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ABSTRACT

Convolutional neural network (CNN)-based and Transformer-based methods have
recently made significant strides in time series forecasting, which excel at mod-
eling local temporal variations or capturing long-term dependencies. However,
real-world time series usually contain intricate temporal patterns, thus making it
challenging for existing methods that mainly focus on temporal variations model-
ing from the 1D time series directly. Based on the intrinsic periodicity of time
series, we propose a novel Periodicity Decoupling Framework (PDF) to cap-
ture 2D temporal variations of decoupled series for long-term series forecast-
ing. Our PDF mainly consists of three components: multi-periodic decoupling
block (MDB), dual variations modeling block (DVMB), and variations aggrega-
tion block (VAB). Unlike the previous methods that model 1D temporal varia-
tions, our PDF mainly models 2D temporal variations, decoupled from 1D time
series by MDB. After that, DVMB attempts to further capture short-term and
long-term variations, followed by VAB to make final predictions. Extensive ex-
perimental results across seven real-world long-term time series datasets demon-
strate the superiority of our method over other state-of-the-art methods, in terms
of both forecasting performance and computational efficiency. Code is available
at https://github.com/Hank0626/PDF.

1 INTRODUCTION

Time series forecasting plays an essential role in multiple applications, including weather prediction
(Angryk et al., 2020), energy management (Zhou et al., 2021), financial investment (Patton, 2013),
and traffic flow estimation (Chen et al., 2001). Recently, with the rapid development of deep learn-
ing, plenty of deep learning (DL)-based methods have been developed for time series forecasting
(Lim & Zohren, 2021), which can be roughly divided into CNN-based (Wang et al., 2022; Liu et al.,
2022a) and Transformer-based methods (Li et al., 2019; Zhou et al., 2021).

Existing DL-based methods mainly focus on 1D temporal variation modeling directly, which plays
a crucial role in time series forecasting. Among them, CNN-based methods (Bai et al., 2018; Wang
et al., 2022; Wu et al., 2023) have shown the powerful ability to capture short-term variations. For
example, TCN (Bai et al., 2018) incorporates the local information of time series along the tempo-
ral dimensions by utilizing convolution operations, and exhibits superior performance in short-term
and medium-term predictions. However, this type of method usually fails to work well for long-term
time series, due to the limited representation of long-term dependencies. By contrast, Transformer-
based methods (Li et al., 2019; Zhou et al., 2021; Wu et al., 2021) excel at capturing long-term
dependencies due to the use of self-attention mechanism. For example, Autoformer (Wu et al.,
2021) attempts to exploit the series-wise temporal dependencies with auto-correlation mechanism.
PatchTST (Nie et al., 2023) proposes a novel patching strategy to retain local semantic information
within each patch. Although the Transformer-based methods have shown more competitive perfor-
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Figure 1: (a) Illustration of periodicity-based decoupling into short- and long-term series. (b) Com-
parison of MSE and patch number of our PDF over other Transformer-based methods to predict
future 96 time steps on Traffic dataset. Tranformer-based methods obtain worse MSE results with
more patch numbers. By contrast, our PDF achieves the lowest MSE with only 24 patches on the
look-back window of 960 length. The radius of the circle is the number of patches.

mance than CNN-based methods, they often suffer from heavy computational costs, especially for
long-term time series input, which thus limits their real applications.

It is worth considering that the modeling of 1D temporal variations can be a complex task due to
the intricate patterns involved. These variations can come in various types, including short-term
fluctuations, falling, and rising, which can often overlap with each other (see Figure 1a). Despite
the challenges, researchers have made significant progress in this area, and the most effective way to
model temporal variation remains an open question. However, it is important to note that real-world
time series often exhibit multi-periodicity, such as daily and weekly variations for traffic forecasting,
which has been confirmed in recent work (Wu et al., 2023). Furthermore, long-term time series can
be simplified or decoupled based on a predetermined period. For example, as shown in Figure 1a,
the original time series can be decoupled into short-term series and long-term series, which contain
short-term changes and long-term dependencies, respectively. By taking these observations into
account, we can utilize period information to decouple long-term time series.

Motivated by the above observations, we propose a novel Periodicity Decoupling Framework (PDF)
for long-term series forecasting by capturing the intricate periodic information inside the time se-
ries. Based on the periodicity of the time series, the original 1D time series can be further decoupled
into simpler short and long-term series, which respectively represent the local changes and global
correlations of the 1D time series. Due to the diversity of short-term variations (e.g., fluctuation,
rising, and falling), we employ “frequency slicing”, corresponding to different periods, to divide the
look-back window into several sub-sequences. For long-term variations, we utilize “period patch-
ing” to extract changes within corresponding time segments across all periods (see Figure 1a). The
“period patching” ensures each patch contains rich long-term semantic information.

Technically, we propose a novel Periodicity Decoupling Framework (PDF) for long-term time series
forecasting. As illustrated in Fig. 2, our PDF contains three main components: multi-periodic de-
coupling block (MDB), dual variations modeling block (DVMB), and variations aggregation block
(VAB). Unlike the previous methods that focus on 1D temporal variations modeling, our PDF mod-
els 2D temporal variations. Specifically, the multi-periodic decoupling block first decouples the 1D
time series into different short- and long-term 1D series based on the period of input series in the
frequency domain, followed by further reshaping into 2D tensors with rich short- and long-term
variations. After that, the dual variations modeling block attempts to capture short-term and long-
term variations from the decoupled 2D tensors, followed by a variations aggregation block to make
final predictions. Extension experiments on our PDF confirm its state-of-the-art performance across
various long-term time series datasets, in terms of both forecasting performance and computational
efficiency. Notably, as seen in Figure 1b, our PDF handles the long-term series (with a look-back
window length of 960) better while not sacrificing computational cost (with only 24 patches) than
other Tranformer-based methods.
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Our main contributions are summarized as follows:

• We propose a novel Periodicity Decoupling Framework (PDF) for long-term series fore-
casting, which fully captures 2D temporal short-term and long-term variations from the
decoupled series in a parallel architecture.

• We propose multi-periodic decoupling block to capture various periods of the input series
in the frequency domain. Based on the periodicity of the time series, the 1D time series can
be decoupled into simpler short- and long-term series formulated with 2D tensors. To fully
capture the short- and long-term variations, we propose dual variations modeling block
(DVMB) with short- and long-term variations extractor, which is able to preserve the high-
frequency information of short-term changes while exploiting long-term dependencies.

• Extensive experiments demonstrate the effectiveness of our PDF over other state-of-the-
art methods across various long-term time series datasets, in terms of both forecasting
performance and computational efficiency.

2 RELATED WORK

Traditional time series forecasting methods such as ARIMA (Anderson & Kendall, 1976) and Holt-
Winter (Hyndman & Athanasopoulos, 2018) offer robust theoretical frameworks but suffer from
limitations in handling data with intricate temporal dynamics. Recent years have witnessed mile-
stone achievements of deep learning-based approaches in time series forecasting, which mainly
include CNN-based (Wu et al., 2023), and Transformer-based methods (Lim & Zohren, 2021).

Convolutional neural network (CNN) has gained widespread popularity due to its ability to capture
localized features (Xia et al., 2017; Zhang et al., 2021; Woo et al., 2023). Many CNN-based time se-
ries forecasting methods employ Temporal Convolutional Networks (TCN) to extract local temporal
dynamics (Bai et al., 2018; Liu et al., 2022a; Wang et al., 2022), where MICN (Wang et al., 2022)
and TimesNet (Wu et al., 2023) are related to our method. Typically, MICN attempts to combine
local features and global correlations to capture the overall view of time series with convolution
kernels. TimesNet focuses on modeling 2D temporal variations in 2D spaces from the extraction of
“intra-period” and “inter-period” variations. However, these methods rely heavily on convolution
kernels to model series variations, resulting in limited representations of long-term dependencies.
Instead, our method can capture both short- and long-term variations simultaneously with dual vari-
ations modeling block.

Another type of Transformer-based method has shown more competitive performance in long-term
time series forecasting. With the self-attention mechanism, Transformer and its variant are capable
of capturing long-term dependencies and extracting global information (Dosovitskiy et al., 2021;
Fan et al., 2021; Ryoo et al., 2021; Liu et al., 2022b). However, their scalability and efficiency are
constrained by the quadratic complexity of the attention mechanism. To mitigate this, various tech-
niques are proposed to reduce the complexity of the Transformer. For example, LogTrans (Li et al.,
2019) utilizes convolution self-attention to reduce the space complexity. Informer (Zhou et al., 2021)
applies distilling strategies to exploit the most crucial keys. Pyraformer (Liu et al., 2021) proposes a
pyramid attention design with inter-scale and intra-scale connections. More recent work PatchTST
(Nie et al., 2023) employs patch-based strategies to enhance the locality while improving long-term
forecasting accuracy. However, existing Transformer-based methods still focus on 1D temporal vari-
ation modeling and suffer from heavy computational burden for long-term time series. Instead, we
propose a more efficient Periodicity Decoupling Framework (PDF) for long-term series forecasting
by fully capturing 2D temporal short-term and long-term variations in a parallel architecture.

3 PERIODICITY DECOUPLING FRAMEWORK

3.1 THE OVERALL ARCHITECTURE

In time series forecasting, given a historical input series XI = [x1, x2, . . . , xt]T ∈ Rt×d, it aims
to predict future output series XO = [xt+1, xt+2, . . . , xt+T ]

T ∈ RT×d, where t, T is the number
of time steps in the past and future, respectively, where d > 1 is the number of dimensions. The
overall architecture of our method is shown in Figure 2. In our PDF, due to the complex temporal
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patterns, it is the first step to decouple the 1D time series for better variation modeling. To this end,
we design a Multi-periodic Decoupling Block to learn the periods of input series in the frequency
domain and convert the 1D time series into short- and long-term series, followed by reshaping into
2D tensors. Then, the obtained short-term and long-term 2D tensors are fed into serveral Dual
Variations Modeling Blocks (DVMB) to model short- and long-term variations in a parallel way.
Finally, we use a Variations Aggregation Block to merge the outputs from all DVMBs to yield the
final prediction XO. More details about our PDF are shown in the following sections.
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Figure 2: The architecture of our Periodicity Decoupling Framework, which mainly consists of
multi-periodic decoupling block, dual variations modeling block, and variations aggregation block.

3.2 MULTI-PERIODIC DECOUPLING BLOCK

The Multi-periodic Decoupling block uses Periodicity Extractor and Period-based Reshaper to trans-
form 1D time series into 2D spaces. Then it utilizes Temporal Variations Decoupler to decouple the
long-term and short-term information through “period patching” and “frequency slicing”.

Periodicity Extractor. Previous work (Wu et al., 2023) emphasizes that the original 1D structure
of time series inadequately represents only adjacent time point variations, and a 2D structure can
effectively capture variations both within and between periods. Therefore, for a given 1D input
XI ∈ Rt×d of dimension d, we employ the Fast Fourier Transform (FFT) (Chatfield, 1981) to
analyze the time series in the frequency domain as follows:

A = Avg(Amp(FFT(XI))) (1)

Here, FFT and Amp denote the FFT and amplitude extraction, respectively. The channel-wise av-
erage operation Avg over d channels yields A ∈ Rt, representing the amplitudes of t frequencies.
Specifically, the j-th value Aj represents the intensity of the periodic basis function for frequency f .
We use the univariate XI ∈ Rt instead of XI to denote the input time series in the following calcu-
lation, because the subsequent transformations and predictions are made in a channel-independent
manner (Zheng et al., 2014; Nie et al., 2023).

Different from Wu et al. (2023), we select frequencies not only focus on high amplitude but also
incorporate those with significant values and amplitude. We assert that frequencies with high am-
plitude better represent the primary components, while those with larger values facilitate a more
discernible distinction between long-term and short-term relationships. We summarize the k fre-
quencies selection by:

Fu = arg top-m
f∗∈{1,··· ,[ t

2
]}

(A), Fk1 = arg top-k1
f∗∈{1,··· ,[ t

2
]}

(A), {f1, · · · , fk} = Fk1 ∪ top-k2(Fu \ Fk1) (2)
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Figure 3: Multi-periodic Decoupling Block.
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where Fu and Fk1
represents the u and k1 frequencies with highest amplitudes from A, respectively.

We ensure that u is greater than or equal to k1. Due to the conjugate symmetry in the frequency
domain, f∗ only focuses on the former [ t2 ] frequencies. The final set of k frequencies is composed
of Fk1

and the top-k2 frequencies with the greatest values from Fu \ Fk1
.

Period-based Reshaper. Based on the selected frequencies {f1, · · · , fk} and corresponding period
lengths {p1, · · · , pk} (pi = ⌈ t

fi
⌉), we reshape the 1D input series XI ∈ Rt into k 2D tensors by:

Xi
2D = Reshapefi,pi

(Padding(XI)), i ∈ {1, · · · , k} (3)

Here, Padding(·) is employed to extend the length of XI to pi × fi by filling zeros for
Reshapefi,pi

(·), where fi and pi denote the number of rows and columns of the 2D tensor, respec-
tively. For the obtained 2D tensor Xi

2D ∈ Rfi×pi , each row represents the short-term variations and
each column represents long-term variations. We then employ Temporal Variations Decoupler
to decouple the long-term and short-term information through “period patching” and “frequency
slicing”.

Period Patching: Denote the patch length as p and the stride length as s, we divide Xi
2D ∈ Rfi×pi

along dimension pi and aggregate along dimension fi to form a patch. Specifically, Xi
2D is patched

into multiple patches xi,j
g ∈ RN×P , where N = ⌊ (pi−p)

s ⌋ + 1 is the number of patches and each
patch contains P = fi × p time steps. xi,j

g denotes the j-th patch. This patching strategy condenses
complete long-term variations between all periods.

Compared with former patching strategies (Nie et al., 2023; Zhang & Yan, 2023), our patches capture
a broader scope and richer semantic information, enhancing the capacity of the Transformer for
modeling long-term variations. Meanwhile, because the number of patches decreases from t/s to
max(pi)/s, the computational cost is significantly reduced.

Frequency Slicing: Along with fi dimensions, we split Xi
2D into several 1D short-term slices xi,r

l ∈
Rpi , where r ∈ [1, fi] denotes the r-th row of Xi

2D. Each local slice represents the short-term
variations within every period.

3.3 DUAL VARIATIONS MODELING BLOCK

As illustrated in Figure 4, the Dual Variations Modeling Block is composed of two parts: long-term
variations extractor and short-term variations extractor. It adopts a dual-branch parallel architecture
to model the long-term and short-term variations in the time series. This parallel structure not only
better preserves the high-frequency information of short-term changes but also enhances computa-
tional efficiency (Wang et al., 2022; Si et al., 2022). The details of each component will be given as
follows.

Long-term Variations Extractor: Given the patches xi,j
g ∈ RN×P with long-term information,

we initially project them into the latent space via a linear projection: xi,j
g = Linear(xi,j

g ) ∈ RN×D,
where D is the dimension of latent space. Subsequently, xi,j

g will go through several Transformer
encoder layers. The specific process of each layer can be described as follows:

x̂i,j
g = BatchNorm(xi,j

g +MSA(xi,j
g , xi,j

g , xi,j
g ))

x̂i,j
g = BatchNorm(x̂i,j

g +MLP(x̂i,j
g ))

(4)

Here, BatchNorm(·) denotes batch normalization (Ioffe & Szegedy, 2015). MLP(·) is a multi-
layered linear feedforward neural network. Multi-head self-attention MSA(·) mechanism enhances
the representation capacity by employing multiple independent self-attention heads. Each head
captures different types of long-term dependencies among different patches. All these heads are
combined to obtain more comprehensive dependencies by:

Xi
g = Linear(Flatten(x̂i,j

g )) ∈ Rt (5)

Short-term Variations Extractor: This module contains a sequence of convolution blocks, each
consisting of a Conv1d layer and a non-linear activation function. These blocks are sequentially
structured to gradually expand the receptive field, accommodating periods of various lengths. For
each local slice xi,r

l , the process of each block is:

x̂i,r
l = SELU(Conv1d(xi,r

l )) (6)
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Figure 4: Dual Variations Modeling Block.

where SELU denotes scaled exponential linear units (Klambauer et al., 2017). To get the final
prediction of the convolution part, we use the concatenate and truncate operations:

Xi
l = Truncate(Concat(x̂i,r

l )) (7)

The final output of the Dual Variations Modeling Block is the summation of Xi
g and Xi

l :

X̂i = Xi
g +Xi

l (8)

3.4 VARIATIONS AGGREGATION BLOCK

The Variations Aggregation Block consolidates the results from k DVMBs. Specifically, we concate-
nate these k results and then map them through a parameter-shared linear layer to produce univariate
prediction XO ∈ RT :

XO = Linear(Concat(X̂i)) (9)

The final multivariate prediction XO ∈ RT×d is obtained by stacking d univariate prediction XO.

4 EXPERIMENTS

Datasets We conduct extensive experiments on seven popular real-world datasets (Zhou et al., 2021),
including Electricity Transformer Temperature (ETT) with its four sub-datasets (ETTh1, ETTh2,
ETTm1, ETTm2), Weather, Electricity, and Traffic. We adopt the same train/val/test splits ratio
0.6:0.2:0.2 as Zhou et al. (2021) for the ETT datasets and split the remaining three by the ratio of
0.7:0.1:0.2 following Wu et al. (2021).

Baselines We select representative state-of-the-art methods from the recent LTSF landscape as base-
lines, including the following categories: 1) Transformer-based models: PatchTST (Nie et al., 2023)
and FEDformer (Zhou et al., 2022); 2) CNN-based models: TimesNet (Wu et al., 2023) and MICN
(Wang et al., 2022); 3) Linear-based models: TiDE (Das et al., 2023) and DLinear (Zeng et al.,
2023). Considering varying look-back window size leads to different performances, we pick up
their best performance as baselines, and corresponding results are reported from the original papers.

Setups Following Zhou et al. (2021), we normalize the train/val/test sets to zero-mean using the
mean and standard deviation from the training set. The Mean Square Error (MSE) and Mean Ab-
solute Error (MAE) are selected as evaluation metrics, consistent with previous methods. All of the
models adopt the same prediction length T = {96, 192, 336, 720}. For the look-back window t,
we conduct experiments on PDF using t = 336 and t = 720 while TiDE, PatchTST, and DLinear
employ t = 720, 512, 336, and all other models use t = 96.

4.1 MAIN RESULTS

We present multivariate long-term forecasting results in Table 1. Regarding the Count value,
PDF(720) and PDF(336) achieve the best and second-best results, outperforming all other methods
across different categories. Quantitatively, compared with Transformer-based models, PDF(720)
yields an overall 14.59% reduction in MSE and 10.77% reduction in MAE. Compared with CNN-
based models, PDF(720) yields an overall 24.61% reduction in MSE and 19.91% reduction in MAE.
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Table 1: Multivariate long-term forecasting results with different prediction lengths T ∈
{96, 192, 336, 720}. The numbers in parentheses next to the method represent the look-back win-
dow t. The best and the second best results are in bold and underlined. The last row Count indicates
the number of times each method achieves the best or the second best results.

Catagories Ours Transformers CNNs Linears
Models PDF(720) PDF(336) PatchTST(512) FEDformer(96) TimesNet(96) MICN(96) TiDE(720) DLinear(336)
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h1

96 0.356 0.391 0.357 0.388 0.370 0.400 0.376 0.419 0.384 0.402 0.421 0.431 0.375 0.398 0.375 0.399
192 0.390 0.413 0.397 0.412 0.413 0.429 0.420 0.448 0.436 0.429 0.474 0.487 0.412 0.422 0.405 0.416
336 0.402 0.421 0.409 0.422 0.422 0.440 0.459 0.465 0.491 0.469 0.569 0.551 0.435 0.433 0.439 0.443
720 0.462 0.477 0.432 0.455 0.447 0.468 0.506 0.507 0.521 0.500 0.770 0.672 0.454 0.465 0.472 0.490

E
T

T
h2

96 0.270 0.332 0.272 0.333 0.274 0.337 0.358 0.397 0.340 0.374 0.299 0.364 0.270 0.336 0.289 0.353
192 0.334 0.375 0.335 0.375 0.341 0.382 0.429 0.439 0.402 0.414 0.441 0.454 0.332 0.380 0.383 0.418
336 0.324 0.379 0.325 0.377 0.329 0.384 0.496 0.487 0.452 0.452 0.654 0.567 0.360 0.407 0.448 0.465
720 0.378 0.422 0.375 0.417 0.379 0.422 0.463 0.474 0.462 0.468 0.956 0.716 0.419 0.451 0.605 0.551

E
T

T
m

1 96 0.277 0.337 0.280 0.335 0.293 0.346 0.379 0.419 0.338 0.375 0.316 0.362 0.306 0.349 0.299 0.343
192 0.316 0.364 0.317 0.359 0.333 0.370 0.426 0.441 0.374 0.387 0.363 0.390 0.335 0.366 0.335 0.365
336 0.346 0.381 0.354 0.382 0.369 0.392 0.445 0.459 0.410 0.411 0.408 0.426 0.364 0.384 0.369 0.386
720 0.402 0.409 0.405 0.413 0.416 0.420 0.543 0.490 0.478 0.450 0.481 0.476 0.413 0.413 0.425 0.421

E
T

T
m

2 96 0.159 0.251 0.162 0.253 0.166 0.256 0.203 0.287 0.187 0.267 0.179 0.275 0.161 0.251 0.167 0.260
192 0.217 0.292 0.219 0.291 0.223 0.296 0.269 0.328 0.249 0.309 0.307 0.376 0.215 0.289 0.224 0.303
336 0.266 0.325 0.270 0.326 0.274 0.329 0.325 0.366 0.321 0.351 0.325 0.388 0.267 0.326 0.281 0.342
720 0.345 0.375 0.358 0.380 0.362 0.385 0.421 0.415 0.408 0.403 0.502 0.490 0.352 0.383 0.397 0.421

W
ea

th
er

96 0.143 0.193 0.147 0.194 0.149 0.198 0.217 0.296 0.172 0.220 0.161 0.229 0.166 0.222 0.176 0.237
192 0.188 0.236 0.192 0.239 0.194 0.241 0.276 0.336 0.219 0.261 0.220 0.281 0.209 0.263 0.220 0.282
336 0.240 0.279 0.244 0.279 0.245 0.282 0.339 0.380 0.280 0.306 0.278 0.331 0.254 0.301 0.265 0.319
720 0.308 0.328 0.318 0.330 0.314 0.334 0.403 0.428 0.365 0.359 0.311 0.356 0.313 0.340 0.323 0.362

E
le

ct
ri

ci
ty 96 0.126 0.220 0.127 0.219 0.129 0.222 0.193 0.308 0.168 0.272 0.164 0.269 0.132 0.229 0.140 0.237

192 0.145 0.238 0.145 0.237 0.147 0.240 0.201 0.315 0.184 0.289 0.177 0.285 0.147 0.243 0.153 0.249
336 0.159 0.255 0.162 0.255 0.163 0.259 0.214 0.329 0.198 0.300 0.193 0.304 0.161 0.261 0.169 0.267
720 0.194 0.287 0.200 0.290 0.197 0.290 0.246 0.355 0.220 0.320 0.212 0.321 0.196 0.294 0.203 0.301

Tr
af

fic

96 0.350 0.239 0.351 0.238 0.360 0.249 0.587 0.366 0.593 0.321 0.519 0.309 0.336 0.253 0.410 0.282
192 0.363 0.247 0.374 0.248 0.379 0.256 0.604 0.373 0.617 0.336 0.537 0.315 0.346 0.257 0.423 0.287
336 0.376 0.258 0.386 0.253 0.392 0.264 0.621 0.383 0.629 0.336 0.534 0.313 0.355 0.260 0.436 0.296
720 0.419 0.279 0.421 0.278 0.432 0.286 0.626 0.382 0.640 0.350 0.577 0.325 0.386 0.273 0.466 0.315

Count 52 44 6 0 0 1 20 0

Compared with Linear-based models, PDF(720) yields an overall 7.05% reduction in MSE and
5.51% reduction in MAE. These results affirm that PDF can effectively utilize a long historical
look-back window. Furthermore, PDF(720) consistently outperforms all baselines, except for TiDE
which exhibits a lower MSE on the traffic dataset. However, this superior performance of TiDE on
the traffic dataset is largely attributed to the prior knowledge of static covariates (Das et al., 2023).

4.2 EFFECTIVENESS OF PERIOD PATCHING

Analysis of patch information. Recent works (Nie et al., 2023; Lin et al., 2023; Zhang et al., 2023)
point out that enhancing the semantic information within patches can lead to improved predictions.
To assess the performance of patches emphasizing more semantics information versus long-term
information, we conduct the following comparative experiments: 1) PatchTST(336): Following
the original PatchTST experimental setup, we set each patch length p = 16 and stride s = 8,
yielding a total of 42 patches; 2) PatchTST(336)∗: We set p = 64, s = 14 and obtain 24 patches.
Compared with PatchTST(336), each patch is longer and encompasses more semantics information.
3) PDF(336): We employ single-period patching with a period length p1 = 24 and choose p = s =
1. Given that f1 = 336/p1 = 14, each patch has a length of p × f1 = 14. This resulted in 24
patches, each rich in long-term information.

The experimental results in Table 2 show that compared with PatchTST(336) and PatchTST(336)∗,
PDF(336) demonstrates noticeable performance improvements on most datasets. These findings
emphasize the importance of long-term information contained within the patches. It is notewor-
thy that both PatchTST(336)* and PDF(336) have the same number of patches. Even though each
patch in PatchTST(336)* is longer, theoretically suggesting potential for better prediction results,
its performance does not improve and is even worse than PatchTST(336) in some cases. This fur-
ther indicates that merely extending the semantics information within a patch is not sufficient for
enhancing prediction. The key is to ensure each patch captures more long-term information and our
period patching method can effectively address this concern.

Analysis of efficiency. To further validate the computational efficiency of our period patching ap-
proach, we conduct experiments comparing the Multiply-Accumulate Operations (MACs) (Cao
et al., 2022) of our PDF with two other patch-based methods across various look-back windows
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Table 2: Results of each patch with various semantic information. PatchTST(336)∗
denotes the variant of PatchTST with longer patches (e.g. more semantics informa-
tion). The best results are in bold.

Datasets ETTh1 Electricity Traffic

Method Metric 96 192 336 720 96 192 336 720 96 192 336 720

PatchTST(336) MSE 0.370 0.413 0.422 0.447 0.129 0.147 0.163 0.197 0.360 0.379 0.392 0.432
MAE 0.400 0.429 0.440 0.468 0.222 0.240 0.259 0.290 0.249 0.256 0.264 0.286

PatchTST(336)∗ MSE 0.389 0.425 0.435 0.451 0.130 0.148 0.164 0.202 0.367 0.376 0.393 0.428
MAE 0.411 0.429 0.440 0.468 0.223 0.241 0.257 0.291 0.253 0.260 0.263 0.283

PDF(336) MSE 0.357 0.397 0.409 0.432 0.128 0.147 0.166 0.204 0.353 0.374 0.388 0.423
MAE 0.388 0.412 0.422 0.455 0.223 0.243 0.263 0.294 0.239 0.250 0.257 0.277

t ∈ {336, 512, 720, 960} and prediction length T ∈ {96, 192, 336, 720}. The results are sum-
marized in Table 3. Overall, the MACs for PDF reduced by 34.64% compared to PatchTST and
74.38% compared to Crossformer. For a fixed look-back window t, the increase in MACs for PDF
corresponding to the growth in prediction length T typically resides in the magnitude of millions,
whereas for PatchTST and Crossformer, it is in the magnitude of gillions. The same observation is
noted when keeping the prediction length constant and increasing the size of the look-back window.
In extreme cases, specifically for ETTh1 with t = 960 and T = 720, PDF demonstrated superior
lightweight performance, with reductions in MACs of 54.12% and 99.71% compared to PatchTST
and Crossformer, respectively.

Table 3: Comparison of Multiply-Accumulate Operations (MACs) among PDF and two
other patch-based Transformer methods (PatchTST (Nie et al., 2023) and Crossformer
(Zhang & Yan, 2023)) for different look-back window t ∈ {336, 512, 720, 960} and
prediction lengths T ∈ {96, 192, 336, 720}. “M” and “G” stand for million and gillion
operations. The lowest computational costs are in bold.

Look-back 336 512 720 960
Models PDF Patch. Cross. PDF Patch. Cross. PDF Patch. Cross. PDF Patch. Cross.

E
T

T
h1

96 3.97M 5.21M 0.81G 4.67M 7.94M 1.08G 5.49M 11.17M 1.37G 6.49M 14.89M 1.72G
192 4.19M 5.66M 1.13G 5.01M 8.63M 1.40G 5.98M 12.14M 1.69G 7.13M 16.18M 2.04G
336 4.53M 6.34M 1.61G 5.53M 9.66M 1.88G 6.70M 13.59M 2.17G 8.10M 18.12M 2.52G
720 5.44M 8.15M 2.89G 6.91M 12.42M 3.16G 8.64M 17.46M 3.45G 10.68M 23.28M 3.80G

Avg. 4.53M 6.34M 1.61G 5.53M 9.66M 1.88G 6.70M 13.59M 2.17G 8.10M 18.12M 2.52G

E
le

ct
ri

ci
ty 96 3.41G 5.53G 2.17G 3.60G 8.42G 2.89G 3.82G 11.84G 3.66G 4.08G 15.79G 4.59G

192 3.42G 5.69G 3.02G 3.61G 8.67G 3.74G 3.84G 12.20G 4.52G 4.11G 16.26G 5.45G
336 3.43G 5.94G 4.31G 3.64G 9.05G 5.03G 3.88G 12.73G 5.81G 4.16G 16.97G 6.74G
720 3.48G 6.60G 7.74G 3.70G 10.06G 8.46G 3.97G 14.15G 9.24G 4.27G 18.86G 10.17G

Avg. 3.44G 5.94G 4.31G 3.64G 9.05G 5.03G 3.88G 12.73G 5.81G 4.16G 16.97G 6.74G

Tr
af

fic

96 9.15G 14.84G 5.81G 9.67G 22.61G 7.74G 10.27G 31.80G 9.82G 10.97G 42.40G 12.32G
192 9.18G 15.28G 8.11G 9.71G 23.29G 10.04G 10.33G 32.75G 12.12G 11.05G 43.67G 14.62G
336 9.22G 15.95G 11.56G 9.77G 24.31G 13.50G 10.42G 34.18G 15.57G 11.17G 45.57G 18.08G
720 9.33G 17.73G 20.77G 9.94G 27.02G 22.70G 10.66G 37.99G 24.78G 11.49G 50.66G 27.28G

Avg. 9.22G 15.95G 11.56G 9.77G 24.31G 13.50G 10.42G 34.18G 15.57G 11.17G 45.58G 18.08G

4.3 ABLATION STUDIES

Convolution Module. To investigate the impact of convolution in short-term variations modeling,
we conduct a study comparing the following three cases: 1) Parallel Convolution; 2) Sequential
Convolution; 3) Without Convolution. We perform these comparisons in four datasets. The results
in Table 4 show that parallel convolution consistently outperforms its sequential counterpart, an
advantage possibly stemming from the training challenges posed by deeper networks in serial archi-
tectures. Interestingly, models without convolution yield better results than those using sequential
convolution, highlighting the drawbacks of overly deep serial networks. Furthermore, when com-
pared to the model without convolution, the parallel approach achieves notable performance im-
provements on datasets with weaker periodicity, demonstrating its effectiveness in preserving short-
term information without increasing network depth. The observed degradation in performance for
datasets with strong periodicity, such as Traffic, underscores the necessity of placing emphasis on
the long-term variations across periods.

Variations Aggregation Method. We explore two methods for aggregating the outputs of multiple
DVMBs within the variations aggregation block: 1) Concat: Concatenate the outputs of all DVMBs

8



Published as a conference paper at ICLR 2024

Table 4: Ablation study of convolution module in PDF. “Par Conv”, “Seq Conv”, and “w/o
Conv” denote parallel convolution, sequential convolution, and without convolution. The best
results are in bold.

Datasets ETTh2 Weather Electricity Traffic

Method Metric 96 192 336 720 96 192 336 720 96 192 336 720 96 192 336 720

Par Conv MSE 0.270 0.334 0.324 0.378 0.143 0.188 0.240 0.308 0.126 0.145 0.159 0.194 0.360 0.363 0.376 0.419
MAE 0.332 0.375 0.379 0.422 0.193 0.236 0.279 0.328 0.220 0.238 0.255 0.287 0.239 0.247 0.258 0.279

Seq Conv MSE 0.279 0.342 0.336 0.418 0.146 0.192 0.244 0.316 0.128 0.145 0.161 0.196 0.366 0.376 0.386 0.426
MAE 0.339 0.381 0.391 0.452 0.197 0.241 0.283 0.336 0.225 0.241 0.257 0.289 0.255 0.260 0.267 0.287

w/o Conv MSE 0.273 0.340 0.334 0.399 0.145 0.190 0.243 0.307 0.127 0.144 0.160 0.196 0.348 0.363 0.375 0.420
MAE 0.338 0.382 0.390 0.441 0.196 0.239 0.281 0.331 0.221 0.239 0.255 0.288 0.237 0.247 0.256 0.282

and map them through linear projection; 2) Mean: Compute the average outputs of all DVMBs. The
experimental results of these two aggregation strategies are presented in Table 5, which shows that
the Concat operation generally has better performance than the Mean operation.

Table 5: Ablation study of the variations aggregation method. The best results are in bold.

Datasets ETTh2 ETTm2 Weather Electricity

Method Metric 96 192 336 720 96 192 336 720 96 192 336 720 96 192 336 720

Concat MSE 0.270 0.334 0.324 0.378 0.159 0.217 0.266 0.345 0.143 0.188 0.240 0.308 0.126 0.145 0.159 0.194
MAE 0.332 0.375 0.379 0.422 0.251 0.292 0.325 0.375 0.193 0.236 0.279 0.328 0.220 0.238 0.255 0.287

Mean MSE 0.274 0.340 0.328 0.396 0.163 0.219 0.270 0.344 0.144 0.191 0.244 0.308 0.127 0.144 0.161 0.194
MAE 0.337 0.381 0.384 0.437 0.254 0.295 0.329 0.377 0.194 0.240 0.282 0.330 0.221 0.240 0.257 0.287

4.4 COMPUTATIONAL COMPLEXITY ANALYSIS

Table 6 compares the theoretical complexity per
layer across different Transformer-based models.
The complexity of the encoder layer in the origi-
nal Transformer is O(t2). Subsequent works man-
age to reduce the complexity of the encoder layer
to O(t log t) or even O(t). While the patch-based
approaches retain quadratic complexity, the intro-
duction of the patch length p makes O(( t

p )
2) fa-

vorable over O(t) when t is not excessively large.
Notably, expect for PDF, all existing Transformer-
based methods have the complexities of an en-
coder layer tied to the length of the look-back
window t. The computational complexity of PDF
is only related to the maximum decoupled peri-
odic length pi. This ensures that even when the
t is extremely large, computational costs remain
low. For example, if we select the Electricity
dataset with t = 105 and choose its most repre-
sentative periodic pi = 24 with the patch length
p = 24, our computational complexity will be sig-
nificantly lower than all other methods.

Table 6: Theoretical computational complexity
per layer in Transformer-based models. t and
T denote the length of the look-back window
and prediction window, respectively. d denotes
the number of variates. p denotes the length of
each patch in the patch-based methods.

Method Encoder layer Decoder layer

Trans. (Vaswani et al., 2017) O(t2) O(T (t + T ))

In. (Zhou et al., 2021) O(t log t) O(T (T + log t))

Auto. (Wu et al., 2021) O(t log t) O(( t
2

+ T ) log( t
2

+ T ))

Pyra. (Liu et al., 2021) O(t) O(t(t + T ))

FED. (Zhou et al., 2022) O(t) O( t
2

+ T )

ETS. (Woo et al., 2022) O(t log t) O(T log T )

Cross. (Zhang & Yan, 2023) O( d
p2

t2) O( d
p2

T (t + T ))

MTP. (Zhang et al., 2023) O(( t
p
)2) O(( t+T

p
)2)

PET. (Lin et al., 2023) O(( t
p
)2) -

Patch. (Nie et al., 2023) O(( t
p
)2) -

PDF (Ours) O((
max(pi)

p
)2) -

5 CONCLUSIONS

This paper introduces an efficient Periodicity Decoupling Framework (PDF) for long-term series
forecasting. The PDF captures both short- and long-term temporal variations in 2D spaces. The
approach involves breaking down complex 1D time series using a multi-periodic decoupling block
(MDB) based on periodicity. Additionally, a dual variations modeling block (DVMB) is proposed to
learn short- and long-term variations from the decoupled 2D series in parallel. Compared to previous
methods that only model 1D temporal variations, our PDF performs better by effectively extracting
both short- and long-term variations. Experiments on real-world datasets demonstrate the superior
forecasting performance and computational efficiency over other state-of-the-art methods.
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