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A TEMPORAL ATTENTION MECHANISM
The initialization of the temporal matrix 𝐻 integrates the sequence
of key-images with their semantic distances. Specifically, 𝐻 reflects
both the positional information of key images in the video sequence
and the semantic similarities between the images. Each key image
is assigned a positional encoding based on its sequence in the
video. This step can be accomplished through variants of sine and
cosine functions, akin to the positional encoding method in the
Transformer model [20]:

𝑃𝐸 (𝑝𝑜𝑠,2𝑖 ) = sin
(
𝑝𝑜𝑠/100002𝑖/𝑑

)
,

𝑃𝐸 (𝑝𝑜𝑠,2𝑖+1) = cos
(
𝑝𝑜𝑠/100002𝑖/𝑑

)
,

(A.1)

where 𝑝𝑜𝑠 denotes the position index of the image within the video
sequence, 𝑖 is the dimension index, and 𝑑 is the dimension of the
encoding. This encoding reflects the relative position of images
within the video sequence.

The semantic distance between key images is computed by com-
paring the similarity of image embeddings using cosine similarity:

𝑆𝐷𝑖 𝑗 = cos
(
emb𝑖 , emb𝑗

)
, (A.2)

where emb𝑖 and emb𝑗 are the embedding representations of the
𝑖-th and 𝑗-th key images, respectively.

To more accurately reflect the temporal discrepancies and se-
mantic connections within video content and provide a meaningful
starting point for the temporal attention mechanism, each element
𝐻𝑖 𝑗 in𝐻 is initialized by combining positional encoding and seman-
tic distance,

𝐻𝑖 𝑗 = 𝜆 · 𝑃𝐸𝑖 𝑗 + (1 − 𝜆) · 𝑆𝐷𝑖 𝑗 , (A.3)
where a parameter 𝜆 balances their contributions. In this manner,𝐻
considers both the sequence of key images and their semantic rela-
tionships upon initialization. Connections between images that are
both semantically similar and temporally adjacent are emphasized
due to higher 𝐻𝑖 𝑗 values. This, in turn, allows for the further refine-
ment and optimization of these temporal relationships throughout
the training process.

B SPATIAL ATTENTION MECHANISM
The initialization of the spatial matrix 𝐺 is pivotal for capturing
the intricate spatial relationships within video frames, particularly
focusing on regions or objects that are relevant to textual queries.
To achieve this, we synergistically integrate geometric proximity
and semantic similarity among objects within the frames 1. This
approach ensures that each embedding is imbued with rich spatial
connections, thereby significantly enhancing the model’s ability to
discern and prioritize spatial relations that are most informative for
comprehending the video content in the context of textual queries.

Geometric proximity aims to encode the physical closeness be-
tween objects in a frame, which is essential for recognizing spatial

1The objects of all key-images are obtained by Faster R-CNN [19].

layouts and configurations. In initializing𝐺 , geometric proximity
is quantified to encode the spatial layout and distances between
different regions. This is crucial for recognizing spatial patterns
and relationships that are inherently based on the arrangement of
elements within a frame. For each region or object 𝑖 and 𝑗 , repre-
sented by their centroids 𝑐𝑖 and 𝑐 𝑗 , the geometric proximity can be
calculated using the Euclidean distance:

𝑃𝑖 𝑗 =

√︃(
𝑐𝑖𝑥 − 𝑐 𝑗𝑥

)2 + (
𝑐𝑖𝑦 − 𝑐 𝑗𝑦

)2
, (B.1)

where 𝑐𝑖𝑥 and 𝑐𝑖𝑦 are the x and y coordinates of centroid i, and
similarly for j. The proximity matrix 𝑃 ∈ R𝐾×𝐾 is then normalized
to ensure that its values are scaled between 0 and 1, facilitating its
combination with the semantic similarity matrix:

𝑃 ′𝑖 𝑗 = 1 −
𝑃𝑖 𝑗 −min(𝑃)

max(𝑃) −min(𝑃) . (B.2)

Semantic similarity measures the closeness in meaning or func-
tion between regions or objects. Unlike geometric proximity, which
is based on physical distances, semantic similarity is derived from
the content and attributes of the regions. For initializing𝐺 , seman-
tic similarity is computed using feature vectors extracted from each
region. The similarity between regions 𝑖 and 𝑗 could be quantified
using cosine similarity between their feature vectors, resulting in
a similarity matrix 𝑆 ∈ R𝐾×𝐾 . Let 𝑓𝑖 and 𝑓𝑗 be the feature vectors
for regions 𝑖 and 𝑗 , respectively. The semantic similarity can be
calculated using cosine similarity:

𝑆𝑖 𝑗 =
𝑓𝑖 · 𝑓𝑗

∥ 𝑓𝑖 ∥


𝑓𝑗 

 , (B.3)

The similarity matrix is normalized for effective integration:

𝑆 ′𝑖 𝑗 =
𝑆𝑖 𝑗 −min(𝑆)

max(𝑆) −min(𝑆) . (B.4)

The final initialization of𝐺 synthesizes both geometric proximity
and semantic similarity to encapsulate the comprehensive spatial
relationships. This can be achieved by combining the proximity
matrix 𝑃 and the similarity matrix S using a weighted approach:

𝐺 = 𝛼𝑃 ′ + (1 − 𝛼)𝑆 ′, (B.5)

where 𝛼 ∈ [0, 1] is a tunable parameter that balances the influence
of geometric proximity and semantic similarity. This weighted com-
bination ensures that 𝐺 not only captures the physical layout of
regions within frames but also their content-based relationships.
The resulting matrix 𝐺 thus provides a foundational structure for
the spatial attention mechanism to dynamically focus on regions
that are most relevant to the textual queries, enhancing the model’s
performance in video understanding and retrieval tasks. By initial-
izing 𝐺 with this comprehensive approach, the spatial attention
mechanism is equipped to dynamically focus on the most relevant
regions, enhancing the model’s ability to align video content with
textual queries based on both spatial and content-based considera-
tions.
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C TEXTUAL INSTRUCTION POOL
We construct a textual instruction oool. It contains 20 questions for
extracting important entities or words from the given text. The all
textual instruction pool are:

1. What key concepts are mentioned in this text?
2. What are the key words utilized in this text?
3. What types of entities are represented by these key

words?
4. What actions are being undertaken by these entities?
5. What events are depicted within this text?
6. Which events are occurring, and which entities are

involved?
7. Identify the principal characters within narrative.
8. How do these events contribute to the overarching

storyline?
9. In what ways might the identified concepts develop

further?
10. What motivates the actions of these entities, and how

are their internal conflicts or resolutions
depicted?

11. What thoughts or emotions might the text evoke?
12. What messages or perspectives is the text attempting

to convey?
13. How do these elements reflect upon the events they

describe?
14. Identify the primary characters in the narrative.
15. How do these events relate to the themes presented

within the text?
16. What roles do these entities assume within their

respective environments?
17. How are the interactions between entities portrayed?
18. What are the implicit or explicit conflicts present

in the text?
19. What motivations underlie these events?
20. What are the direct or indirect consequences of an

entity's actions on other entities?

D VISUAL INSTRUCTION POOL
We also construct a visual instruction pool. It contains 20 questions
for extracting important entities or events from the given video.
The all visual instruction pool are:

1. What are the important entities in this video?
2. What are the relationships of these entities in this

video?
3. What entities in the video do?
4. How do these actions interact with the identified

objects and entities?
5. What is the current state of these entities?
6. What story or message is conveyed through these

interactions?
7. Identify the main characters in the given narrative.
8. What are the types of entities corresponding to the

key words in the video?
9. If the video features persons, please describe them.
10. How do these elements affect the development of the

story or the conveyance of its themes?
11. What deeper meanings are conveyed through these

events?

12. How to explain the dynamic interaction between
entities in a video?

13. What role do these entities play in the video
narrative?

14. How do the events in the video affect the entity
relationship?

15. How do the relationships between the characters in
the video evolve over time, and what triggers these
changes?

16. What are the motivations behind the characters'
actions?

17. How does the dynamic develop between the entities in
the video?

18. What are the relationships between the entities or
events in the video?

19. Provide a description of the person or object
featured in the video.

20. Offer a description of the relationship between the
individuals or objects within the video.

E KNOWLEDGE CLUSTERING
K-means clustering begins by initializing k centroids randomly.
Each question prompt is assigned to the nearest centroid based
on a distance measure, typically the Euclidean distance. This step
partitions the question prompts into k clusters based on the current
centroids. For each cluster i, the new centroid 𝑐𝑖 is calculated as the
mean of all question prompts assigned to that cluster. The formula
for recalculating the centroid of a cluster i is given by:

𝑐𝑖 =
1
|𝑆𝑖 |

∑︁
𝑞𝑖
𝑗
∈𝑆𝑖

𝑞𝑖𝑗 , (E.1)

where 𝑆𝑖 is the set of question prompts assigned to cluster i, and
|𝑆𝑖 | is the number of question prompts in 𝑆𝑖 . This step moves the
centroid 𝑐𝑖 to the center of the question prompts in the cluster.
Repeated until the centroids 𝑐𝑖 no longer change significantly be-
tween iterations, indicating that the algorithm has converged. The
final centroids 𝑐𝑖 after convergence are used as the representative
centers of each cluster. These centroids are considered the most typ-
ical representation of the question prompts within their respective
clusters.

Answer terms ∇ is constructed by extracting keywords from
each text-video pair. Specifically, for textual content, we employ
the Stanford CoreNLP tool 2 to extract entities and triples from
sentences. By removing duplicates, we obtain a concise list of key-
words representing the core content of the text. Regarding video
content, we utilize the Faster R-CNN model [19] to identify entities
within key frames of the video. To translate these visual elements
into actionable data, we use Oscar (Object-Semantics Aligned Pre-
training) [11] to transfer the image into a text description for each
image, then apply the Stanford CoreNLP tool to these captions to
recognize actions and entities. This dual-step process allows for
a comprehensive extraction of relevant terms from video content,
encompassing both the entities present and the actions performed.

2http://corenlp.run/

http://corenlp.run/
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F DATASETS
We conducted experiments on five widely used Text-Video Retrieval
datasets: MSR-VTT (Microsoft Research Video to Text) [21], MSVD
(Multimedia Semantic Description of Visual Data) [2], LSMDC
(Large Scale Movie Description Challenge), DiDeMo (Distinct De-
scribable Moments), and ActivityNet.

MSR-VTT (Microsoft Research Video to Text) is a well-
known dataset specifically designed for open-domain video cap-
tioning. It consists of a large-scale collection of 10,000 video clips
spanning 20 different categories. Each video clip in the dataset has
been meticulously annotated with 20 English sentences by Amazon
Mechanical Turks. The primary objective of this dataset is to facili-
tate the retrieval of video segments that best correspond to a given
textual description. The dataset is divided into three standard splits:
6,513 clips for training, 497 clips for validation, and 2,990 clips for
testing.

MSVD (Multimedia Semantic Description of Visual Data)
is another widely used dataset for Text-Video Retrieval tasks. It
comprises 1,970 videos with varying durations, ranging from 1 to
62 seconds. Each video in the dataset is associated with 40 English
captions. For the purpose of our experiments, we utilized 1,200
videos for training, 100 videos for validation, and 670 videos for
testing.

LSMDC (Large Scale Movie Description Challenge) is a
dataset created in a joint effort by Johns Hopkins University and
FAIR (Facebook AI Research). It comprises a vast collection of
118,081 video segments that are accompanied by bilingual subtitles
in both English and French. The primary task of this dataset is to
retrieve video segments that align with a given textual description
or bilingual subtitles.

DiDeMo (Distinct Describable Moments) consists of 10K
Flickr videos annotated with 40K text captions. It was collected for
localizing moments in video with natural language queries, and it
is usually considered for “paragraph-to-video” retrieval, concate-
nating all descriptions, since different queries describe different
localized moments in a clip.

ActivityNet contains 20K YouTube videos annotated with 100K
sentences, with 10K videos in the training set. It was intended for
dense captioning, which involves both detecting and describing
(possibly multiple) events in a video; we used the common val1 set
with 4.9K videos.

G COMPARISION METHODS
We compare our method with eight text-video retrieval models,
which focus on cross-modality semantic representation and align-
ment among the videos and the texts: (1) CE [12] compresses high-
dimensional video information into a condensed representation. (2)
SSB [18] employs a generative model to group related samples. (3)
FROZEN [1] incorporates attentionmechanisms in both spatial and
temporal dimensions. (4) CLIP4Clip [16] applies transfer learning
from the image-to-text pre-trained CLIP model. (5) CLIP2Video
[5] leverages the interactions between images and text, as well as
improving the temporal relationships between video frames and
video-text. (6) X-CLIP [17] introduces a multi-grained contrastive
model for retrieval. (7)MIL-NCE [13] presents an image animation
strategy that facilitates the conversion of commonly. (8) DiCoSA

[8] designs set-to-set alignment to simulate conceptualization and
utilizes adaptive pooling mechanism to merge semantic concepts.
(9) LEAN [10] employs a generative approach by modeling the joint
probability. (10) TS2-Net [14] designs a transformative architecture
that dynamically selects and adjusts video tokens to highlight infor-
mative content in videos, optimizing both temporal and spatial data
analysis. (11) EMCL [7] introduces a contrastive learning approach
using Expectation-Maximization to create compact, powerful video-
and-language representations by decomposing features into a set of
base elements, enhancing semantic representation capabilities. (12)
CenterCLIP [23] utilizes a novel token clustering method to man-
age frame redundancy in videos by segmenting videos, clustering
frames, and focusing on the most significant tokens, thereby reduc-
ing computational demands while preserving semantic integrity.
(13) X-Pool [6] crafts a cross-modal attention model that allows
text to identify and focus on semantically similar video frames, gen-
erating a video representation that is directly informed by textual
data. (14) ClipBERT [9] pioneers a cost-effective learning frame-
work for video-and-language tasks, leveraging sparse sampling
to reduce the need for extensive video data during training. (15)
TT-CE [3] introduces a distillation approach that combines cues
from various text encoders to enhance the guidance provided to
retrieval models, extending its efficiency to video modalities and
reducing the necessity for multiple modalities during testing. (16)
DGL [22] develops a cross-modal prompt tuning strategy that com-
bines dynamic prompt generation with focused video attention,
fostering richer interactions between text and video content. (17)
UATVR [4] treats searches as distribution matching tasks, using
specially designed tokens to dynamically gather nuanced semantic
information for advanced reasoning.

H IMPLEMENTATION DETAILS
For all baselines, we adopt the best hyper-parameters and copy
results reported in the literature [8, 10, 13, 17]. We used PyTorch3
as a deep learning framework to develop the TVR. All experiments
were conducted on a server with four GPU (Tesla V100). The LLava
version is llava-v1.5-13b in huggingface4 for text and video initial-
ization and the dimension was set to 768. The AdamW optimizer
was chosen with a weight decay of 0.01. The batch size is set to 16.
We performed a search for the learning rate in the range of 1e-5 to
6e-5, and ultimately settled on 3e-5. Training is performed using
Adam optimizer with a learning rate of 0.001, learning rate decay of
0.2 every 50,000 steps, and a margin of 5.0 in the base loss function.
We use a batch size of 512 and apply a dropout rate of 0.1 to prevent
overfitting. The training was carried out for 30 epochs, with evalua-
tion performed after the 10-th epoch. The model that performed the
best on the validation set was selected and evaluated on the test set.
The text and visual instruction pool have 10 questions respectively.
The number of clusters k is the same as the number of questions in
instruction pool. For hyper-parameters, the best coefficients 𝜆𝑟 , 𝜆𝑠
are 0.6, and 0.3. To ensure fairness, all baseline models use the
same data set partitioning. The learning rate is 2𝑒 − 4, batch size
is 100, and dropout rate is 0.6. We use AdamW [15] to optimize
the parameters. For the learning rate, we adopt the method of grid

3https://pytorch.org/
4https://huggingface.co/liuhaotian/llava-v1.5-13b
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Table I.1: Variant experiments on LSMDC dataset. “w/o” means removing corresponding module from the complete model.
“repl.” means replacing corresponding module with the other module. ‘↑” denotes that higher is better. "↓" denotes that lower is
better.

Variants Text-to-Video Retrieval Video-to-Text Retrieval

R@1↑ R@5↑ R@10↑ MdR↓ MnR↓ R@1↑ R@5↑ R@10↑ MdR↓ MnR↓

MMI-TVR (Ours) 26.6 44.6 54.1 7.0 51.8 24.3 43.2 53.9 10.0 45.3
w/o Fine-tuning LVLM 24.2 42.6 52.9 9.0 53.3 22.0 41.7 51.5 12.4 47.1
w/o Inductive Reasoning Mechanism 25.5 42.8 53.6 8.0 52.9 23.2 42.8 52.9 11.0 46.2
w/o Temporal Attention Mechanism 25.9 43.0 53.4 8.0 52.2 23.1 42.6 52.8 11.0 46.5
w/o Spatial Attention Mechanism 25.4 43.7 54.2 7.0 52.0 23.4 43.4 53.1 11.0 46.1
repl. Self Mechanism 25.0 43.2 53.8 7.0 52.7 23.6 42.9 52.3 11.0 46.4

w/o Fine-Grained Knowledge Generation 24.1 42.6 52.6 9.0 53.1 22.9 41.2 51.2 12.0 47.3
w/o Textual Knowledge Generation 25.2 43.1 53.3 8.0 52.4 23.5 42.8 52.5 11.0 46.8
w/o Visual Knowledge Generation 25.8 43.9 53.5 8.0 52.5 23.7 42.3 52.6 11.0 46.6
w/o Knowledge Clustering 25.3 43.5 53.1 8.0 52.6 23.3 42.7 52.2 10.0 46.7

Table I.2: Variant experiments on LSMDC dataset. “w/o” means removing corresponding module from the complete model.
“repl.” means replacing corresponding module with the other module. ‘↑” denotes that higher is better. "↓" denotes that lower is
better.

Variants Text-to-video retrieval on ActivityNet Text-to-video retrieval on DiDeMo

Variants R@1↑ R@5↑ R@10↑ MdR↓ MnR↓ R@1↑ R@5↑ R@10↑ MdR↓ MnR↓

MMI-TVR (Ours) 45.7 75.5 87.8 2.0 5.2 51.3 76.6 86.2 2.0 10.1
w/o Fine-tuning LVLM 42.5 72.7 85.9 3.0 6.9 48.4 74.0 81.7 6.0 12.6
w/o Inductive Reasoning Mechanism 44.3 74.1 85.3 3.0 6.7 49.8 74.5 84.0 3.0 11.5
w/o Temporal Attention Mechanism 44.5 74.3 86.7 3.0 6.5 50.1 75.6 85.3 3.0 10.8
w/o Spatial Attention Mechanism 44.8 74.6 86.5 3.0 6.1 50.2 75.9 85.4 3.0 11.3
repl. Self Mechanism 44.2 74.8 86.4 3.0 6.8 50.3 75.2 85.6 3.0 11.7

w/o Fine-Grained Knowledge Generation 43.7 73.4 85.8 4.0 7.2 49.5 74.3 84.1 4.0 12.4
w/o Textual Knowledge Generation 44.5 74.9 86.2 3.0 6.5 51.0 75.7 85.9 3.0 11.2
w/o Visual Knowledge Generation 44.9 74.2 86.6 2.0 6.6 50.6 75.1 85.7 3.0 11.0
w/o Knowledge Clustering 44.1 74.5 87.0 2.0 5.7 50.7 75.4 85.2 3.0 10.9

search with a step size of 0.0001. All hyper-parameter settings are
tuned on the validation data by the grid search with 5 trials.

I DISCUSSION FOR MODEL VARIANTS
To investigate the effectiveness of each module in our proposed
model on other text-video retrieval datasets, we conducted variant
experiments and showcased the results in Table I.1 and I.2. From
the table, we can observe that all these observations highlight the
effectiveness of each component in our model.

J DISCUSSION FOR INTERPRETABILITY
We delve into the interpretability of the multi-modal inductive
framework for TVR by examining the outcomes generated from
prompts in both text-to-text and video-to-video contexts. The in-
terpretability aspect is crucial for understanding how the pro-
posed framework processes and aligns different modalities—textual
queries with video content—through the responses generated from
prompts, as shown in Figure J.1.

From the figure, we can observe that: 1) For text-to-text interac-
tion, we present prompts that are designed to elicit specific infor-
mation relevant to the query and the corresponding answers that
the model generates. These examples illustrate how the model com-
prehends and extracts pertinent information from textual content.
These prompts and their responses demonstrate the model’s ability
to recognize and name key entities within a narrative, aiding in
the retrieval of videos that feature similar characters or roles. By
prompting the model to summarize critical events, we can align
text queries with video content that depicts similar sequences of
events. 2) For video-to-video interaction, prompts are structured
to extract significant entities and events from the video content,
with the responses providing insights into the model’s understand-
ing and interpretation of video data. These examples illustrate the
model’s capability to identify primary entities and their interac-
tions, crucial for matching videos with textual queries that describe
similar scenes or activities. The response to this prompt provides a
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Figure J.1: The examples of text-videos pairs for the prompts and answers.

concise overview of the video’s narrative, enabling more accurate
alignment with text queries that seek specific actions or storylines.

The given examples of prompts and their respective answers
shed light on how the proposed framework interprets textual and
visual information, facilitating a more nuanced understanding of
video-text alignment. By generating answers that highlight entities,
events, and their interrelations, the model demonstrates its ability
to parse and synthesize information across modalities effectively.
This interpretability not only enhances the framework’s utility in
matching videos with text queries but also offers insights into its
reasoning process, making it a valuable tool for a wide range of
applications in multimedia retrieval and analysis.

K DISCUSSION FOR HYPERPAMATERS
To better understand the effectiveness of parameters of the loss
function, we construct experiments with different weights on the
MSR-VTT, as shown in Figure K.1. We fix other parameters on
the best value to evaluate each parameter respectively. From the
figure, we can observe that: 1) The model achieves the best results
as the 𝜆𝑟 , and 𝜆𝑠 are 0.6, and 0.3. It demonstrates that text-video
retrieval loss L𝑟 , and self-identification enhancement loss L𝑠 are
helpful for retrieval. 2) As the value of parameters increases in
curves, the performance tends to peak first and then decline. And
the weight ofL𝑟 is significantly higher than others. It demonstrates
that weight learning loss is most helpful for the TVR compared to
other parameters. All the observation indicates the effectiveness of
TVR loss and self-identification enhancement loss.



581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ACM MM, 2024, Melbourne, Australia Anonymous Authors

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
The weight of r and s: r and  s

48

50

52

54

R@
1 

(%
)

r s

(a) Impact on R@1.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
The weight of r and s: r and  s

74

76

78

80

R@
5 

(%
)

r s

(b) Impact on R@5.

Figure K.1: The performance of different hyperpamaters of 𝜆r, and 𝜆s. The larger the circle, the higher the performance.
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Figure L.1: Impact of different knowledge generation and number of prompts.

L DISCUSSION FOR KNOWLEDGE
GENERATION AND TEXTUAL PROMPTS

To further analyze the impact of different question prompts on
the model’s performance, we conducted a thorough comparison
by selecting various prompts as input on more text-video retrieval
datasets, as shown in Figure L.1 (a). The observation demonstrates
that the information provided by the fine-grained knowledge prompt
module is particularly valuable and the prompt generation serves
as crucial information for enhancing retrieval.

We further investigated the performance of the model by exam-
ining its performance with different numbers of textual question
prompts, as shown in Figure L.1 (b). From the figure, we can observe
that using a moderate number of prompts, such as five, is sufficient
to achieve optimal performance. The observation demonstrates that
within a certain range of prompt numbers, the model is already
capable of effectively capturing the correlated information between
the text and video and gained valuable insights into the relationship
between the number of prompts and the model’s performance in
text-video retrieval.
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