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Large-Scale Distributed Learning via Private486

On-Device LSH487

A Experiment details488

In this section, we provide deeper background into how our experiments were run as well as some489

additional results and observations. We first detail the hyper-parameters we used in order to reproduce490

our results. Then, we provide additional comments and details into our sampling approach. Finally,491

we describe some of the interesting observations we encountered while solving the Amazon-670K492

and Wiki-325K recommender system problems.493

A.1 Experiment hyper-parameters494

Below, we detail the hyper-parameters we used when running our federated experiments.

Table 1: Hyper-parameters for Federated Experiments (PGHash and Federated SLIDE).
Dataset Algorithm Hash Type LR Batch Size Steps per LSH k c Tables CR

Delicious-200K PGHash PGHash 1e-4 128 1 8 8 50 1
Delicious-200K SLIDE SimHash 1e-4 128 1 8 N/A 50 1
Amazon-670K PGHash PGHash-D 1e-4 256 50 8 8 50 1
Amazon-670K SLIDE DWTA 1e-4 256 50 8 N/A 50 1

Wiki-325K PGHash PGHash-D 1e-4 256 50 5 16 50 1
Wiki-325K SLIDE DWTA 1e-4 256 50 5 N/A 50 1

495

What one can immediately see from Table 1, is that we use a Densified Winner Take All (DWTA)496

variant of PGHash for the larger output datasets Amazon-670K and Wiki-325K. As experienced in497

[8, 7, 24], SimHash fails to perform well on these larger datasets. We surmise that SimHash fails498

due in part to its inability to select a large enough number of neurons per sample (we observed this499

dearth of activated neurons empirically). Reducing the hash length k does increase the number of500

neurons selected, however this decreases the accuracy. Therefore, DWTA is used because it utilizes501

more neurons per sample on these larger problems and also still achieves good accuracy.502

Table 2: Hyper-parameters for Compression Experiments (PGHash).
Dataset Algorithm Hash Type LR Batch Size Steps per LSH k c Tables CR

Delicious-200K PGHash PGHash 1e-4 128 1 8 8 50 0.1/0.25/1

As a quick note, we record test accuracy every so often (around 100 iterations for Delicious-200K503

and Amazon-670K). Similar to [8], to reduce the test accuracy computations (as the test sets are very504

large) we compute the test accuracy of 30 randomly sampled large batches of test data.505

A.2 Neuron sampling506

Speed of Neuron Sampling. In Table 3 we display the time it takes to perform LSH for PGHash507

given a set number of tables. These times were collected locally during training. The entries in Table508

3 denote the time it takes to compute hashing of the final layer weights wi and each sample x in batch509

M as well as vanilla-style matching (neuron selection) for each sample.510

Table 3: Average LSH time for PGHash over a range of tables. We compute the average µ time
(and standard deviation σ) it takes for PGHash to perform vanilla sampling (exact matches) between
the hash codes of sample x and each weight wi in the final dense layer. Times are sampled for
PGHash on Delicious-200k for batch size M = 128, k = 9, and c = 8 for one device.

Method 1 table (seconds) 50 tables (seconds) 100 tables (seconds)
PGHash µ = 0.0807, σ = 0.0076 µ = 3.1113, σ = 0.0555 µ = 6.2091, σ = 0.1642
SLIDE µ = 0.0825, σ = 0.0099 µ = 3.2443, σ = 0.1671 µ = 6.2944, σ = 0.0689

We find in Table 3 that PGHash achieves near sub-linear speed with respect to the number of tables τ511

and slightly outperforms SLIDE. PGHash edges out SLIDE due to the smaller matrix multiplication512
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Figure 7: Wiki-325K PGHash-D. We record model accuracy of a large recommendation system on
Wiki-325K. PGHash-D matches the convergence of SLIDE without requiring LSH to be performed
by the central server. We note that test accuracy is determined by testing 30 randomly sampled large
batches of test data (and not the full test data). We saw that the true full test accuracy (which we
compute after each epoch) ran about 5% greater than the sampled batches.

cost, as PGHash utilizes a smaller random Gaussian matrix (size c×c). The speed-up over SLIDE will513

become more significant when the input layer is larger (as d = 128 in our experiments). Therefore,514

PGHash obtains superior sampling performance to SLIDE.515

Hamming Distance Sampling. An alternative method to vanilla sampling is to instead select final516

layer weights (neurons) wi which have a small Hamming distance relative to a given sample x. As a517

refresher, the Hamming distance simply computes the number of non-matching entries between two518

binary codes (strings). If two binary codes match exactly, then the Hamming distance is zero. In this519

sampling routine, either (i) the top-k weights wi with the smallest Hamming distance to sample x520

are selected to be activated or (ii) all weights wi with a Hamming distance of β or smaller to sample521

x are selected to be activated. Interestingly, the vanilla-sampling approach we use in our work is522

equivalent to using β = 0 in (ii).523

In either of the scenarios listed above, hash codes for wi and x are computed as done in PGHash(-D).524

From there, however, the hash code for x is compared to the hash codes for all final layer weights525

in order to compute the Hamming distance for each wi. The process of computing n Hamming526

distances for each sample x is very expensive (much harder than just finding exact matches). That is527

why our work, as well as [8, 7], use vanilla sampling instead of other methods.528

A.3 Amazon-670K and Wiki-325K experiment analysis529

Sub-par SimHash Performance. SimHash is known to perform worse than DWTA on Amazon-530

670K and Wiki-325K. Utilizing SimHash for these experiments is unfair as it is shown by [8, 7],531

for example, that DWTA achieves much higher performance on Amazon-670K. For this reason,532

DWTA is the chosen hash function in [8] for Amazon-670K experiments. To verify this observation,533

we performed experiments on Amazon-670K with PGHash (not PGHash-D) and SLIDE (with a534

SimHash hash function). Table 4 displays the SimHash approach for Amazon-670K.535

Table 4: PGHash and SLIDE performance on Amazon-670K using SimHash. Accuracy across
the first 5,000 iterations for a single device. Batch size M = 1024, k = 8, and c = 8.

Iteration SLIDE PGHash
1,000 10.82% 10.04%
2,000 18.27% 15.99%
3,000 21.83% 19.51%
4,000 23.72% 21.65%
5,000 25.08% 23.38%

As shown in Table 4, even with a much larger batch size, SLIDE and PGHash are unable to crack536

30% on Amazon-670K. We would like to note that using a smaller batch size (like the M = 256537
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value we use in our Amazon-670K experiments) resulted in an even further drop in accuracy. These538

empirical results back-up the notion that SimHash is ill-fit for Amazon-670K.539

Wiki-325K Performance. In Figure 7, we showcase how PGHash-D performs on Wiki-325K.540

Quite similar to the Amazon-670K results (shown in Figure 5), PGHash-D almost exactly matches up541

with SLIDE. In order to map how well our training progresses, we periodically check test accuracies.542

However, since the test set is very large, determining test accuracies over the entire test set is infeasible543

due to time constraints on the cluster. Therefore, we determine test accuracies over 30 batches of544

test data as a substitute as is done in [8, 7]. For Delicious-200K and Amazon-670K the entire545

test set accuracies matched the randomly sampled batches, however the randomly sampled batches546

underestimate the true test accuracies for Wiki-325K. For Wiki-325K, the true test accuracy ran about547

5% greater than the sampled test accuracy values.548

Matching Full-Training Performance. Along with the failure for SimHash to perform well on549

Amazon-670K and Wiki-325K, SLIDE and PGHash(-D) are unable to match the performance of550

full-training on these data-sets. This is observed empirically for Amazon-670K by GResearch in551

the following article https://www.gresearch.co.uk/blog/article/implementing-slide/.552

We surmise that the failure of SLIDE and PGHash(-D) to match full-training performance on Amazon-553

670K and Wiki-325K arises due to the small average labels per point in these two data-sets (5.45554

and 3.19 respectively). Early on in training, SLIDE and PGHash(-D) do not utilize enough activated555

neurons. This is detrimental to performance when there are only a few labels per sample, as the556

neurons corresponding to the true label are rarely selected at the beginning of training (and these557

final layer weights are tuned much slower). In full-training, the true neurons are always selected and558

therefore the final layer weights are better adjusted from the beginning. We also note that [33] requires559

a hidden layer size of 1024 for a distributed version of SLIDE to achieve improved test accuracies for560

Amazon-670K. Thus, increasing the hidden layer size may have improved our performance (we kept561

it as 128 to match the original SLIDE paper [8]).562

B PGHash: angle versus Hamming distance563

In this section, we visually explore the degree to which PGHash is a consistent estimator of angular564

similarity. Specifically, let x, y ∈ Rd: then we know by Theorem 1 that HPG(c, d) is an LSH for565

cos(xc, yc). We demonstrate that in the unit vector regime, θc = arccos(cos(xc, Yc)) is an acceptable566

surrogate for θ = arccos(x, Y ), where Y = {yi}Ni=1 and Yc = {yic}Ni=1.567

(a) c=5 (b) c=10 (c) c=25

(d) c=5 (e) c=10 (f) c=25

Figure 8: Angle/Hamming Distance as a function of sketch dimension. The average Hamming
distance between a PGHashed fixed unit vector x ∈ R100 and a collection of vectors yi ∈ R100 which
form different angles with x. Increasing sketch dimension c smooths and reduces the variance of
the scatter towards linear correlation. Furthermore, the Hamming scales linearly with c, improving
discernibility. (a)-(c) & (d)-(f) are independent series.
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(a) 5 tables (b) 10 tables (c) 50 tables

Figure 9: Angle/Hamming Distance as a function of tables The average Hamming distance between
a PGHashed fixed unit vector x ∈ R100 and a collection of vectors yi ∈ R100 which form different
angles with x and fixed sketch dimension c = 10. Increasing the number of tables reduces variance.

C Additional proofs568

Fact 3. Let x, y, e1, e2 be d-dimensional unit vectors such that that the ei lie on the unit circle569

contained with the plane spanned by x and y (denoted as Sx,y) and e1 ⊥ e2. Consider the point570

v on Sx,y such that the line through it bisects the angle of the lines passing through x and y. Let571

η = arccos(cos(v, e1). Denote θ = 1
2 arccos(cos(x, y)). Then we may write x = cos(η + θ)e1 +572

sin(η + θ)e2 and y = cos(η − θ)e1 + sin(η − θ)e2.573

C.1 Proof of Theorem 2574

Proof. Let θ = 1
2 arccos(cos(x, y)) where x, y ∈ Sd−1 and A = B⊤B. The cosine similarity575

between xc = Bx and yc = By (for B correspondent to a (d, c)-folding), is expressible as576

cos(xc, yc) =
x⊤B⊤By

(x⊤B⊤Bx)(y⊤B⊤By)
=

x⊤Ay√
(x⊤Ax)(y⊤Ay)

. (1)

Consider the SVD B = UDV ⊤ where U and V are orthogonal and D is c× d rectangular diagonal577

matrix. We have then that A = B⊤B = V D̂2V ⊤. (Here D̂ is now a square diagonal matrix578

containing squared Dii along the diagonal and 0 everywhere else.) Notice that choice of U nor the579

ordering of columns vi of V affects the angle calculation in Equation 1. First, we re-order the columns580

of V so as to order the diagonal entries di of D (i.e., the squared singular values) in decreasing order,581

and as an abuse of notation set B = 1
d1
DV ⊤. Denoting λ̂i = di/d1 for 1 ≤ i ≤ n, we have that582

Bvi = λ̂iei. (By construction of B we have that di ∈ {dc , 0}, therefore, λ̂i ∈ {1, 0})583

Consider B acting on Sd−1: it scales each dimension by λ̂i, thus (as with any linear transformation584

of a sphere), transforms it into an ellipsoid, with c principal axes determined by the vi. The585

greatest possible distance from the origin to the ellipsoid BSd−1 is 1 while the shortest possible586

distance is 0. Now consider the unit circle Sx,y = {v ∈ span(x, y) : ||v|| = 1}. We have that587

BSx,y ⊂ BSd−1 ∩ BU is an ellipse (since the intersection of an ellipsoid and plane is always an588

ellipse).589

Choose unit w1 and w2 belonging to Sx,y such that w1 ⊥ w2. by By Fact 3, we may parameterize590

our vectors as x = cos(η − θ)w1 + sin(η − θ)w2 and y = sin(η + θ)w1 + sin(η + θ)w2, where η591

is the angle made with w1 with the bisector of x and y. By assumption, ||Bw|| ≥ α (the minimal592

shrinking factor of B on Sx,y), so denoting λ = d
c (the maximal stretching factor of B on Sx,y), we593

have that the angle between Bx and By is upper-bounded by594

f(η) = arctan(
α

λ
tan(η + θ))− arctan(

α

λ
tan(η − θ)) (2)

.595

The numerator of df
dη is β(1− β)(1 + β) sin(2θ) sin(2η) where β = α/λ. The derivative is trivially596

0 if (1) β = 0, (2) β = 1, or (3) θ = 0. (1) will not occur as we assume that Sx,y does not contain a597

0-eigenvector of A = B⊤B. (2) can only occur if A is a multiple of the identity matrix (which it is598

not by construction), and (3) implies that x and y are parallel, in which case their angle will not be599

16



distorted. Aside from these pathological cases, the critical points occur at η = 0, π/2. We have then600

that cos(Bx,By) lives between cos(f(0)) = 1−β2 tan2 θ
1+β2 tan2 θ and cos(f(π/2)) = − tan2 θ2−β2

tan2 θ2+β2 .601

602

Remark. The constant β has an enormous influence on the bounds in Theorem 2. The smaller the α603

(i.e., shrinking of ||w||), the greater the bounds on distortion. Although we have imposed constraints604

on x, y, if we treat them as any possible pair of random unit vectors, then the w in Sx,y effectively605

becomes a random unit vector as well. We can exactly characterize the distribution of ||BX|| where606

X denotes a random variable which selects a d-dimensional unit vector uniformly at random.607

C.2 Proof of Proposition 1608

Proof. We can sample a d-dimensional vector uniformly at random from the unit sphere Sd−1 by609

drawing a d-dimensional Gaussian vector with iid entries and normalizing. Let us represent this610

as the random variable X = Z ′/||Z ′|| where Z ′ ∼ N (0, Id). Consider a (c, d)-folding matrix611

B, i.e., a d/c horizontal stack of c × c identity matrices (let us assume c|d). We are interested in612

determining the distribution of ||BX||2. For ease of notation, consider the permutation Z of Z ′613

where Zi = Z ′
(⌊ d/c

i ⌋−1)∗(d/c)+i (mod d/c)
. Since this permutation is representable as an orthogonal614

matrix P (and multi-variate Gaussians are invariant in distribution under orthogonal transformations),615

we may instead consider X := P (Z ′/||Z ′||)2 = Z/||Z||2. We may write the norm-squared as616

||BX||2 =
(Z1 + · · ·+ Zd/c)

2

||Z||2
+

(Zd/c+1 + · · ·+ Z2d/c)
2

||Z||2
+ · · ·+

(Z(c−1)(d/c)+1 + · · ·+ Zd)
2

||Z||2
.

(3)
Consider the first term (Z1+···+Zd/c)

2

||Z||2 . First note that for any unit vector u, the distribution of (u⊤Z)2

||Z||2617

does not depend on choice of u. Consider the unit vector u′ then which contains
√
d/c in the first d/c618

entries and 0 otherwise. Then (u′⊤Z)2

||Z||2 is equivalent to d/c times our first term. Of course, since (e⊤1 Z)2

||Z||2619

has the same distribution as (u′⊤Z)2

||Z||2 , we have by transitivity that Z2
1

||Z||2
d
= (n/q)

(Z1+···+Zd/c)
2

||Z||2 .620

By extending the discussion above to the other terms, and by their independence with respect to621

rotation of Z (since their numerators contain squared sums of mutually disjoint Z coordinates), we622

have that623

||BX||2 d
=

d

c
·
Z2
1 + Z2

d/c + Z2
2d/c + · · ·+ Z2

d

||Z||2
. (4)

The distribution of
Z2

1+Z2
d/c+Z2

2d/c+···+Z2
d

||Z||2 is well-known to follow a Beta( c2 ,
d−c
2 ) distribution [13].624

In totality, ||BX||2 d
= d

cBeta(
c
2 ,

d−c
2 ). However, we will move to the four parameter description of625

this scaled Beta distribution which is Beta( c2 ,
d−c
2 , 0, d

c ). The pdf and expected value follows by the626

usual statistical descriptions of this distribution, which can also be found in [13].627

Figure 10 depicts how (d, c)-foldings affect the norms of unit vectors.628

D Additional theory629

In this section, we provide additional theory relevant to SimHash.630

We present several well-known results regarding SimHash.631

Proposition 2 (SimHash estimation). Let x, y ∈ S, i.e., unit d-dimensional vectors. Denote θ =632

arccos(| cos(x, y)|). Let v ∈ Sd be a unit vector drawn uniformly at random (according to the Haar633

measure, for example). Then,634

Pr[sgn(v⊤x) ̸= sgn(v⊤y)] =
θ

π
. (5)
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Figure 10: Distribution of folded norms. 100k randomly drawn unit vectors (d = 128) are folded
down to length 16 by are usual (d, c)-folding procedure. Depicted is a binned histogram of the norms.
As predicted by the statistical description of ||BX||2, where X is a randomly drawn unit vector,
the mass is centered at 1, i.e., most norms are preserved. Empirically we observe that folded rarely
exceed

√
12816, although the theoretical support is [0, 8]: this concurs with the pdf.

Proof. We reproduce the argument of [12]. We have by symmetry that Pr[sgn(v⊤x) ̸= sgn(v⊤y)] =635

2Pr[v⊤x > 0, v⊤y < 0]. The set U = {v ∈ Sd : v⊤x > 0, v⊤y ≤ 0} corresponds to the636

intersection of two half-spaces whose dihedral angle (i.e., angle between the normals of both spaces)637

is exactly θ. Intersecting with the d-dimensional unit sphere produces gives a subspace of measure638
θ
2π , therefore, 2Pr[v⊤x > 0, v⊤y < 0] = θ

π , completing the argument.639

Corollary 2. Let v instead be a d-dimensional random Gaussian vector with iid entries ∼ N (0, 1).640

Then for x, y ∈ Rd,641

Pr[sgn(v⊤x) ̸= sgn(v⊤y)] =
θ

π
(6)

Proof. Randomly drawn, normalized Gaussian vectors are well-known to be uniformly distributed642

on the unit sphere.643

In the setup as above, let the X be a random variable which returns 1 if x and y have differing signs644

when taking the standard inner product with a randomly drawn Gaussian v. Let X1, X2, . . . , Xn645

represent a sequence of independent X events. Then,646

Proposition 3. E[ 1n
∑n

i=1 Xi] = 1− θ
π and V[X] = 1

N
θ
π (1−

θ
π ).647

Given that PGHash is equivalent to a SimHash over (d, c)-foldings of Rd, the variance reduction we648

observe by using multiple tables (Figure 9 is explainable by Proposition 3.649
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