mappings

General rule of thumb: More relevant data => Better learning

FurtherWork

Nano-Indentations (P-h for various temperatures), More features, Spherical indentations, Electrical

resistivity, non irradiated Tensile data, other materials
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