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ABSTRACT

Diffusion models have enabled input-based domain adaptation to unseen test-time
corruption for the classification problem. Nevertheless, while dense prediction
tasks share similar robustness issues with image-level classification, previous in-
put adaptation work may fail to preserve the semantic information necessary for
robust pixel-level prediction. To address the issue, we propose a novel diffusion-
driven strategy that translates the corrupted inputs to the source domain (i.e., the
training data domain), while also preserving the semantic information (i.e. high-
frequency shape information and low-frequency color information). We first stud-
ied how to leverage frequency filtering to guide the diffusion generation process
and analyze the influence of different filters. From our experiments, we observed
that utilizing both high and low spatial frequency information during diffusion
driven denoising can substantially improve the adaptation performance of dense
classification. This observation motivates us to develop a novel framework, i.e.
a predictive frequency filtering-driven diffusion (FDD) adaptation, where we pre-
dict the filters from the corrupted test-time inputs and use them to condition the
diffusion denoising process. We design a Y-like frequency prediction network to
predict context-aware low-pass and high-pass filters. To train this network, we
propose a novel data augmentation method, FrequencyMix, to generate pairs of
clean and corrupted images. We validate our method via extensive experiments on
two semantic segmentation datasets and two depth estimation datasets. Against a
broad range of common corruptions, we demonstrate that our method is competi-
tive with state of the art work.

1 INTRODUCTION

Distribution shift between the testing (target) and training (source) distributions poses a considerable
challenge towards the scalable implementation of deep learning models (Filos et al. (2020),Rosche-
witz et al. (2023)). Variations in illumination levels, weather conditions, and image quality Liang
et al. (2023) cause distribution shifts between the training and test data. Existing work enhance the
robustness of deep learning models to distribution shift either via model adaptation methods: by fine
tuning the task models with the unlabeled target domain data (Wang et al. (2021); Prabhudesai et al.
(2023)) or via input adaptation methods: by transforming the input target domain data to match the
training data (Gao et al. (2023); Song & Lai (2023); Huang et al. (2023)).

The effectiveness of conditioning diffusion models (Zhang et al. (2023); Choi et al. (2021); Liu
et al. (2023); Nichol et al. (2022); Dhariwal & Nichol (2021); Ho & Salimans (2022)) to generate
user-defined outputs have motivated their use in denoising corrupted images (Gao et al. (2023); Choi
et al. (2021); Wang et al. (2023b)). However, these methods apply predefined, image-level filters
to condition the diffusion model. In this work, we aim to study the use of context-aware kernels to
enhance the effectiveness of diffusion-driven denoising for dense classification tasks.

However, we observe that low-frequency information is insufficient for dense classification because
crucial fine-grained edge information could be lost during denoising. Hence, diffusion-based TTA in
dense prediction needs to preserve both the high frequency (edge information) and the low-frequency
(e.g. color) information.
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This observation drives our design to predict the spatially adaptive pixel-wise kernels from cor-
rupted images for conditioning of the diffusion model. To address this problem, we propose a simple
yet effective context-aware kernel prediction network to preserve semantic information during input
adaptation. Our key insight is that the semantic information necessary for good performance in dense
classification tasks comprises high spatial frequency information (e.g. edge information), and low
spatial frequency information (e.g. texture information). Furthermore, since it is non-trivial to
manually define robust frequency filters that effectively extract semantic information under varying
noise conditions, we propose to train a Y-like Frequency Prediction Network(Y-FPN) to condition
the diffusion model for input adaptation of dense classification tasks (semantic segmentation and
depth estimation). To our best knowledge, this is the first work that incorporates learned spatially
adaptive kernels to condition a denoising diffusion model for robust dense prediction.

Denoising Process

Project target to source with diffusion model + guidance from Φf1and Φf2

Classifier

Y-FPNNoisy Image Denoised Image

for the diffusion denoising process?
Q2: How can we learn the spatially adaptive kernels to improve conditioning

Φf2

Y-Like Frequency Prediction Network (Y-FPN)

Frequency Filter- Driven Diffusion Adaptation

 low-frequency and high-frequency noise?
Q1:How to improve robustness to spatially varying,

S1: Pixel-wise Frequency Filtering S2: Generate sufficiently diverse training data via FrequencyMix

Φf1

Frequency Filters

Figure 1: We show the workflow of our method, which was inspired by the questions, Q1 and Q2. In
our approach, we introduce 2 solutions (S1 and S2) for diffusion-driven test-time input adaptation.
Φf1 and Φf2 denote the spatially adaptive high-frequency and low-frequency filters. We apply the
learned filters to condition the denoising process.

2 RELATED WORK

Test-time domain adaptation. Test Time Adaptation includes model adaptation, which involves
finetuning the model during inference and input adaptation, which transforms the target domain data
to resemble the source domain data. Kim & Byun (2020) observed that arbitrary style transfer-based
approaches introduce image artifacts in the generated images which can hinder adaptation perfor-
mance. Unlike style transfer methods and other GAN-based approaches (Hoffman et al. (2018)),
diffusion models offer a greater degree of fine-grained control over the generated outputs (Nie et al.
(2022); Gao et al. (2023); Song & Lai (2023); Huang et al. (2023)) to purify them.

Although numerous prior studies (Hu et al. (2021); Wang et al. (2021); Sivaprasad & Fleuret (2021);
Wang et al. (2022); Prabhudesai et al. (2023); Shin et al. (2022)) have explored the integration of
TTA into dense prediction tasks, existing work focus on fine tuning the task model with the target
domain data. Recently, Prabhudesai et al. (2023) apply the diffusion modeling process for model
adaptation. However, their method involves fine tuning both the diffusion model and the task model,
which requires considerable computational resources. In contrast, we neither update the diffusion
model nor the task model and our approach requires less computation during training. Instead of
applying a predefined image-level filter for conditioning, we propose a Y-like Frequency Prediction
Network (Y-FPN) that learns the high-frequency and low-frequency kernels for each pixel. These
kernels can extract semantic information while being simultaneously robust to noise.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Diffusion models. Diffusion modeling has recently gained widespread prominence among deep
generative models and demonstrates high generative capacity by iteratively refining inputs (Ho et al.
(2020); Song et al. (2021); Song & Ermon (2019; 2020); Sohl-Dickstein et al. (2015); Blattmann
et al. (2023); Nichol & Dhariwal (2021)). In essence, the idea behind diffusion, such as the denoising
diffusion probabilistic model (DDPM) (Ho et al. (2020)), is to iteratively add noise to the data in the
"forward process", followed by training a network to recover the original data in a "reverse process".
Diffusion models also display a high degree of user controllability, allowing for conditioning on
visual cues (Choi et al. (2021)), natural language (Liu et al. (2023); Nichol et al. (2022)), and even
on class labels (Dhariwal & Nichol (2021); Ho & Salimans (2022)). Recent work (Gao et al. (2023);
Oh et al. (2024)) have demonstrated the effectiveness of diffusion models in projecting non-Gaussian
corrupted data towards the source distribution. In particular, Gao et al. (2023) show the effectiveness
of a predefined low pass filter for robust test-time input adaptation of image classification tasks.
Inspired by their work, we design our learning framework to selectively capture both high-frequency
and low-frequency semantic information for test-time input adaptation involving dense classification
tasks.

Frequency-aware processing. There is substantial ongoing interest in understanding deep learn-
ing from a frequency-modelling perspective and leveraging this understanding to achieve robust and
generalizable vision systems (Chattopadhyay et al. (2023); Choi et al. (2021); Gao et al. (2023);
Xie et al. (2023); Xu et al. (2023)). While it was earlier observed that classification models are
biased towards colour and texture information, it was also observed that vision models make predic-
tions based on a combination of low and high-frequency information (Yin et al. (2019); Wang et al.
(2023a)). Notably, Choi et al. (2021) demonstrated the effectiveness of conditioning the diffusion
model with predefined image-level frequency filters to enable user-defined image generation. Their
work motivated diffusion-based test-time input adaptation for robust classification. Gao et al. (2023)
employed predefined image-level filters to condition the pretrained diffusion model and preserve the
image level information during denoising of the corrupted images. Different from existing work, we
propose to learn the low-pass and high-pass kernels for conditioning diffusion-driven denoising as a
defence against test-time corruptions.

3 METHODS

3.1 PRELIMINARY: LOW-PASS-FILTER-DRIVEN DIFFUSION ADAPTATION

We have a diffusion model pre-trained on a source dataset (e.g., clean images). Given an input
image x0 randomly sampled from a target distribution q(x0), we aim to leverage the diffusion
model to map x0 to the source domain without training. Specifically, an unconditional diffu-
sion model comprises a forward process and a reverse process under a Markov chain. The for-
ward process iteratively adds Gaussian noise to x0 over T steps. Then, we obtain the distribu-
tion q(xN |x0) with N ∈ [1, . . . , T ]. We sample from the distribution via xN ∼ q(xN |x0)
and conduct reverse denoising to map xN to the source domain (e.g., training domain). Specifi-
cally, given the noisy image xg

N = xN , we aim to denoise it and get [xg
N−1,x

g
N−2, . . . ,x

g
0] and

xg
0 is desired to be within the source domain. The whole process estimates the joint distribution

pθ(x
g
0:N ) = p(xg

N )
∏N

t=1 pθ(x
g
t−1|x

g
t ). with the conditional distribution as

pθ(x
g
t−1|x

g
t ) = N

(
xg

t−1;µθ (x
g
t , t) ,Σθ (x

g
t , t)

)
. (1)

where p(xg
N ) := N (xg

N ; 0, I), Σθ (x
g
t , t) = σtI are time-dependent constants, µθ is parameterized

by a linear combination of xg
t and ϵθ(x

g
t , t) that are estimated from the network parameterized with

θ.

Gao et al. (2023) introduce a low-frequency preserving constraint to the reverse process. For the
time step t − 1, we can summarize the steps of Gao et al. (2023) as: ❶ Sampling an example from
the conditional distribution, i.e., x̂g

t−1 ∼ pθ(x
g
t−1|x

g
t ). ❷ Estimating the input image based on x̂g

t−1
by

x̂g
0 =

√
1

αt
xg

t − ϵθ(x
g
t , t)

√
1

αt
− 1. (2)

❸ Deriving the denoised image at t − 1 from the unconditional proposal x̂g
t−1) and low-pass con-

straints,
xg

t−1 = x̂g
t−1 −w∇xt ∥ϕlp (x0)− ϕlp (x̂

g
0)∥2 , (3)

3
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where ϕlp(·) is a spatially invariant, predefined low-pass filter, and w controls the step size of the
guidance. Then, we can iteratively update the estimate of the denoised image xg

t−1 untill t = 0.

Intuitively, with Eq. (3), we try to balance the sample drawn using the pretrained model, i.e.,
x̂g
t−1 ∼ pθ(x

g
t−1|x

g
t ) and the guidance (specified by the second term) that preserves the low-

frequency semantic information. Gao et al. (2023) leverages this constraint to preserve the semantic
information in the corrupted input image. However, a predefined image-level constraint that is ef-
fective for image level classification tasks cannot be directly used for dense prediction tasks due to
the inherent difference in task complexity. The objective for image classification is to predict the
category of the input image and is not as heavily reliant as dense prediction on pixel-level details for
high accuracy predictions.

The recently demonstrated effectiveness of conditional diffusion models with predefined image-
level filters (Gao et al. (2023); Choi et al. (2021); Wang et al. (2023b)) inspired us to study the
effectiveness of frequency filters for conditioning diffusion models. We first hypothesize that low-
pass filters are insufficient for dense classification tasks and include high-pass filters in our approach.
We modified Equation (3),

xg
t−1 = x̂g

t−1 −w∇xt

[
∥ϕlp (x0)− ϕlp (x̂

g
0)∥2 + ∥ϕhp (x0)− ϕhp (x̂

g
0)∥2

]
, (4)

where ϕc
hp denotes a high-pass filter.

We then take the Cityscapes-C dataset and evaluate the effect of conditioning the diffusion model
with predefined image-level frequency filters. To avoid introducing artifacts during frequency-based
filtering, we apply a Hann window to reduce the magnitude of the transitions at the cutoff frequen-
cies.
Table 1: Comparison of segmentation performance (mIoU) on Cityscapes-C via image-level frequency-driven
conditioning of a pretrained diffusion model for image denoising. We apply predefined frequency cutoffs for
both low-pass and high-pass filtering.

Gauss. Shot Defocus Glass Zoom Fog Bright. Elastic JPEG. Pixel
High Pass 35.23 38.32 50.37 40.16 11.88 44.96 35.16 41.11 35.81 39.60
Low Pass 51.94 48.92 57.31 53.37 21.20 55.87 52.22 54.54 44.23 55.51
Low + High Pass 54.13 54.21 57.32 53.49 19.35 56.04 56.61 58.62 42.37 58.40

3.2 DISCUSSION AND MOTIVATION

Based on the findings in Table 1, we observe the following: ❶ combining a high pass filter and a low
pass filter generally outperforms either filter during conditioning of diffusion driven denoising. As
expected, combining a high-pass filter with a low-pass filter improved robustness to low-frequency
corruptions (e.g. brightness) compared to a single low-pass filter. Additionally, we also observed
improved robustness to high frequency noise (e.g. Gaussian and Shot Noise). ❷ Conditioning the
diffusion model with a high pass filter yields poorer performance compared to a low pass filter.
While combining both filters improves test time adaptation, we observe that the high-pass filter may
reduce denoising effectiveness (e.g. Zoom Blur, JPEG compression). This is because the high pass
filter failed to remove the noise, leading to suboptimal conditioning of the diffusion model. This
indicates that much of the critical semantic information required for robust dense classification has
low spatial frequencies. Clearly, a predefined, image-level high pass filter is inadequate for test time
adaptation of dense classification tasks. To address this issue, we propose a novel context-aware
frequency filtering method in Section 4.

4 PREDICTIVE FREQUENCY FILTERING-DRIVEN DIFFUSION

In this section, we discuss our technical contributions for advancing TTA on dense prediction.
Firstly, we discuss ❶ Y-like Frequency Prediction Network, which assists the input translation pro-
cess of the diffusion model in terms of feature constraints; and ❷ FrequencyMix Training to help
the network learn the suitable high-pass and low-pass filters.

4.1 Y-LIKE FREQUENCY PREDICTION NETWORK FOR VISUAL FILTERING

In this section, we present our frequency-based filtering method for robust test-time input adaptation.
Applying a predefined, image level filter can degrade performance, especially if the filter removes

4
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semantic information or introduces noise. To achieve overall robustness to a wide variety of cor-
ruptions, we first consider the following challenge: how to improve robustness to spatially varying,
low-frequency and high-frequency noise?

For example, corruptions such as "motion blur" vary spatially and disproportionately affect different
parts of the image. While a straightforward solution would be to apply a uniform image-level low-
pass filter to preserve the texture information, this may inadvertently remove the edge information
required for dense classification. Furthermore, many real-world image corruptions are complex and
comprise several different effects (blurring, color shifts and occlusion). For example, corruptions
such as "glass blur" degrade the high-frequency information present in the image while simultane-
ously introducing low-frequency noise. Therefore, an ideal filter must be spatially adaptive and
robust to noise across a broad frequency range. To address this challenge, we adopt a pixel-wise
filtering approach, which is computationally efficient and effective in dealing with spatially varying
noise, for test-time adaptation of dense classification tasks. Specifically, we process a corrupted
image Ic ∈ RH×W for pixel-wise filtering,

If =

l=2∑
i=1

Ki ⊙ Ic, (5)

where If ∈ RH×W is the filtered image and ⊙ denotes the pixel-wise filtering operation. Ki ∈
RH×W×K2

denotes the kernels of size K ×K (K = 3) for the entire image. Based on our earlier
findings demonstrating the effectiveness of combining a low-pass filter and a high-pass filter, we
jointly apply Ki=1,2 to the corrupted image Ic to generate If .

Here, we are faced with the next challenge: How can we learn the spatially adaptive kernels to
improve conditioning for the diffusion denoising process? Selecting an optimal frequency cutoff for
the low-pass and high-pass filters is not trivial. The reason is that a single frequency cutoff is inflex-
ible and does not guarantee robustness across the sheer diversity of corruptions. Manually selecting
a frequency cutoff often improves performance for a limited set of corruptions while degrading per-
formance for other corruptions. Furthermore, for dense classification tasks, manually choosing a
frequency cutoff for each pixel is not tractable given the sheer number of pixels.

The successful application of Kernel Prediction Networks (KPN) across a variety of tasks, such as
denoising (Mildenhall et al. (2018)), image inpainting (Li et al. (2022)) and deraining (Guo et al.
(2021)), has encouraged us to leverage this versatile approach to learn the spatially adaptive kernels
for conditioning diffusion models for dense classification tasks.

We propose to estimate the kernels Ki=1,2 for conditioning the diffusion model from an arbitrary
noisy image,

Ki=1,2 = Y-FPN(Ic), (6)
where Y-FPN denotes the Y-like frequency prediction network and shares a similar architecture with
the UNet network (Ronneberger et al. (2015)). Unlike previous works (Mildenhall et al. (2018); Li
et al. (2022); Guo et al. (2021)), which learn a single kernel for each task, Y-FPN predicts 2 separate
filters per pixel for a given image. We derive the set of low-pass pixel-wise filters Φlp from Ki=1

and apply the method by (Zou et al. (2023)) to constrain the weights of the low-pass filters. We
obtain the set of high pass filters Φhp from Ki=2 by similarly constraining the weights of the Ki=2

and subsequently obtaining the difference between the filtered output and the input image.

Significantly, while we train the frequency prediction network via a denoising framework, we lever-
age the learned spatially adaptive filters to condition the pretrained diffusion model instead of di-
rectly applying the frequency prediction network to denoise the images. This allows us to leverage
the existing generative capacity of the pretrained diffusion models to denoise a diverse range of
image corruptions.

Since our test-time adaptation settings assume that no target domain data are available for training,
we are faced with the challenge of acquiring suitable data to adequately and effectively train the
frequency prediction network.

We apply the commonly used loss functions for image restoration i.e. L1, SSIM (Structural Simi-
larity) to train our network. We also include a Frequency Reconstruction Loss (Kim et al. (2021)),
which is computed from the difference of both the denoised image If and the original clean image I
in frequency space. We first apply the Fourier Transform to the denoised image If and the original
clean image I. We then compute the difference between Fourier transformed images and normalize
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the result with a logarithmic function.

LFreq(I
f , I) = log(1 +

1

HW
∥F(I)−F(If )∥), (7)

where H,W are the spatial dimensions of the image in frequency space. Bringing it all together, we
have the following overall loss,

L(If , I) = ∥If − I∥1 − λ1SSIM(If , I) + λ2LFreq(I
f , I), (8)

where we set λ1 = 0.2, λ2 = 0.1.

4.2 FREQUENCYMIX TRAINING

In this part, we introduce our approach to generate sufficiently challenging data for training the
Y-like Frequency Prediction Network (Y-FPN). Since Y-FPN must be robust to noise across all fre-
quencies, we ❶ apply frequency-dependent perturbations and ❷ combine these frequency-dependent
perturbations via FrequencyMix to increase the training data diversity.

Frequency-Dependent Perturbations Inspired by the success of previous work (Chattopadhyay
et al. (2023)) that improved model generalizability by perturbing the high spatial frequency region
in the amplitude spectrum of the training data, we adapted their approach to include low-frequency
perturbations and uniform perturbations.

To perturb the clean images, we introduce ϵuniform, ϵhigh[m,n] and ϵlow[m,n]. ϵhigh[m,n] and
ϵlow[m,n] are drawn from a Normal distribution, using the spatially dependent functions to control
the perturbation extent. ϵuniform is spatially independent.

ϵhigh[m,n] ∼ N

(
1, (2α

√
m2 + n2

H2 +W 2
+ β)2

)
, (9)

ϵlow[m,n] ∼ N

(
1, (2α

√
(H −m)2 + (W − n)2

H2 +W 2
+ β)2

)
, (10)

ϵuniform = αβ, (11)
where α ∈ R, α ∈ [3, 5], β = 0.3, m ∈ [−H/2, H/2], n ∈ [−W/2,W/2]. We then zero-centre the
amplitude spectrum A(x) before applying the perturbation function g(.)

Â(x) = g(A(x), ϵ)[m,n]

= ϵ+A(x),
(12)

where ϵ ∈ [ϵuniform, ϵhigh, ϵlow]. Finally, we obtain the augmented image via 2D-FFT by recom-
bining the perturbed amplitude spectrum with the original phase spectrum.

FrequencyMix.

g(ϵlow)

Original

g(ϵhigh)

…

Aug. Img.

…

…

Extent of transformation operations

w

(1-w)w1

(1-w)wi

(1-w)w4

Figure 2: Illustration of FrequencyMix. We combine randomly selected
augmentations and re-weight the augmented images to generate a composite
augmented image. The weights wi are sampled from a Dirichlet distribu-
tion, and the blending weight w is sampled from a Beta distribution.

While we have addressed
the difficulty of modulat-
ing the data augmentation
strength as a function of
spatial frequency, we are
still faced with the chal-
lenge of generating suf-
ficiently diverse data for
training the Y-FPN to con-
dition the diffusion model.

The lack of relevant train-
ing examples under the
test-time adaptation setting
poses a considerable chal-
lenge to training a robust model that is adapted to the target domain data. Previous work demon-
strated the effectiveness of data augmentation by randomly sampling and combining data transfor-
mation operations for robust image classification (Hendrycks et al. (2020)) and image de-raining

6
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(Guo et al. (2021)). However, we are faced with the daunting task of learning pixel-wise frequency
filters that can extract important semantic information to condition the diffusion model while being
simultaneously robust to noise from a broad range of frequencies.

Our design of FrequencyMix is motivated by an earlier observation from Yin et al. (2019) that
improving model robustness often involves a trade-off. While data augmentation corresponding to a
particular frequency range improves robustness to noise from that range, it also worsens robustness
to noise from the excluded frequencies. This motivated our design and application of FrequencyMix
to enhance the robustness of Y-FPN.

Algorithm 1 FrequencyMix and Y-FPN training

Input: Clean Images I, Y-like Frequency Prediction Network Y-FPN(.),
Loss function L., Augmentations Aug = [Uni. Noise, g(ϵlow), g(ϵhigh), g(ϵuniform)]

Output: Trained Y-like Frequency Prediction Network Y-FPN(.)
Function FrequencyMix(clean Image I) :

1: Sample mixing weights (w1, w2, w3, w4) ∼ Dirichlet;
2: Initialize an empty image Imix;
3: for i = 1, ..., 4 do
4: Sample augmentations (a1, a2, a3) ∼ Aug;
5: Combine augmentations via a12 = a2a1, a123 = a3a2a1 and a1234 = a4a3a2a1;
6: Sample operation o ∼ (a1, a12, a123, a1234);
7: Imix+ = wio(I);
8: end for
9: Sample a blending weight w ∼ Beta;

10: return Inoisy = wI+ (1− w)Imix

11: for i = 0, ..., iternum do
12: Sample a clean Image I ∼ I;
13: Generate noisy image with FrequencyMix Inoisy ← FrequencyMix(I);
14: Generate estimate of clean image with Y-FPN Î← Y-FPN(Inoisy);
15: Calculate Loss L from eqn 8 and backpropagate ;
16: Update Y-FPN(.) parameters.
17: end for

In this section, we further explore a novel solution, FrequencyMix, to address this challenge. We
outline our approach in Algorithm 1. At each training iteration, we generate a noise image and add
it to the sampled clean image from the training dataset. Our method carries out 4 separate operations
comprising randomly sampled augmentations of varying length before recombining the transformed
images to form a composite augmented image. We show a toy example in Fig. 2.

4.3 IMPLEMENTATION DETAILS

We train our Y-FPN (27.5M Parameters) on a NVIDIA RTX 3090 24GB for 50 epochs on the
training data split across the datasets. Training time takes approximately 38 hours for Cityscapes.
Similar to Hendrycks et al. (2020), we avoid data augmentations (i.e. color jitter, contrast and blur)
that exist among the ImageNet-C corruptions. During training, we use Uniform Noise in addition
to the augmentations introduced in Equation 12 instead of Gaussian Noise since Gaussian Noise is
one of the test corruptions in the ImageNet-C. Note that Y-FPN does not require any guidance from
the task model during training, making it applicable to task models with different architectures. Our
inference time for FDD is 47 seconds/image while DDA is approximately 30-40 seconds.

5 EXPERIMENTAL DETAILS

In this section, we provide an overview of the datasets, task models and baselines. Lastly, we discuss
the limitations of our approach.

Datasets. We use the semantic segmentation dataset Cityscapes (Cordts et al. (2016)) and ADE20k
(Zhou et al. (2017; 2019)).

7
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For depth estimation, we use the datasets NYU2K v2 (Silberman et al. (2012)) and Kitti (Geiger
et al. (2013)). Finally, we also include the image classification dataset CIFAR-100 (Krizhevsky
(2009)).

We benchmark our approach against distribution shifts by evaluating with corruptions (n=15) drawn
from the categories (i.e. Noise, Blur, Digital, Weather) in ImageNet-C at severity level=5.

For evaluation metrics, we report the mean Intersection over Union (mIoU) for Cityscapes and mean
Accuracy (mAcc) for ADE20k; Structure Similarity Index (SSIM) (Wang et al. (2004)) for depth
estimation and top-1 accuracy for image classification.

Baselines. We compare our approach with following state of the art approaches:

• DDA (Gao et al. (2023)) utilizes a predefined image-level low-pass filter to condition a pre-
trained ImageNet diffusion model for denoising of corrupted images. We use their official
codebase for comparison.

• Diffusion TTA (Prabhudesai et al. (2023)) jointly fine-tunes a pretrained diffusion model
and the task model for test time adaptation of corrupted images. We use the values reported
in their paper for comparison.

Task Models. Our experiments are conducted with the following semantic segmentation models:
DeepLabV3 (Chen et al. (2018)), which is a ResNet-based architecture (He et al. (2016)) and Seg-
Former (Xie et al. (2021)). For depth estimation, we use MonoDepth2 (Godard et al. (2019)) and
DenseDepth (Alhashim & Wonka (2018)). For image classification, we use the ResNet50 He et al.
(2016) backbone and the ViT (Dosovitskiy et al. (2021)) backbone.

Table 2: Test Time Adaptation for depth estimation on NYU Depth v2 and semantic segmentation on ADE20k.
“*” indicates reported values because of code unavailability. We use the metrics (Depth: SSIM, Segmentation:
mAcc). We observe consistent improvement compared to DDA and competitive performance with Diffusion
TTA for different image corruptions.

Gauss. Fog Frost Snow Contrast Shot
Depth: DenseDepth 79.10 72.70 81.60 81.30 77.40 72.20
Diffusion TTA (Prabhudesai et al. (2023)) * 82.10 (+3.00) 74.10 (+1.40) 84.40 (+2.80) 82.10 (+0.80) 77.40 (+0.00) 73.00 (+0.80)
Depth: DenseDepth 65.70 72.40 80.70 66.70 68.30 71.20
DDA (Gao et al. (2023)) 82.10 (+16.40) 73.90 (+1.50) 77.70 (-3.00) 82.20 (+15.50) 75.50 (+7.00) 75.30 (+4.10)
Ours (FDD) 82.20 (+16.50) 76.00 (+3.60) 80.80 (+0.10) 82.60 (+15.90) 76.60 (+8.30) 76.00 (+4.80)
Segmentation: Segformer 65.30 63.00 58.00 55.20 65.30 72.20
Diffusion TTA (Prabhudesai et al. (2023)) * 66.40 (+1.10) 65.10 (+2.10) 58.90 (+0.90) 56.60 (+1.40) 66.40 (+1.10) 63.70 (+4.00)
Segmentation: Segformer 19.42 51.79 28.40 30.65 40.28 20.40
DDA (Gao et al. (2023)) 41.14 (+21.72) 30.39 (-21.40) 23.45 (-4.95) 21.27 (-9.38) 29.54 (-10.74) 41.21 (+20.81)
Ours (FDD) 41.16 (+21.74) 34.09 (-17.70) 26.07 (-2.33) 23.59 (-7.06) 34.09 (-6.19) 42.49 (+22.09)

Table 3: Test Time Adaptation for depth estimation on Kitti and segmentation on Cityscapes. “N” refers to
the number of reverse denoising steps during diffusion-driven denoising.We use the metrics (Depth: SSIM,
Segmentation: mIoU).

Noise Blur Weather Digital
Gauss. Impulse Shot Defocus Glass Motion Zoom Fog Frost Snow Bright. Contrast Elastic JPEG. Pixel. Avg.

Depth: Monodepth 43.13 42.69 45.28 49.69 41.60 60.31 80.76 68.12 74.45 84.91 87.26 56.54 87.31 79.42 82.03 65.57
DDA (N=50) 83.01 82.39 84.92 49.12 42.93 44.40 66.07 40.44 51.30 62.37 79.93 54.28 85.70 79.61 83.47 65.99
Ours (N=50) 80.54 79.87 83.14 49.77 43.57 59.32 78.90 67.56 72.82 81.54 86.51 42.07 86.93 80.15 80.83 71.57
Ours (N=30) 57.62 59.08 57.12 50.84 43.99 59.60 79.28 68.13 73.17 84.73 86.83 49.62 87.04 80.24 80.79 67.87
Segmentation: DeeplabV3-R101 5.71 5.87 6.06 58.64 46.83 52.38 16.82 65.25 12.93 8.25 70.34 26.92 72.19 28.46 74.70 36.76
DDA (N=50) 45.05 45.14 48.55 49.39 52.79 41.22 7.03 18.48 3.48 13.87 38.73 1.92 54.39 39.36 56.67 34.40
Ours (N=50) 52.73 54.57 60.27 52.33 56.37 49.70 11.88 54.92 9.02 5.94 59.69 5.86 65.79 47.92 70.42 43.83
Ours (N=30) 51.33 50.11 58.39 56.84 49.08 51.95 11.37 55.89 8.15 4.15 62.14 4.30 68.21 46.28 71.33 43.30

5.1 COMPARISON WITH SOTAS

We present results on depth estimation (NYU Depth v2) and semantic segmentation (ADE20k)
in Table 2. We observe that: ❶ our approach outperforms DDA for both tasks across the eval-
uated corruptions, demonstrating the advantages of the proposed approach in enhancing robust-
ness to test-time corruptions. ❷ our approach is competitive with Diffusion-TTA, outperform-
ing it on depth estimation tasks across several corruptions (e.g. Gaussian Noise, Fog, Snow
and Contrast). This is significant because our approach has faster inference times and also re-
quires less computational resources during training and inference compared to Diffusion-TTA.
Our approach performs less well compared to Diffusion TTA on naturalistic corruptions. How-
ever, in all the cases, our method demonstrates improvements compared to DDA, illustrating
that our approach mitigates some of the reduced performance from diffusion-driven denoising.
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Figure 3: Image Classification (CIFAR-100c) for ResNet50 and ViT. For our ap-
proach, we condition the denoising process with the learned low-frequency filters.

To provide
additional in-
sights into the
applicability
of our method,
we performed
comparisons on

additional datasets (Cityscapes, Kitti). From table 3), we observe that: ❶ our approach outperforms
DDA on all the corruptions for both semantic segmentation and depth estimation except for “Noise”,
“Pixelate” on depth estimation and “Snow” for segmentation. For depth estimation, our approach
improves performance with low-frequency corruptions compared to DDA (e.g. Motion Blur, Fog)
while demonstrating competitive performance on high frequency noise (e.g. Gaussian Noise, Shot
Noise) This further shows that our approach enhances the feasibility of diffusion-driven test time
adaptation.

Since inference time is a critical consideration for test-time adaptation, we evaluate our approach
at N=30 and N=50, where N is the number of reverse steps used during diffusion driven image
denoising. Inference times for Cityscapes decreases from 47 seconds (N=50) to around 30 seconds
per image (N=30), making test time adaptation more feasible. ❷ We observe that while performance
may decrease as N decreases (e.g. “Noise”), our results remain competitive with DDA. Interestingly,
decreasing N improved robustness to corruptions for both tasks (e.g. Fog, Motion Blur). Since
“Noise” is characterized by high frequency noise, while “Fog” and “Motion Blur” are characterized
by low-frequency noise, increasing N increases the the effectiveness of denoising for “Noise”, while
decreasing N reduces the smoothing effect and improves robustness to low-frequency noise.

To study the effect of spatially adaptive filters, we conducted a study on CIFAR-100c and only used
the learned low frequency filters to condition the diffusion denoising process. Figure 3 shows that
❶ our approach outperforms DDA across all corruptions and model backbones, highlighting the
effectiveness of spatially adaptive filtering, even for image-level classification tasks. ❷ We note that
our approach improves performance relative to “Uncorrected” across model architectures with the
exception of “Brightness” and “Snow” (ViT). However, in both cases, we observe that our approach
improves performance compared to DDA.

Figure 4 provides some qualitative examples illustrating the performance of our approach on low-
frequency (“Fog”) and high-frequency (“Shot Noise”).

Uncorrected DDA (CVPR’23) Ours

Diff. Image = Ours - DDAFog

Output

GT Truth

Ground Truth

Shot Noise

Output

Diff. Image = Ours - DDA

Ground Truth

Figure 4: Our Frequency filter-Driven Diffusion approach jointly addresses the challenges posed during
adaptation under low-frequency (i.e. fog) and high-frequency corruptions (i.e. shot-noise).
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5.2 ABLATION STUDY

We present ablative analysis for the frequency filter based conditioning (Table 4). In Table 4, we ob-
serve that our learned low-pass filters (42.12) outperform the predefined image-level filters (41.40),
further indicating the usefulness of spatially adaptive filters. Including the learned high-pass filters
further improves the averaged performance (43.83), indicating the effectiveness of applying both
high-pass and low-pass filters for dense classification. Additional results on ablation studies can be
found in the Appendix.

5.3 LIMITATIONS

Table 4: Ablation study
(Cityscapes, DeeplabV3).

mIoU

Baseline 36.76
+ Predefined Image-Level filters 41.40
+ Learned Low Pass filters 42.12
+ Learned High Pass filters 43.83

While our approach is competitive with state of the art diffusion-
driven model- adaptation (Prabhudesai et al. (2023)) and input-
adaptation methods (Gao et al. (2023)), we observe that our ap-
proach may sometimes perform less well compared to the uncor-
rected images.

As noted by Gao et al. (2023), task performance on uncorrected
images may be better than that of images with diffusion-driven de-
noising. They observed that diffusion models fail to restore images
with naturalistic corruptions (e.g. “Fog”, “Snow”) because images with these corruptions occur in
the ImageNet training data. Consequently, Gao et al. (2023) average the model prediction logits
from the uncorrected image and the denoised images to mitigate the reduced performance. How-
ever, averaging logits is not possible for tasks such as depth estimation that do not involve logits.
Furthermore, the effectiveness of self ensembling is dependent on the model’s out of distribution per-
formance. Notably, Gao et al. (2023) observed increasing performance gains on ImageNet-C with
self ensembling as the task model increases in complexity (ResNet50:+1.3%, Swin-Tiny:+5.4%).
Though strong out of distribution performance of the task model is essential for test time adaptation
(Zhao et al. (2023)), we strived to develop a method that generalizes well to unseen data that reduces
the need for a strong task model.

One potential solution is to introduce a noise-aware classifier (Luo et al. (2024)) that can charac-
terize the noise, enabling the use of specialized denoising techniques that are tailored to the noise
characteristics. However, such an approach would require extensive prior knowledge to train such
a classifier. Recently, Oh et al. (2024) demonstrate the effectiveness of finetuning the diffusion
model to improve robustness to image corruptions, which could also improve the performance of
the denoising approach to naturalistic corruptions.

6 CONCLUSION

We show that our approach, Frequency-driven Diffusion (FDD) Adaptation effectively improves
mean robustness over a broad range of noise corruption for input adaptation of dense classification
tasks and different model architectures (CNN and transformer-based architectures). We show that
our approach improves performance over previous diffusion-based input adaptation work, increasing
its applicability beyond image-level classification tasks. Additionally, with the introduction of an
easily trained module, our approach demonstrates improved robustness to diverse corruptions across
different tasks, highlighting the effectiveness of our frequency-driven diffusion approach for input
adaptation. Future work will also explore the possibility of extending our work towards purifying
adversarially perturbed images.
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A APPENDIX

In the appendix, we include further details on our work.

• A.1 More Visualization Results
• A.2 of denoising steps for FDD(Frequency Filter Driven Diffusion) for Test Time Adapta-

tion
• A.3 Hyperparameter Study on Loss terms for Y-FPN
• A.4 Quantitative comparison of denoised image quality
• A.5 Comparison of FrequencyMix with baseline augmentation method

A.1 MORE VISUALIZATION RESULTS

``Noise´´ ``Blur´´ ``Weather´´ ``Digital´´

Input

Ours

DDA 
CVPR´23

G. Truth

Figure 5: Qualitative comparison with state-of-the-art input- adaptation (i.e. DDA Gao et al. (2023)) and the
original uncorrected input (i.e. Input) for the main corruption types-“Noise” (Impulse Noise), “Blur” (Defocus
Blur), “Weather” (Fog) and “Digital” (Pixelate).

A.2 NUMBER OF DENOISING STEPS FOR FDD(FREQUENCY FILTER DRIVEN DIFFUSION)
FOR TEST TIME ADAPTATION

Since diffusion models have relatively long inference times, we were interested in determining
whether conditioning the model with existing semantic information could reduce the minimum num-
ber of denoising steps. We found the performance decreases slightly when N = 30 and decreases
markedly at N = 10 and N = 60.
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Table 5: Number of denoising steps for the Cityscapes-C dataset. Adaptation performance peaks at N = 50.

Nsteps 10 30 50 60
mIoU 34.83 43.30 43.83 39.80

A.3 HYPERPARAMETER STUDY ON LOSS TERMS FOR Y-FPN

We found that SSIM appears to have a stronger effect on performance compared to L1. Ultimately,
we used the loss weights that provide robustness to both low-frequency and high-frequency corrup-
tions.

Table 6: Hyperparameter study for loss terms L1, SSIM and LFreq on Cityscapes-C (mIoU).

L1 SSIM LFreq Gauss. Motion. Fog Pixelate
1.0 0.2 0 51.13 51.26 52.55 70.59
1.0 0.2 0.1 52.73 49.70 54.92 70.42
1.0 0 0 53.30 50.85 58.71 70.66
0 0.2 0 52.43 50.19 57.28 70.40

1.0 0.1 0 53.83 49.71 56.94 69.93

A.4 QUANTITATIVE COMPARISON OF DENOISED IMAGE QUALITY

Our approach outperforms DDA across all categories except for “Weather” (PSNR).

Table 7: Quantitative comparison of denoised image quality relative to uncorrected images (Cityscapes-C).
Noise Blur Weather Digital

PSNR ↑ SSIM↑ PSNR ↑ SSIM↑ PSNR ↑ SSIM↑ PSNR ↑ SSIM↑
DDA Gao et al. (2023) 13.011 0.732 -1.658 -0.048 1.213 0.002 -3.257 -0.060

Ours (FDD) 14.940 0.790 -1.257 -0.028 0.929 0.020 -0.805 0.009

A.5 COMPARISON OF FREQUENCYMIX WITH BASELINE AUGMENTATION METHOD

Table 8: FrequencyMix improves performance (mIoU) relative to PASTA (Chattopadhyay et al. (2023)) on
Cityscapes-C.

Gaussian Noise Motion Blur Fog Pixelate
FrequencyMix +33.9 +39.4 +50.8 +45.4
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