
A Appendix

A.1 Detailed descriptions of hGRU and cLSTM

Formulation of hGRU The hGRU cell and the following formulation are adapted from [1, 2] for the setting of
RecSlowFast. The hGRU unit has hidden states Hn

t ∈ Rh×w×c where t is the input timestep, n denotes the nth

recurrent step and h×w× c give the height, width, and channel dimensions. Xt ∈ Rh×w×c is the input feature
to this hGRU unit. There are two gates GS and GF , GS is for suppression and GF is for facilitation/excitation.

For the suppression stage, the hGRU does the following operations:

GS = σ(US ∗ Hn−1
t ) (6)

CS = BatchNorm(WS ∗ (Hn−1
t ⊙ GS)) (7)

S =
[
Xt − [CS ⊙ (αHn−1

t + µ)]+
]
+

(8)

(9)

For the facilitation/excitation stage:

GF = σ(UF ∗ S) (10)

CF = BatchNorm(WF ∗ S) (11)

H̃ = [κS + γCF + ω(CF ⊙ S)]+ (12)

Hn
t = [(1− GF )⊙ Hn−1

t + GF ⊙ H̃]+ (13)

Convolution is denoted by *, ⊙ denotes the Hadamard product, [·]+ denotes the softplus pointwise nonlinearities
and σ is the sigmoid function. Detailed designed choices for the hGRU cell are in [1, 2].

The RecSlowFast-hGRU instantiation begins with a convolutional layer with kernel size 7 mapping the greyscale
input to 25 channels. The resulting feature map is squared then followed by one layer of hGRU cell, which is the
recurrent part of the network. The output of the hGRU is then batch normalized and fed into a convolutional
layer with kernel size 1 and mapping 25 channels to 2 channels. For processing the next input feature Xt+1,
RecSlowFast-hGRU will forward the last hidden states HN(t)

t as the initial hidden states for t + 1, namely
H0

t+1 = HN(t)
t .

Formulation of cLSTM We follow the cLSTM used in [2, 3], each convolutional LSTM cell is as follow:

i = σ(Wxi ∗ xt +Whi ∗ hn−1
t ) (14)

f = σ(Wxf ∗ xt +Whf ∗ hn−1
t ) (15)

o = σ(Wxo ∗ xt +Who ∗ hn−1
t ) (16)

cnt = f ⊙ cn−1
t + i⊙ tanh(Wxc ∗ xt +Whc ∗ hn−1

t ) (17)
hn
t = o⊙ tanh(cnt ) (18)

The RecSlowFast-cLSTM instantiation also begins with a convolutional layer with kernel size 7 mapping the
greyscale input to 25 channels. The resulting feature map is squared then followed by one layer of cLSTM cell,
which is the recurrent part of the network. The output of the hGRU is then batch normalized and fed into a
tail convolutional layer with kernel size 1 and mapping 25 channels to 2 channels. Apart from the recurrent
cell (cLSTM vs. hGRU), the two instantiations are having the exact same structure. The cLSTM cell states cnt
and hidden states hn

t are considered together as hidden states in the RecSlowFast framework and get passed
between input timesteps, namely (c0t+1, h

0
t+1) = (c

N(t)
t , h

N(t)
t ). The other notations for arithmetic operations

are consistent with the hGRU formulation.

A.2 Detailed descriptions of baselines

FF-* networks FF-* stands for normal 2D convolutional feedforward networks. Every FF-* network has one
head and one tail convolution layer. The head convolution layer has 25 kernels with kernel size 7, followed by
batch normalization. The tail convolution has 2 kernels with kernel size 1, mapping multiple channels into 2
class feature maps, which will used for the calculation of the loss together with the ground truth.

The FF-6 and FF-8 networks consist of 6 and 8 convolutional layers between the head and tail. Each layer has 25
kernels with size 15. Each convolution layer is followed by a batch normalization and ReLU activation function.
The FF-res-6 and FF-res-8 networks also have 6 and 8 convolution layers between the head and trail, each with
25 kernels with size 15. However, every two convolution layers are organized as a residual block. The input to

14



the residual block is added to the output of the batch normalization output of the second convolution layer in the
residual block, before the ReLU activation. All kernel sizes are matched up closely with other architectures in
the experiments.

Conv3D-* networks The Conv3D-* baselines consist of three 3D-convolution layers as the head followed by
five 2D-convolution layers. We control the spatial kernel size in each layer similar to the rest of all T-Pathfinder
experiments (7 for the first layer, 15 for the rest). All 3D convolution layers use a kernel size 2 in the depth
dimension. The two Conv3D variants, i.e., Conv3D-S and Conv3D-M net, only differ in the number of channels
in the three 3D convolution layers ([8, 16, 16] vs [25, 25, 25]). The inputs to the network are not single frames
but the concatenation of the last 4 frames, thus the model is given the ability to use past information.

A.3 More results on T-Pathfinder

cLSTM-s2f2

cLSTM-s1f1

FF-6

FF-res-6

FF-8Conv3D-M Conv3D-S

Figure 6: Different RecSlowFast schedules with hGRU and cLSTM instantiations, compared with
their Stateless counterparts and feedforward CNN baselines. Circle sizes represent the number of
parameters. Detailed descriptions for feedforward baselines FF-* and Conv3D-* are in Appendix A.2.
The dataset studied is T-Pathfinder-Easy.

T-Pathfinder-Easy

hGRU s6f6 s4f4 s2f2 s1f1
mean std. FPS mean std. FPS mean std. FPS mean std. FPS

RecSlowFast .994 .001 110 .994 .002 164 .966 .003 315 .879 .011 561Stateless .972 .002 .919 .010 .685 .008 .536 .004

hGRU s6f6 s6f4 s6f2 s6f1
mean std. FPS mean std. FPS mean std. FPS mean std. FPS

RecSlowFast .994 .001 110 .993 .001 152 .994 .002 241 .992 .002 342

Table 3: Comparison between RecSlowFast-hGRU and Stateless-hGRU with the same schedule and
the effect of reducing recurrent steps on consecutive frames when hidden states are recycled.

More comparisons on T-Pathfinder-Easy Figure 6 and Table 3 give a more detailed comparison among
RecSlowFast, Stateless, and feedforward CNN baselines. The trend of RecSlowFast always outperforming the
Stateless version with the same train/inference schedule is shown for both hGRU and cLSTM instantiations. And
reducing the number of fast steps for RecSlowFast down to s6f1 well preserved the task accuracy and boosted
the inference speed. In addition to having the number of slow steps with 6, we also experimented s3f1 schedule,
which maintained a good mIoU while further reducing the computation cost.

15



T-Pathfinder-Easy

RecSlowFast-hGRU FF-8 Conv3D-S DEQ-hGRU
s6f1 θ = 0.1 θ = 0.01 θ = 0.001

mIoU .992 .956 .947 .955 .955 .955

FPS 342 168 105 140 123 65

parameters 284k 1127k 827k 284k 284k 284k

Table 4: Comparison between RecSlowFast-hGRU, DEQ-hGRU and other baselines.

Comparison with deep equilibrium models We have implemented a baseline using the DEQ layer (DEQ-
hGRU) based on the publicly available code from [4]. For DEQ-hGRU, the recurrent hGRU cell is replaced with
an implicit DEQ layer. In order to maintain training stability, we had to modify the architecture by adding an
additional batch normalization layer before the DEQ layer. We tried both Broyden and Anderson solvers [4] and
used the relative difference of hidden states between two iterations of the fixed point solver as stopping criteria
(threshold θ). The Broyden solver performed worse than the Anderson solver so we omitted the results here.
We use maximum 10 iterations and θ = 0.01 in training. In both training and testing, state reuse was used. A
preliminary study with different inference θ (θ affects the tradeoff between inference speed and accuracy) is
shown in Table 4. From the preliminary results on the T-Pathfinder-Easy dataset, the RecSlowFast-hGRU-s6f1
performs the best in both mIoU and FPS.

The root-finder solvers for the deep equilibrium models require a typically quadratic time and memory complexity
w.r.t the dimension of the hidden state, making it not very compatible with layers resulting in large feature map
dimensions (such as convolution). In contrast, RecSlowFast does not incur the additional budget from using a
fixed point solver. This gives us more flexibility in the choice of class of layers and better compatibility with
modern neural network hardware accelerators.

A.4 PCA details

For creating the PCA trajectory in Figure 4(a), we adapted the PCA analysis in [2] and implemented the
following steps: (1) We first fetch the best-performing checkpoint of RecSlowFast-hGRU-s8f8 trained on
T-Pathfinder-Hard, then extract hidden states on the test split also using the schedule of s8f8. Thus, for each
input test frame, there will be 8 hidden states. Together with the initialization, there are 65 hidden states in total
for every sequence, each of size 128 × 128 × 25, where 25 is the number of channels and 128 × 128 is the
spatial size. (2) All hidden states are then averaged along the channel axis and flattened, resulting in 128× 128
dimensional vectors. (3) The dimension is reduced with PCA to 2 dimensional for visualization.

A.5 DRU network for CamVid semantic segmentation

For the DRU experiment, we use a U-Net architecture with a convolutional DRU network same as in [5]. The
DRU network has a U-Net-like bottleneck structure. The encoding stage consists of 4 convolutional layers
followed by batch normalization and maxpooling. The four convolutional layers have 16, 32, 64, and 128 filters
respectively. The convDRU unit, which works as the bottleneck block, maps the features from 128 channels
to 256 channels. The decoder part of the network reduces the channels with 4 transposed convolutional layers
which maps the number of channels to 128, 64, 32, and 16 consecutively. The decoder is then followed by a
convolutional layer that maps the 16 channels to the number of semantic classes of channels. We denote the
output of the last layer as Sn

t in each recurrent step of input timestep t. The input to the entire DRU network is
the original input frame concatenated with the output Sn

t , namely [It, S
n
t ].

The formulation of the convDRU cell, used as the bottleneck, adapted from [5] is as follows:

r = σ(Wr ∗ xn−1
t ) (19)

z = σ(Wz ∗ xt) (20)

h̃ = tanh(Wt ∗ (r ⊙ xn−1
t )) (21)

hn
t = z ⊙ hn−1

t + (1− z)⊙ h̃ (22)

where Wr,Wz,Wt are convolutional kernels. xn−1
t is the input features to the convDRU cell. Notice xn−1

t

comes with a recurrent step in the superscript, since the input feature is also dependent on the output of the entire
network Sn

t . In the RecSlowFast-DRU network, the states reused cross input timesteps are hn
t and Sn

t .

16



A.6 T-Pathfiner examples

I1 I2 I3 I4 I5 I6 I7 I8

yGT
1 yGT

2 yGT
3 yGT

4 yGT
5 yGT

6 yGT
7 yGT

8

Figure 7: T-Pathfinder-Hard example used in Figure 2.

I1 I2 I3 I4 I5 I6 I7 I8

yGT
1 yGT

2 yGT
3 yGT

4 yGT
5 yGT

6 yGT
7 yGT

8

Figure 8: T-Pathfinder-Hard example used in Figure 4(b). Notice the lower right two distractors
visually merged starting from I2. Stateless models are likely to misinterpret them as from the same
contour.

I1 I2 I3 I4 I5 I6 I7 I8

yGT
1 yGT

2 yGT
3 yGT

4 yGT
5 yGT

6 yGT
7 yGT

8

Figure 9: T-Pathfinder-Hard example.

17



I1 I2 I3 I4 I5 I6 I7 I8

yGT
1 yGT

2 yGT
3 yGT

4 yGT
5 yGT

6 yGT
7 yGT

8

Figure 10: T-Pathfinder-Hard example.

I1 I2 I3 I4 I5 I6

yGT
1 yGT

2 yGT
3 yGT

4 yGT
5 yGT

6

Figure 11: T-Pathfinder-Easy example used in Figure 2.

I1 I2 I3 I4 I5 I6

yGT
1 yGT

2 yGT
3 yGT

4 yGT
5 yGT

6

Figure 12: T-Pathfinder-Easy example.

18



I1 I2 I3 I4 I5 I6

yGT
1 yGT

2 yGT
3 yGT

4 yGT
5 yGT

6

Figure 13: T-Pathfinder-Easy example.

19



References
[1] Drew Linsley, Junkyung Kim, Vijay Veerabadran, Charles Windolf, and Thomas Serre. Learning long-

range spatial dependencies with horizontal gated recurrent units. In S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett (eds.), Advances in Neural Information Processing Systems,
volume 31. Curran Associates, Inc., 2018. URL https://proceedings.neurips.cc/paper_files/
paper/2018/file/ec8956637a99787bd197eacd77acce5e-Paper.pdf.

[2] Drew Linsley, Alekh Karkada Ashok, Lakshmi Narasimhan Govindarajan, Rex Liu, and Thomas Serre.
Stable and expressive recurrent vision models. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and
H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33, pp. 10456–10467. Cur-
ran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/
file/766d856ef1a6b02f93d894415e6bfa0e-Paper.pdf.

[3] William Lotter, Gabriel Kreiman, and David Cox. Deep predictive coding networks for video prediction
and unsupervised learning. In International Conference on Learning Representations, 2017. URL
https://openreview.net/forum?id=B1ewdt9xe.

[4] P. Micaelli, A. Vahdat, H. Yin, J. Kautz, and P. Molchanov. Recurrence without recurrence: Stable video
landmark detection with deep equilibrium models. In 2023 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 22814–22825, Los Alamitos, CA, USA, jun 2023. IEEE Computer
Society. doi: 10.1109/CVPR52729.2023.02185. URL https://doi.ieeecomputersociety.org/10.
1109/CVPR52729.2023.02185.

[5] Wei Wang, Kaicheng Yu, Joachim Hugonot, Pascal Fua, and Mathieu Salzmann. Recurrent u-net for
resource-constrained segmentation. In Proceedings of the IEEE International Conference on Computer
Vision, pp. 2142–2151, 2019. URL https://ieeexplore.ieee.org/document/9010910.

20

https://proceedings.neurips.cc/paper_files/paper/2018/file/ec8956637a99787bd197eacd77acce5e-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/ec8956637a99787bd197eacd77acce5e-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/766d856ef1a6b02f93d894415e6bfa0e-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/766d856ef1a6b02f93d894415e6bfa0e-Paper.pdf
https://openreview.net/forum?id=B1ewdt9xe
https://doi.ieeecomputersociety.org/10.1109/CVPR52729.2023.02185
https://doi.ieeecomputersociety.org/10.1109/CVPR52729.2023.02185
https://ieeexplore.ieee.org/document/9010910

	Introduction
	Related work
	Recurrent slow-fast networks
	The Temporal-Pathfinder dataset and experiment results
	Construction of the Temporal Pathfinder (T-Pathfinder) dataset
	RecSlowFast results on T-Pathfinder

	Distance-based recurrence halting criteria
	Video semantic segmentation
	Conclusion
	Appendix
	Detailed descriptions of hGRU and cLSTM
	Detailed descriptions of baselines
	More results on T-Pathfinder
	PCA details
	DRU network for CamVid semantic segmentation
	T-Pathfiner examples


