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Abstract

Differential Privacy (DP) provides a formal privacy guarantee preventing
adversaries from inferring an individual record from populations. Differ-
entially Private Stochastic Gradient Descent (DPSGD), the widely used
method to train a model satisfying DP, inserts randomized noise to the
gradients in each iteration but leads to significant accuracy decline, par-
ticularly on large and deep models. Facing the curse of dimensionality in
differentially-private deep learning, we propose a Gradient Index Pruning
(GIP) mechanism, which prunes gradients by a novel index perturbation
scheme, to preserve important components of the gradients while reduc-
ing their sizes. Our mechanism does not alter the model, but merely adds
a noisy top-k pruning step before the conventional gradients noise inser-
tion in DPSGD. It is proven that GIP satisfies DP, yet improves accuracy
over DPSGD. We also present theoretical analysis to show GIP indeed
introduces less perturbation to the training. Experiments on a variety of
models and datasets have demonstrated that GIP exceeds the state-of-the-
art differentially-private deep learning methods by around 1− 2% accuracy
boost.

1 Introduction

Recent work has shown that trained neural networks may leak/memorize information of the
training data, posing great threats to the sensitive training data. Differential Privacy (DP)
serves both as a measure to quantitatively describe the upper bound of the information
leak, and mechanisms to ensure any individual sample’s impact on the model is negligible.
Differentially-private models have shown to be defensive against multiple privacy attacks,
such as membership inference attacks (Rahman et al., 2018; Sablayrolles et al., 2019; Yu
et al., 2021b), gradient matching attacks (Zhu et al., 2019), input reconstruction attacks
(Carlini et al., 2019), and data poisoning attacks (Ma et al., 2019), etc.

101 102 103 104 105 106 107

Gradient Dimension
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Co
sin

e 
Si

m
ila

rit
y

DPSGD

Figure 1: Cosine similarity be-
tween the differentially-private gra-
dient vectors and their unperturbed
counterparts of varied lengths. The
value quickly decreases to 0 with the
dimension.

Differentially-private stochastic gradient descent
(DPSGD) has become a popular framework in
differentially-private deep learning. By inserting ran-
domized noise on clipped gradients, and compos-
ing the privacy loss through iterations, DPSGD pro-
vides DP guarantees for the private training dataset
on the output model. However, the conventional
method suffers significant accuracy loss due to over-
whelming noise perturbation, especially on deep and
wide networks. For example, training CIFAR10 with
DPSGD on Wide-ResNet 16-4 (2.7M parameters)
merely reaches 56.8% testing accuracy at (1, 10−5)-
DP compared to 94.8% without DP, by the most re-
cent results in (De et al., 2022).
Research on DPSGD has been seeking breakthroughs
in improving practical utility while maintaining the-
oretical privacy guarantees. A series of works (Balle
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& Wang, 2018; Dong et al., 2021; Yang et al., 2022; Xiang et al., 2019) focus on the sufficient
conditions, or the necessary and sufficient conditions for (ϵ, δ)-differential privacy, proposing
stricter lower bounds for the noise variance. Another line of works investigates the accoun-
tant method (Abadi et al., 2016; Dong et al., 2021; Mironov et al., 2019), i.e., composing
DP over multiple iterations by tighter analyses on the higher moments of the privacy loss
variable, or on the tradeoff function of type I and type II errors. Papernot et al. (2021)
discovered a general family of bounded activation functions to bound the gradient sensitiv-
ity and improve the model accuracy. Recently, De et al. (2022) reveal strong evidence that
hyperparameters such as batch size and learning rate are vital to DPSGD on large models.
While works enhancing DPSGD from perspectives of noise bounds, accountant methods,
and training hyperparameters seem to reach their limits, works of Tramèr & Boneh (2021);
Yu et al. (2021b); Zhang et al. (2021) have discussed the impact of gradients sizes, which is
a more practical aspect of DPSGD, leaving much room for improvement. Yu et al. (2021b;
2022); Tramèr & Boneh (2021) propose to replace the full gradients with their low-rank
approximation, or to update an incremental set of weights atop a fixed pre-trained model.
These methods indeed shrink the size of gradients but have to modify the original model
structure at accuracy losses.
It is our key observations that 1) Lin et al. (2018) found that compression can be done on
gradients with almost no impact on accuracy in SGD, 2) the magnitude of the differentially-
private noise is mostly larger than that of the gradient itself, and 3) the larger the gradient
size, the less likely the noisy gradients would agree with the original descent direction. To
verify 2), we reproduce the experiment of training WRN16-4 on CIFAR10 in De et al. (2022),
and calculate the ratio between gradient norm and noise norm in each step. The ratio remains
around 0.01 during the entire training process. We verify 3) by an experiment applying
(ϵ, δ) = (1, 10−5)-differential privacy to the gradient vectors (simulated by randomized noise
sampled from N (0, 1)) of different lengths, and show the cosine similarity between the
differentially-private vectors and the unperturbed counterparts. The results in Fig. 1 show
that as the gradient dimension grows, the cosine similarity value rapidly declines, suggesting
the ‘curse of dimensionality’ in DPSGD — deep models endure much larger perturbation
error at the same privacy guarantee.
Hence we are motivated to propose a new method for DPSGD with gradient pruning, re-
quiring no model change. The intuition is to have DP mechanisms alter the gradient descent
direction in each update as little as possible. We decouple the representation of the batch
gradient into indices and values so that suitable mechanisms can be applied for each. The
state-of-the-art Gaussian DP is used for values, while a novelly designed noisy top-k prun-
ing method is for index perturbation. The top k elements of the gradient are selected with
differential privacy. The model update is the combination result of the value distortion and
index perturbation. Through theoretical analysis, we give evidence that our gradient index
perturbation method introduces less noise. Intuitively, this is explained by a reduced noise
dimension, and that the error brought by pruning is much smaller than by noise, since the
variance of the noise is typically larger than that of the gradient.
Highlights of our contributions are as follows. First, we propose a new DPSGD method with
gradient pruning, which effectively improves model utility while keeping the DP property.
Second, a novel index perturbation mechanism, in combination with the value distortion,
gives much smaller theoretical errors than previous works. Finally, experiments on a variety
of models and datasets have verified that our method improves the accuracy of DPSGD by
1− 2% compared to the state-of-the-art.

2 Related Work

Differential privacy has been developed both as privacy guarantees and algorithms towards
protecting individual training data records in deep learning. Particularly, differentially-
private stochastic gradient descent (DPSGD) has been widely studied, and it often poses
an acute problem in balancing the tradeoff between privacy and accuracy. Most works (Yu
et al., 2021a;b; Tramèr & Boneh, 2021; Yu et al., 2022) point out that the high dimensions
of the deep neural network is the culprit — excessive amount of noise is inserted leading to
performance failure. Representative solutions typically reduce the size of the model updates
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(gradients) to alleviate the noise perturbation. For example, instead of applying differential
privacy to full gradients, Yu et al. (2021b)propose a low-rank approximation to weight ma-
trices, and perform differentially-private update in the projected subspace. Other works (Yu
et al., 2022; Tramèr & Boneh, 2021) pre-train a large fraction of the model on public datasets
and merely fine-tunes an incremental set of weights by differential privacy. Datalens (Wang
et al., 2021) presents a similar idea of gradient pruning in training differentially-private
generative models. Zhang et al. (2021) propose pruning in NLP tasks for dimensionality
reduction by investigating model-specific sparsity. However, these works have their own
drawbacks:
Low-rank approximation based methods rely on the public dataset or historical information
to obtain the subspace for decomposition. Yu et al. (2021a) decomposes the gradients into a
low-dimensional component as well as low-parity errors by the matrix projection. Yu et al.
(2021b) divides the matrix into two parts by SVD decomposition, and the directional matrix
is obtained from the historical gradient information. However, the approximation error of
the directional matrix, whether being obtained from external data or historical information,
cannot be strictly controlled. Hence the method would be invalid on standalone private
datasets. Freezing the main body of a model and fine-tuning the incremental set degrades
the accuracy performance compared to fine-tuning the entire model (Wang et al., 2021; De
et al., 2022). Although Wang et al. (2021) prune the gradient of each sample, it does not
aim to reduce the dimension of the additive noise, and thus a large amount of noise is still
inserted. Zhang et al. (2021) is based on the property of gradient sparsity in NLP tasks,
however, such a property may not hold on other tasks, e.g., the computer vision tasks. In
contrast, our method does not rely on any auxiliary dataset, or any pre-training step to
realize DPSGD. We bring down the size of the additive noise to reduce its impact.
Other lines of works on DPSGD focus on the selection of hyperparameters and training
techniques (De et al., 2022) rather than the network size. We show that our method could
improve the state-of-the-art further by non-trivially applying gradients pruning on top of it.

3 Preliminaries

We give a brief review of the concepts of differential privacy, DPSGD and Mallows model.
Definition 1 ((ε, δ)-Differential Privacy (Dwork et al., 2006)). A randomized mechanism M
satisfies (ε, δ)-differential privacy if for any neighboring datasets X and X ′ differing by at
most one unit, and for any possible output O,

Pr(M(X) ∈ O) ≤ eε Pr(M(X ′) ∈ O) + δ. (1)

In the special case of δ = 0, we call M ε-differentially private.
DPSGD. In a deep learning task, the sensitive training dataset X = [x1, x2, . . . , xN ] requires
to be protected in T iterations of stochastic gradient descent. In each iteration, a batch of
data B of size |B| will be randomly selected to compute the gradient for weights W :
g = 1/|B|

∑
x∈B g(W,x), where g(W,x) represents the gradient of the individual data x

and the single g represents the average gradient of the batch. Since DP requires that the
sensitivity of the outcome is bounded, conventional DPSGD conducts per-sample clipping
on the gradients of each x:

ḡ(W,x) = g(W,x)/max(1,
‖g(W,x)‖2

C
), (2)

to ensure that the sensitivity of the gradient is C, and thus the batch gradient becomes
ḡ = 1/|B|

∑
x∈B ḡ(W,x). DPSGD mechanismM inserts noise to the batch gradient:M(ḡ) =

ḡ + Z, where Z ∼ N(0, σ2C2E) has the same shape with ḡ. σ is a constant decided by the
privacy budget (ϵ, δ) and C is the sensitivity of the gradient, also the clipping value.
Mallows model (Mallows, 1958) is a popular probabilistic model for permutations. The
permutation of a set S is a bijection S 7→ S. The mode of the distribution is given by the
reference permutation I0, and the probability of a permutation increases as it is ‘closer’ to
I0 as measured by rank distance metrics (e.g., L1 distance). The dispersion parameter θ
controls the shape of the distribution.
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Definition 2. For dispersion parameter θ, reference permutation Io ∈ S, and rank distance
measure d : S× S 7→ R,

Pθ,d (I : I0) =
1

ψ(θ,d)
e−θd(I,I0) (3)

is the Mallows model where ψ(θ,d) =
∑
I∈S e

−θd(I,I0) is a normalization term and I ∈ S.

Without specification, we use L1-norm distance as d throughout the paper.

4 Methodology

In this section, we analyze the impact of DP noise to SGD and present our method GIP
in improving model utility for DPSGD. Considering the high-dimensional characteristics of
gradients, we analyze the influence of perturbation noise to gradients from the dimension
perspective. By the clipping step in DPSGD, the maximum L2 norm of the batch gradient
ḡ is C. Meanwhile, the amount of additive noise in expectation is EZ‖M(ḡ)− ḡ‖22 = σ2C2d
where d is the dimension of the flattened ḡ. Hence in each iteration, the perturbation error
of DPSGD grows linearly with the dimension of the flattened gradient. Given the fact that
most gradients can be compressed with little impact on accuracy, we are motivated to
design an effective pruning step to shrink the gradient size, yet without altering the descent
direction too much.

4.1 Gradient Index Pruning

We propose a gradient pruning method based on indices selection. Conventionally, gradients
can be approximated by its low-rank component, or its most prominent set of elements. By
applying differentially-private update using the approximation rather than the full gradients,
the expected amount of noise is reduced while the steepest descent direction of the loss
is unavoidably affected. Moreover, the factorization and the prominent set selection are
privacy-leaking, and thus would consume additional privacy budget.
Top-k pruning. We choose to preserve the top k (k ∈ (0, 1]) elements of the gradient under
the DP constraint. It means to retain the largest k elements of the gradient arranged by the
absolute values. Under the same pruning amount, the compressed gradient by top-k pruning
is most likely to keep the descent direction unaltered. Unfortunately, the pruning criterion
suggests the use of the private gradient data, which poses a source of privacy leakage. Hence
the pruning step should be differentially-private. We propose to decouple indices from values
in gradients so that different DP operators can be adopted for the two. For the kept values
after pruning, the state-of-the-art Rényi DP (RDP) (Mironov, 2017; Mironov et al., 2019)
is used whereas the indices are perturbed by our designed gradient index pruning method.
A key observation is that most of the gradients can be compressed without compromising
accuracy. Hence we represent the gradients by indices I ∈ {0, 1}d and the actual values.
Index 1 denotes the corresponding value is non-zero and 0 suggests otherwise. The index
representation is a sequence of 1s and 0s denoting the positions of non-zero values. To
compose its DP scheme, we first introduce index sensitivity:
Definition 3. The sensitivity of the index sequence I ∈ S is defined as

s1(I) = sup
d(X,X′)=1

‖I(g)− I(g′)‖1,

where ‖ · ‖1 is the L1 norm and g, g′ are the gradients caculated from neighboring input
datasets X and X ′, respectively.

Corresponding to top-k pruning, we denote the subset of Is where k (percentage) of 1s are
retained in each sequence as Sk, and the index sequence obtained from top-k method as
I0 ∈ Sk. It is a non-trivial design of Sk as without top k, the index sensitivity could be as
large as the full length of the gradient, leading to an almost random perturbation. Within
Sk, the index sensitivity is min{2kd, 2d− 2kd} at most. Our index perturbation mechanism
is defined as:
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Figure 2: Overview of differentially-private SGD with gradients index pruning.

Definition 4. Given an index sequence I0 ∈ Sk, a random mechansim Mp : Sk 7→ Sk is
defined as

Mp(I0) = I, with Pθ,d (I : I0) =
1

ψ(θ,d)
e−θd(I,I0). (4)

The random variable I follows the Mallows model with parameters θ and distance metric
d(·, ·).

Given the index perturbation mechanism Mp, we have the following theorem:
Theorem 1 (Index privacy). Given an index sequence of gradient g : I(g) ∈ Sk pruned by
top-k method and Mp(I(g)) = I, where I follows the Mallows model Pθ,d (I : I(g)). Mp is
ϵ-differentially-private if and only if θ ≤ ϵ

s1(I)
.

The proof is provided in Appendix A.1.

Algorithm 1 Noisy Top-k Pruning
Input: (a) flattened gradient vector g of dimension d, (b) pruning ratio k, (c) group size ℓ.
Ensure: Perturbed index sequence I.
1: Divide the gradient g into groups g(i) of equal length ℓ.
2: for g(i) in all groups of g do
3: Get ti as the 100k-th percentile of the elements in {|g(i)

j |}
4: for j ∈ [ℓ] do

5: I(g(i))j =

{
1, if |g(i)

j | > ti,

0, if |g(i)
j | ≤ ti.

6: end for
7: Sample I(i) from Pθ(i),d

(
I : I(g(i))

)
.

8: Reinstall all I(i) in the original position to obtain I.
9: end for

10: return I

4.2 Differentially-Private SGD with Pruning

We present differentially-private SGD with gradients index pruning in this section. The
overall framework is shown in Fig. 2. Per-example gradients are computed in each iteration,
and they are clipped individually before being summed up over a batch. The resulting batch
gradients are decoupled into values and indices. Gaussian differential privacy mechanism is
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applied to the values, whereas the indices are perturbed by our noisy top-k pruning method.
The private gradients are computed by multiplying the results of the two parts, and are used
for model update.
The noisy top-k pruning is given in Alg. 1. We sample an index sequence following Mallows
model given the original top-k gradients. However, in practice, due to the computational
constraints, we cannot directly use Mallows model in the high-dimensional case. Hence
we split the gradients into groups {g(i)} of smaller scales by their original order in the
gradients, and select the top k elements in each g(i) by the absolute values. For example,
|g(i)
j | denotes the absolute value of the j-th element of gradient g(i). In step 7 I(i) will be

sampled from Pθ(i),d
(
I : I(g(i))

)
and we present the sampling algorithm in AppendixA.2.

The perturbation results I(i) are put together to obtain the index sequence I. Accordingly,
the differential privacy budget is split up for each group. The parameter θ(i) of Mallows
model of each group should satisfy θ(i) ≤ ϵ

(i)
2 /s1(I) for the resulting I to be ϵ2 =

∑
i ϵ

(i)
2 -

differentially-private.
Now we illustrate the overall DPSGD algorithm in Alg. 2 which follows the general frame-
work in Abadi et al. (2016). The gradients of each example are clipped and summed up in
line 8. Perturbed index I is obtained by calling Alg. 1. We follow the privacy accountant
method in De et al. (2022) to compose DP over iterations by RDP and convert it to (ϵ, δ)-DP
by Theorem 21 in Balle et al. (2020).
Lemma 1 (Privacy accountant). Given training iterations T , batch sampling ratio q and
standard deviation σ for Gaussian noise, DPSGD satisfies (ϵ1(T, q, σ), δ(T, q, σ))-differential
privacy.

With the lemma, we can prove the following theorem.
Theorem 2. Given the clipping value C, the index sensitivity s1(I), and T, q, σ defined in
Lemma 1, if θ(i) ≤ ϵ

(i)
2 /s1(I), ϵ = ϵ1(T, q, σ) + T

∑
i ϵ

(i)
2 > 0, and δ = δ(T, q, σ) ∈ (0, 1),

Alg. 2 is (ϵ, δ)-differentially private.

Proof. The Gaussian mechanism applied to values satisfies (ϵ1(T, q, σ), δ(T, q, σ))-differential
privacy by Lemma 1. The noisy top-k pruning meets ϵ2-differential privacy according to
Thm. 1, where we compose privacy budget for all I(i) ∈ I over T iterations as T

∑
i ϵ

(i)
2 .

Thm. 2 is straightforward by taking basic composition from Dwork et al. (2014) of the two
mechanisms.

It is worth noting that line 9 of Alg. 2 can be replaced by any index pruning methods. To
show the power of our design, we give a naive random-k pruning mechanism which does not
consume any privacy budget. In random-k pruning, k of the gradient elements are randomly
selected as the index sequence I. Since it does not rely on any private knowledge, this step
is privacy-free. However, the gradient descent direction is altered by random sampling. In
latter sections, we will compare our top-k pruning method against baselines including this
naive one. It is obvious to have the following privacy guarantee held:
Proposition 1 (Differentially-private random-k pruning). By replacing line 9 of Alg. 2 with
random-k pruning, Alg. 2 satisfies (ϵ1(T, q, σ), δ(T, q, σ))-differential privacy.

The proof is straightforward and thus is omitted.

5 Analysis and Comparison

This section presents the analysis of the perturbation errors in our method and makes com-
parison with other works. We analyze the Mean Square Error(MSE) introduced in a single
iteration by DPSGD with pruning. As gradient descent is taken in each iteration, we con-
sider the less error included, the less the update deviates from the original descent direction,
which leads to a smaller accumulated error in the end. As the mechanism design relies on the
gradient distribution (imagine how would random-k and top-k perform at all 1s gradient
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Algorithm 2 Differentially-Private SGD with Pruning
Input: (a) privacy parameters ϵ, δ, (b) training samples {x1, x2, . . . , xN}, (c) model weights

W , loss function L(W ) = 1/N
∑
i L(W,xi), (d) hyperparameters: learning rate ηt, noise

scale σ, batch size |B|, clipping value C, (e) pruning ratio k and the pruning method
Mp(·, k) with ratio k.

1: Initialize W0 randomly
2: for t ∈ [T ] do
3: Take a random sample Lt with sampling probability |B|/N
4: for i ∈ [Lt] do
5: Compute gt (xi)← ∇Wt

L (Wt, xi)

6: gt(xi)← gt(xi)/max
(
1,

∥gt(xi)∥2

C

)
7: end for
8: Accumulate the clipped gradients over a batch gt =

∑|B|
i gt(xi)

9: Sample index sequence I from Mp(gt, k) by Alg. 1
10: Add noise g̃t = 1

|B| [gt + Z] � I, where Z ∼ N (0, σ2C2) and � is the Hadamard
product.

11: end for
12: Wt+1 ←Wt − ηtg̃t
13: return WT

vector), the perturbation analysis has to take into account the gradient distribution. We
further observed from Chen et al. (2020) that, the gradient distribution gradually becomes
more symmetric throughout the training process of MNIST and CIFAR10, and its center is
at 0 in both. Hence, we made the following assumption to facilitate the analysis:
Assumption 1. The batch gradient g =

∑
xi∈B g(W,xi) ∈ Rd in DPSGD follows N (0, σ2

g).

Under Assumption 1, we have Eg‖g‖2 = dσ2
g , meaning that the expected L2 norm of the

gradient is bounded. We define MSE as:

MSE = E ‖[g + Z]� I − g‖22 = E‖g � I − g‖22︸ ︷︷ ︸
Pruning MSE

+E‖Z � I‖22︸ ︷︷ ︸
Noise MSE

,
(5)

given the additive noise Z ∼ N (0, σ2C2), and the perturbed index sequence I. The error
can be divided into the pruning error and the noise error, and one can easily see if the same
pruning amount is applied, the noise error is the same:

Noise MSE = E‖Z � I‖22 = σ2C2kd (6)

where k ∈ (0, 1] is the pruning ratio. Therefore, we could compare the pruning error for
different pruning methods.
Proposition 2. Let g ∈ Rd denote the batch gradient, Ir and It be the resulting index
sequence of random-k and top-k pruning. Under Assumption 1, the pruning MSEs are:

MSEr = Eg,Ir‖g − g � Ir‖22 = (d− k · d)σ2
g;

MSEt = (d− k · d)σ2
g

[
1− k −

√
2√
π
a exp

(
−a

2

2

)]
︸ ︷︷ ︸

MSEt0

+σ2
g

[
1 +

2a

k
√
2π

exp

(
−a

2

2

)]
F (θ)︸ ︷︷ ︸

index perturbation error

,

(7)

where a = Φ−1(1 − k
2 ), F (θ) =

1
ψ(θ,d)

∑kd
i=0

(
kd
i

)(
(1−k)d

i

)
ie−θ2i and Φ denotes the standard

normal CDF. Further we have MSEt ≤MSEr.

We reuse the denotations in Def. 2 above. Please see Appendix A.3 for the proof. In fact,
MSEt contains two parts: the error introduced by top-k selection MSEt0 and the index
perturbation error. The former could be regarded as a lower bound for MSEt. Obviously,

7



Under review as a conference paper at ICLR 2023

(a) (b) (c) (d)

Figure 3: Comparison of GIP and other baselines over different datasets and models. Legends
are shared.
we have MSEt > MSEt0 and the index perturbation error is the sacrifice for the differential
privacy guarantee of indices. To show our advantage over DPSGD, we also list the MSE of
DPSGD, which contains Noise MSE only: MSEd = σ2C2d.
Corollary 1. Under Assumption 1, if σ2

g ≤ β(C, k, d, θ)σ2, where β(C, k, d, θ) =
C2(1−k)d

(1−k)d
[
1−k−

√
2√
π
a exp

(
− a2

2

)]
+
[
1+ 2a

k
√

2π
exp

(
− a2

2

)]
F (θ)

, we have MSEd > MSEt.

We will give a more specific example. Given the parameter setting of training WRN-16-4 on
CIFAR10 with (1, 10−5)-DP in the following section, we get β(C, k, d, θ) = 0.9913, suggesting
the condition of Corollary 1 is easy to meet since σ is usually much larger than σg. And
we present how the value of β(C, k, d, θ) changes with k and d in Appendix B. Hence in
most cases, we have MSEd > MSEt. We also compare GIP with other index perturbation
methods, e.g., PrivKV (Ye et al., 2019) and FedSel (Liu et al., 2020), in Appendix A.4.

6 Evaluations

We conduct experiments in a variety of settings to demonstrate the performance of our
method and baselines. Experiments are run on NVIDIA RTX3090 GPUs, and results are
reported by averaging over five runs.

6.1 Setup

Datasets and models. We choose the common image classification tasks on CIFAR-10
(Krizhevsky et al., 2009), SVHN (Netzer et al., 2011) and 1k-class ImageNet (Deng et al.,
2009). The datasets of CIFAR-10, SVHN, ImageNet are divided into (45K, 5K), (68K, 5K),
(1.27M, 10K) for (train set, test set), respectively. All training data is considered private. On
CIFAR-10, we train Wide-ResNet (WRN)-16-4 and ResNet18 from scratch, and fine-tune
the entire WRN-28-10 which has been pre-trained on the public ImageNet (De et al., 2022).
On SVHN, we train WRN-16-4 from scratch. On ImageNet, a Normalizer-Free ResNet-50
(NF-ResNet-50) (Brock et al., 2021) is trained from scratch.
Baselines and metrics. We select the state-of-the-art DPSGD baselines including RGP (Yu
et al., 2021b), DataLens (Wang et al., 2021) and Jax-privacy (De et al., 2022). RGP applies
the low-rank approximation to the gradient in each iteration of DPSGD. DataLens prunes
the gradients to reduce the clipping value, which also decreases the variance of the additive
noise. JAX-privacy is the most recent work suggesting suitable DPSGD hyperparameters
for deep models. We reproduce each baseline in the same setting as with their original paper
which we believe is the optimal for their methods, and compare with GIP under the same
privacy budget (ϵ, δ).
Hyperparameters. Our implementation is built on Jax and we adopt the training hyperpa-
rameters as that of Jax-Privacy (De et al., 2022). Clipping value is set to C = 1 by default.
We fix the privacy parameter δ = 10−5 on CIFAR-10 and SVHN, δ = 8×10−7 on ImageNet.
We allocate the privacy budget for index perturbation in proportion to ϵ: ϵ2 = 0.01ϵ in all
experiments. And we set the batch size, learning rate, augmentation multiplicity and train-
ing steps the same for Jax-Privacy, Random-k, GIP and DataLens following De et al. (2022)
and the specific values are listed in Tab. 4,3 in Appendix B. Note that since the privacy
budget used by GIP for Gaussian Mechanism is ϵ1 = 0.99ϵ, which is smaller than ϵ used
by Jax-Privacy and Random-k, and hence our GIP injects a larger amount of noise for the
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same number of update steps. For RGP, we follow the settings in Yu et al. (2021b) which
are listed in Appendix B. In our experiments, if we set the pruning ratio to a fixed value, the
performance is suboptimal since the gradients vary greatly, particularly at the start of the
training, according to Sec. 5 from Chen et al. (2020). Therefore, it is not reasonable to get
rid of most gradients at the beginning of the training. Hence we apply an exponential decay
as well as a linear decay schedule for the pruning ratio k. For the group size ℓ in Alg. 1, we
set ℓ = 256, and the privacy budget is combined over groups.

6.2 Results

Comparison with baselines. We depict the accuracies of each model trained over different
privacy budgets in Fig. 3. For GIP, we set the pruning ratio schedule as a linear decay from
k = 1.0 to 0.1. Since the same pruning ratio leads to inferior results on Random-k, we select
an optimal schedule particularly for the method: an exponential decay from k = 1.0 to 0.5.
As RGP requires to re-define the convolutional layers, we adopt its original adaptation to
WRNs in experiments.
Among all baselines, Jax-Privacy has the best performance as it is trained with carefully-
tuned hyperparameters. Nevertheless, GIP improves Jax-Privacy by 2 − 3% for models
trained from scratch, and has a comparable performance in the pre-training case. Most
notably, at (0.5, 10−5)-DP, GIP enhances accuracy by 5% (from 59.20% to 64.55%) from
Jax-Privacy on WRN-16-4, SVHN. At low privacy budgets, i.e., smaller ϵs, the improve-
ment is more significant, mostly because a large σ is used in DPSGD at a small ϵ, which
leads to a bigger gap between MSEt and MSEd by Corollary 1. DataLens and Random-k
showed close performance to Jax-Privacy, deviating by at most 1%. RGP performs poorly on
CIFAR-10, WRN-16-4 and ResNet18, but has a performance close to Jax-Privacy on WRN-
16-4, SVHN when ϵ ≥ 1. We consider RGP significantly reduces model size by the low-rank
method (e.g., from 2.732M to 0.032M on WRN-16-4), but unfortunately fails to handle deep
models on relatively complex datasets, or in high privacy regime. The improvement of GIP
on pre-trained models are limited as shown in Fig. 3(d), since all methods including Jax-
privacy and random-k have performance close to the non-private version, leaving little room
for improvement. More numerical results are presented in Appendix B.
Tab. 1 records the testing accuracy of training NF-ResNet-50 from scratch on ImageNet
at different privacy levels. The optimal pruning schedule is selected for each method. We
choose a linear decay and an exponential decay from k = 1.0 to 0.5 for GIP and random-k,
respectively. On complicated and large dataset as ImageNet-1k, we observe a mild 0.1−0.4%
improvement of GIP over Jax-Privacy. Random-k is not consistently better than Jax-Privacy,
indicating that random pruning may be harmful to the accuracy.
Running time. To find out the computational overhead of GIP, we compare its training time
with baselines in Tab. 2. GIP incurs mild additional overhead compared to Jax-Privacy and
Random-k, mainly due to its shuffling mechanism. DataLens is much slower while RGP is
the fastest, since it is the only method actually changing the model size.

Table 1: Top-1 and top-5 accuracies (%) of ImageNet trained
from scratch.

Jax-Privacy Random-k GIP
ϵ Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

0.25 0.99 3.84 1.01 3.59 1.13 4.02
0.5 2.39 7.97 2.52 8.20 2.47 8.34
0.75 4.20 12.75 3.98 12.52 4.44 13.22
0.8 4.76 13.95 4.54 13.45 4.96 13.88

Table 2: The training time on
WRN-16-4, SVHN over 875
steps. RDP over 100 epochs.

Method Total(h) Batch(s)
Jax-Privacy 6.68 12.6
Random-0.5 6.6 12.4

GIP 7.08 13.33
DataLens 14.18 26.34

RGP 0.92 -

Case studies. To verify the reason why GIP is superior in accuracy, we record the cosine
similarity between the DP gradient vectors and their unperturbed counterparts of different
methods on CIFAR10, ResNet18 with (1, 10−5)-DP. From Fig. 4(a), we can tell the cosine
similarities follow GIP > Jax-Privacy > Random-0.5 overall, which verifies that GIP effec-
tively mitigates the variation in gradient descent direction. The overall decreasing trend of

9
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(a) (b) (c) (d)

Figure 4: (a) Cosine similarity over training on CIFAR10, ResNet18. (b)(c) Ablation studies
of CIFAR-10, WRN-16-4 and ResNet18 under different ks. (d) Ablation study of CIFAR-10
on WRN-16-4 under different budget allocations. ϵ2 = T

∑
i ϵ

(i)
2 is for indices and the rest

for values.

cosine similarity is due to that the gradient norm of most examples decay over training,
while the noise norm does not not change over the course. Hence the direction of gradient
does not agree any more in the latter phase of training. And the results agree with Fig. 3(b)
where higher cosine similarity values correspond to higher accuracies.
We study how the varying hyperparameters would affect GIP’s performance. First, we select
different pruning ratio ks under (4, 10−5)-DP. The testing accuracies under different ks are
shown in Fig. 4(b)(c). Here we selected k ∈ {0.01, 0.05, 0.1, 0.5, 0.7}. On WRN-16-4, the
results of GIP mostly vary within 0.5% and the highest is at k = 0.05. The accuracy of
random-k fluctuates greatly across different ratios with the highest occurring at k = 0.5. On
ResNet18, GIP’s accuracy peaks at k = 0.1 while random-k has the worst performance at
that ratio. Overall, random-k performs poorly at low ratios (< 0.1), indicating that pruning
alone would degrade accuracy at such ratios.
We also display how accuracies vary across different proportions of privacy budgets assigned
to index perturbation in Fig. 4(d) under (1, 10−5)-DP. The trend is that, as that proportion
of privacy budget grows, the accuracy first increases and then decreases, peaking at 1%.
With the proportion going over 10%, the accuracy quickly decays, as the noise, rather than
the indices selection, plays a more important role to performance.

7 Conclusion
We propose a new method GIP to improve the accuracy performance of DPSGD in deep
models. The key is to prune the gradients to reduce the amount of additive noise, yet
without altering the gradient descent direction too much. By decomposing the gradients
representation into indices and values, GIP applies different DP mechanisms to the two
components, and achieves an overall (ϵ, δ)-DP. We not only theoretically prove but also
experimentally verify that GIP improves the DPSGD accuracy over the state-of-the-art.
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A The proofs part

A.1 Proof of Theorem 1

Proof. Here we present the proof of the differential privacy for index perturbation mecha-
nism. In order to achieve equation 1, the privacy loss and privacy budget ϵ should satisfy

log
Pr(MI(I(g)) ∈ O)
Pr(MI(I(g′)) ∈ O)

≤ ϵ. (8)

Substituting the probability density function expression into it, we can get

log
e−θd(I,I(g))

e−θd(I,I(g′))
≤ ϵ⇔ θ [d(I, I(g′))− d(I, I(g))] ≤ ϵ. (9)

By the triangular inequality of distance, we can get
θ [d(I, I(g′))− d(I, I(g))] ≤ θd(I(g′), I(g)) ≤ θC1(I) (10)

Therefore, if the mechanism MI satisfies ϵ-differential privacy, then θ must satisfies θ ≤
ϵ

C1(I)
.

A.2 Sampling Algorithm of Mallows Model

Sampling Algorithm of Mallows Model is demonstrated in Alg. 1. Although the Probability
Density Function(PDF) of Mallows model has been shown in Definition 2, it is not easy to
generate an index sample I that follows the distribution in the definition. Instead, we sample
from a subspace of all d-dimensional permutations. We first sample a distance variable
d(I, It), of which PDF is shown in equation 11. Here we set Sk(It, i) = {I|d(I, It) = 2i, I ∈
Sk}. ∑

I∈Sk

1

ψ(θ,d)
e−θd(I,It) =

1

ψ(θ,d)

kd∑
i=0

∑
I∈Sk(It,i)

e−θd(I,It)

=

kd∑
i=0

1

ψ(θ,d)

(
kd

i

)(
(1− k)d

i

)
e−θ2i =

kd∑
i=0

P [d(I, It) = 2i]

(11)

Let d(I, It) in the first step be i. In the second step, index sequence It is perturbed by
randomly flipping i 1s to 0s and i 0s to 1s. The resulting sequence is the sampled I.

A.3 Proof of Proposition 2

Proof. First, we calculate the MSEr of random-k pruning method:

MSEr = Eg,Ir‖g − g � Ir‖22 = Eg

∑
I
(i)
r =0

g2
i (12)

Since the random-k method does not have any effect on the gradient g, each element gi
still follows the Gaussian distribution N (0, σ2

g). Therefore, the MSE is the sum of all the
expectation of g2

i :
MSEr = (d− k · d)σ2

g. (13)
Second, for top-k pruning method, the pruning index It is calculated by g without pertur-
bation. As we adopt gradient pruning, It should be recomputed. However, direct calculation
is problematic due to the sorting problem involved in gradients. We thus use an alternative
approach, where we treat each dimension of the gradient as the same random variable being
sampled d times, and split these samples into two parts by the k quantiles of the absolute
value. Therefore, in the distribution, one part has a weight of k, and the other part is 1− k.
From this, we can get the k quantiles a as∫ a

−a

1√
2π

exp

(
−x

2

2

)
dx = 1− k (14)

13



Under review as a conference paper at ICLR 2023

As N (0, σ2
g) = σgN (0, 1), we unify the quantiles for gradients on the standard normal

distribution and compare |gi| and aσg in the algorithms. We can then calculate a as∫ a

−a

1√
2π

exp

(
−x

2

2

)
dx = 2Φ(a)− 1⇐⇒ a = Φ−1(1− k

2
) (15)

Next, we calculate that the value of MSE of d− k · d gradients gi/σg ∈ (−a, a) as

Eg‖g − g � It‖22 = (d− k · d)σ2
g

∫ a

−a

x2√
2π

exp

(
−x

2

2

)
dx

=
dσ2

g(1− k)√
2π

[
−x exp

(
−x

2

2

) ∣∣∣∣a
−a

+

∫ a

−a
exp

(
−x

2

2

)
dx

]

= dσ2
g(1− k)

[
− 2a√

2π
exp

(
−a

2

2

)
+ 1− k

]
,

(16)

By definition, the MSE in the algorithm after perturbation by Mallows Model is
MSEt =

∑
I∈Sk

‖g − g � I‖22Pθ,d(I, It) (17)

We can divide all Is into different sets according to the distance between I and It. For I in
the same set, we find that their probabilities are all equal. We split the index into two sets,
C0(I) and C1(I), which represent the set with index 0 and the set with index 1 respectively.
Then we have

C0(I) = {j|Ij = 0}, C1(I) = {j|Ij = 1}
|C0(I)| = |C0(It)| = k · d, |C1(I)| = |C1(It)| = (1− k) · d (18)

where | · | denotes the number of elements in the set. Therefore, the number of index dif-
ferences between C1(I) and C1(It) is equal to the number of index differences in C0(I) and
C0(It).

(1− k) · d− |C0(I) ∩ C0(It)| = k · d− |C1(I) ∩ C1(It)| (19)
We then set the number of index differences in C0(I) and C0(It) as i and its range of
variation is 0 ≤ i ≤ k · d. Therefore, we can denote the distance d(I, It) and MSE by i:

d(I, It) = d− |C0(I) ∩ C0(It)| − |C1(I) ∩ C1(It)| = 2i

MSEt =

k·d∑
i=0

‖g − g � I‖22
1

ψ(θ,d)
e−θ2i · |{I|d(I, It) = 2i}|

(20)

The difference between I and It can be regarded as randomly selecting i elements from C0

to be 1 and i elements from C1 to be 0. Hence the number of |Sk(It, i) = {I|d(I, It) = 2i, I ∈
Sk}| is

|Sk(It, i)| =
(
kd

i

)(
(1− k)d

i

)
(21)

For I ∈ Sk(It, i),

Eg‖g − g � I‖22 =
∑

j∈C0(I)

g2j =
∑

j∈C0(I)∩C0(It)

g2j +
∑

j∈C0(I)∩C1(It)

g2j (22)

Since I ∈ Sk(It, i) has equal probability, the gradient index of the random sample in C0(I)∩
C0(It) and C0(I) ∩ C1(It) follow the uniform distribution.

Eg

∑
j∈C0(I)∩C0(It)

g2j +
∑

j∈C0(I)∩C1(It)

g2j

=MSEIt ·
(1− k)d− i
(1− k)d

+ (dσ2
g −MSEIt) ·

i

kd

=σ2
g [(1− k)d− i] [1− ζ] + σ2

g(k + ζ − kζ) i
k

=σ2
g

[
(1− k)(1− ζ)d+ ζi

k

]
=MSEIt + σ2

g

ζi

k
,

(23)
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where we set MSEIt = Eg‖g − g � It‖22, and ζ = 2a√
2π

exp
(
−a

2

2

)
+ k for short. Finally,

MSEt =

k·d∑
i=0

[
MSEIt + σ2

g

ζi

k

]
1

ψ(θ,d)
e−θ2i|Sk(It, i)| =MSEIt +

k·d∑
i=0

σ2
g

ζi

k

1

ψ(θ,d)
e−θ2i|Sk(It, i)|

=MSEIt + σ2
g

[
1 +

2a

k
√
2π

exp

(
−a

2

2

)]
1

ψ(θ,d)

kd∑
i=0

(
kd

i

)(
(1− k)d

i

)
ie−θ2i,

(24)

where we substitue the sum in the last equation with equation 21.

A.4 Comparison with other works

There are also some related works on privacy perturbation on gradient index, e.g. PrivKV(Ye
et al., 2019), FedSel(Liu et al., 2020) and DataLens(Wang et al., 2021). Therefore, here we
mainly compare the difference between the random response mechanism and the Mallows
Model we employ.
The core idea of PrivKV and FedSel is to perturb the index by a random response mecha-
nism, and to make the mechanism satisfy differential privacy by controlling the probability
of index flipping. But both of these work in a distributed context with privacy guarantees
using LDP. We found in our study that if the random response mechanism needs to be made
to satisfy differential privacy, then poorer results will occur in the high-dimensional case.
Proposition 3. Let I0 ∈ Rd is the index of gradient. The random response mechanism defined
as

I(j) =

{
I0(j) w.p. p
1− I0(j) w.p. 1− p (25)

will satisfy ϵ2-DP if

p ≤ e
ϵ2

C1(I)

1 + e
ϵ2

C1(I)

(26)

where C1(I) is the index sensitivty from Def. 3.

By this property, we can find that the random answering mechanism can also satisfy the
requirement of differential privacy. However, the index sensitivity tends to be very large in
DP-SGD, causing the random response mechanism does not work well. As an example, in
Wide ResNet 16-4, d is approximately 106. To limit the size of index sensitivity, we performed
per example pruning, keeping 1% of index for each gradient, in this case, we calculated that
C1(I) = 2× 104, and bringing this result into property 3, it is easy to conclude that e

ϵ2
C1(I)

is close to 1 and the result is close to p ≤ 1
2 . With such a flipping probability, the output

of index is basically a random flipping with half being 0 and half being 1, which loses the
meaning of pruning.

B Experiments and Results

B.1 The Discussion on Corollary 1

In Fig. 5, we illustrate how β varies with dimensionality d and pruning ratio k by Corollary
1. We choose d ∈ [10, 200] as the max group size is selected to be 256 and k ∈ [0.1, 0.9]. We
can see that the value of β is dominantly determined by k. A larger k and a larger d most
likely lead to a greater β. We presented the value of log(β) in the figure, and the smallest
β is 0.78 at (k, d) = (0.1, 10). In the experiment in CIFAR-10, Wide ResNet 16-4, the value
of σ2

g/σ
2 is basically around 0.0001, which is much smaller than beta. Therefore, Corollary

1 holds in the majority of cases.
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Figure 5: The value of β(C, k, d, θ) varies with k and d.

Table 3: Training hyperparameters.

Learning rate Batch size Augmentation multiplicity

WRN-16-4 2 4096 16
ResNet18 {2, 4, 2, 4} 4096 16

WRN-28-10 1 16384 16
ImageNet 4 16384 4

RGP 1 1000 -

B.2 Hyperparameters

Here we present the detail information of hyperparameters in Tab. 3, 4. In implementing
DataLens, we select the ‘Top-k-Portion parameter’ defined in Wang et al. (2021) as 0.8 for
all the DataLens experiments. In implementing RGP, we select the low-rank approxima-
tion parameter to be rank = 16. The RGP experiments were done with reference to Yu
et al. (2021b) without further tricks. We set the learning rate as {2, 4, 2, 4} in Tab. 3 which
correspond to the varied σ = {0.5, 1, 2, 4}.

Table 4: Privacy budget settings.

WRN-16-4
ResNet 18

ϵ 0.5 1.0 2.0 4.0
σ 13.0 10.0 6.0 4.0

WRN-28-10 ϵ 0.25 0.5 1.0 2.0
σ 30.0 22.0 21.1 15.8

ImageNet ϵ 0.2 0.4 0.6 0.8
σ 2.5 2.5 2.5 2.5

RGP ϵ 0.5 1.0 2.0 4.0
epoch 30 100 150 200
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Table 5: The detailed results in Fig. 3 of different methods and ϵs.

Testing accuracy(%)

WRN-16-4 CIFAR-10

ϵ 0.5 1 2 4
Jax-Privacy 49.97 56.3 64.64 71.81
Random-0.5 50.12 57 64.45 72.05

GIP 52.22 58.67 66.07 72.58
DataLens 49.51 56.41 64.4 71.82

RGP 36.25 46.46 52.23 59.74

ResNet-18 CIFAR-10

ϵ 0.5 1 2 4
Jax-Privacy 40.23 49.1 59.18 67.43
Random-0.5 40.6 48.86 58.1 66.44

GIP 45.19 52.76 62.26 68.85
DataLens 40.62 48.44 59.85 67.51

RGP 35.99 43.54 48.01 53.26

WRN-16-4 SVHN

ϵ 0.5 1 2 4
Jax-Privacy 59.2 78.95 88.02 90.38
Random-0.5 55.46 80.53 87.22 90.36

GIP 64.55 81.23 88.61 91.32
DataLens 58.16 79.86 85.46 90.95

RGP 46.59 79.78 87.02 90.72

WRN-28-10 CIFAR-10

ϵ 0.25 0.5 1 2
Jax-Privacy 93.29 94.77 95.42 91.69
Random-0.5 93.39 94.74 95.32 91.55
GIP(k = 0.5) 93.1 94.81 95.63 91.8

B.3 Accuracies

In Tab. 5, we display the numerical results of accuracy in each experiment for a clearer
comparison. We highlight the data points in bold with the highest accuracy for each ϵ. We
also provide comparison with Papernot et al. (2021); Tramèr & Boneh (2021) in Tab. 6 on
Wide ResNet 16-4, CIFAR10.

17



Under review as a conference paper at ICLR 2023

Table 6: Comparison with baselines under the same ϵs on Wide ResNet 16-4, CIFAR10.

Method ϵ Accuracy

Tramèr & Boneh (2021)
1 60.00%
2 66.84%
3 69.30%

Papernot et al. (2021) 7.53 66.20%

GIP

1 59.01%
2 66.68%
3 70.87%

7.53 80.39%
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