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Objectives Why LSTM?

= LSTM, a recurrent neural network architecture that captures long-term dependencies in
sequential data

= Memory cells and gating mechanisms to selectively retain and forget information over time,
model learns and remembers patterns across sequence

* Build an LSTM-based model to predict Stress-strain data from indentation data
= Analyze the effect of additional features on the performance of the model
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To check the effect of features, additional features can be added or not.
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Figure 3. Workflow of Data and Model
Data preprocessing: micro-indentation
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