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Abstract

Locality-sensitive hashing (LSH) based frameworks have been used efficiently to1

select weight vectors in a dense hidden layer with high cosine similarity to an input,2

enabling dynamic pruning. While this type of scheme has been shown to improve3

computational training efficiency, existing algorithms require repeated randomized4

projection of the full layer weight, which is impractical for computational- and5

memory-constrained devices. In a distributed setting, deferring LSH analysis to6

a centralized host is (i) slow if the device cluster is large and (ii) requires access7

to input data which is forbidden in a federated context. Using a new family of8

hash functions, we develop the first private, personalized, and memory-efficient9

on-device LSH framework. Our framework enables privacy and personalization10

by allowing each device to generate hash tables, without the help of a central host,11

using device-specific hashing hyper-parameters (e.g. number of hash tables or hash12

length). Hash tables are generated with a compressed set of the full weights, and13

can be serially generated and discarded if the process is memory-intensive. This14

allows devices to avoid maintaining (i) the fully-sized model and (ii) large amounts15

of hash tables in local memory for LSH analysis. We prove several statistical16

and sensitivity properties of our hash functions, and experimentally demonstrate17

that our framework is competitive in training large scale recommender networks18

compared to other LSH frameworks which assume unrestricted on-device capacity.19

1 Introduction20

Locality-sensitive hashing (LSH) has proven to be a remarkably effective tool for memory- and21

computationally-efficient data clustering and nearest neighbor search [6, 15, 2]. LSH algorithms22

such as SimHash [6] can be used to search for vectors in collection W ⊂ Rd of massive cardinality23

which will form a large inner product with a reference vector x ∈ Rd. This procedure, known as24

maximum inner product search (MIPS) [27], has been applied to neural network (NN) training. In25

NN training, the weights of a dense layer that are estimated to produce a large inner product with the26

input (thereby, a large softmax, for example) are activated while the remainder are dropped out.27

While LSH-based pruning greatly reduces training costs associated with large-scale models, popular28

frameworks such as SLIDE [8] and Mongoose [7] cannot be deployed in distributed settings over29

memory-constrained devices such as GPUs or mobile phones for the following reasons: (a) required30

maintenance of a large target layer in memory and (b) access to the input is needed to conduct LSH.31

With many modern NN architectures reaching billions of parameters in size, requiring resource-32

constrained devices to conduct LSH analysis over even part of such a large model is infeasible33

as it requires many linear projections of massive weights. The hope of offloading this memory-34

and computationally-intensive task to a central host in the distributed setting is equally fruitless.35

LSH-based pruning cannot be conducted by a central host as it requires access to either local client36
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data or hashed mappings of such data. Both of these violate the fundamental host-client privacy37

contract especially in a federated setting [20]. Therefore, in order to maintain privacy, devices are38

forced to conduct LSH themselves, returning us back to our original drawback in a vicious circle. We39

raise the following question then:40

Can a resource-constrained device conduct LSH-like pruning of a large dense layer without ever41

needing to see the entirety of its underlying weight?42

This work makes the following contributions to positively resolve this question:43

(1) Introduce a novel family of hash functions, PGHash, for detection of high cosine similarity44

amongst vectors, which improves upon the efficiency of SimHash by comparing binarized random45

projections over vector hashings instead. We prove several statistical properties about PGHash,46

including that it is an LSH family, and angle/norm distortion bounds.47

(2) Present an algorithmic LSH framework, leveraging our hash functions, which allows for private,48

personalized, and memory-efficient distributed/federated training of large scale recommender net-49

works via dynamic pruning.50

(3) Showcase experimentally that our PGHash-based framework is able to efficiently train large-scale51

recommender networks. Our approach is competitive against a distributed implementation of SLIDE52

[8] using full-scale LSH. Furthermore, where entry-magnitude similarity is desired over angular53

similarity (training over Amazon-670K, for example), we empirically demonstrate that using our54

DWTA [9] variant of PGHash, PGHash-D, matches the performance of using full-scale DWTA.55

2 Related work56

LSH Families. Locality-sensitive hashing families have been used to efficiently solve the ap-57

proximate nearest neighbors problem [16, 15, 2]. SimHash [6], based on randomized hyperplane58

projections, is used to estimate cosine similarity. Each SimHash function requires a significant59

number of random bits if the dimensionality of each target point is large. However, bit reduction60

using Nisan’s pseudorandom generator [23] is often suggested [11, 14]. MinHash [5], a competitor to61

SimHash [28], measures Jaccard similarity between binary vectors and has been used for document62

classification. The Winner Take All (WTA) hash [32] compares the ordering of entries by magnitude63

(corresponding to Kendall-Tau similarity); such comparative reasoning has proven popular in vision64

applications [25]. However, it was observed that WTA was ineffective at differentiating highly-sparse65

vectors leading to the development of Densified WTA (DWTA) [9]. Since MinHash, WTA, and66

DWTA are better suited for binary vector comparison, and we require comparison over real-valued67

vectors, PGHash is founded on SimHash.68

Hash-based Pruning. One of the earlier proposals of pruning based on input-neuron angular69

similarity via LSH tables is in [29], where a scheme for asynchronous gradient updates amongst70

multiple threads training over a batch along with hashed backpropagation are also outlined. These71

principles are executed to great effect in both the SLIDE [8] and Mongoose [7] frameworks for72

training extreme scale recommender systems. Mongoose improves SLIDE by using an adaptive73

scheduler to determine when to re-run LSH over a layer weight, and by utilizing learnable hash74

functions. Both works demonstrated that a CPU using LSH-based dynamic dropout could achieve75

competitive training complexity against a GPU conducting fully-dense training. Reformer [22] uses76

LSH to reduce the memory complexity of self-attention layers.77

Distributed Recommender Systems. Several works which prune according to input-neuron78

angular similarity estimations via LSH utilize multiple workers on a single machine [29, 24, 7, 8].79

Federated training of recommender systems is an emerging topic of interest, with particular interest80

in personalized training [18, 26] malicious clients [30, 36], and wireless unreliability [1]. D-SLIDE81

[33], which is the federated version of SLIDE, eases local on-device memory and computational82

requirements by sharding the network across clients. However, in the presence of low client numbers,83

the proportion of the model owned per device can still be taxing, whereas our compression is84

independent of the number of federated agents. In [31], clients query the server for weights based85

off the results of LSH conducted using server-provided hash functions. We regard this complete86

server control over the hashing family, and therefore access to hash-encoding of local client data, as87

non-private and potentially open to honest-but-curious attacks.88
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Figure 1: Hash-based dropout. Two procedures for conducting cosine similarity estimation between
full weight matrix W ∈ Rd×n (column wi denotes the weight of neurons i) and an input x ∈ Rd. (a)
SimHash generates a hash table via left-multiplication by a randomized rectangular Gaussian matrix
S ∼ N (0, Id) onto the fully-sized W . (b) PGHash generates a hash table via left-multiplication by
a randomized square Gaussian matrix S ∼ N (0, Ic) onto a base projection BW ∈ Rc×n of W . In
both procedures, weight wi is selected for activation if its signed hash matches the signed hash of x.

3 Preliminaries89

Let W = {w1, w2, . . . , wn} ⊂ Rd be the weights of a dense hidden layer and x ∈ Rd be the input.90

For brevity, we refer to W ∈ Rd×n as the weight of the layer. In particular, wi ∈ Rd corresponds to91

the ith neuron of the layer. We assume that the layer contains dn parameters. Within our work we92

perform MIPS, as we select weights which produce large inner products with x. Mathematically, we93

can begin to define this by first letting p = maxw⊤
i x for 1 ≤ i ≤ n. For 0 < ϵ < 1 we are interested94

in selecting S ⊂W , such that for ∀wi ∈ S, w⊤
i x > ϵp. The weights of S will pass through activation95

while the rest are dropped out, reducing the computational complexity of the forward and backward96

pass through this layer. As detailed in Section 4 and illustrated in Figure 1, we will determine S by97

estimating angles with a projection BW = {Bwi}ni=1, with B ∈ Rc×d such that c << d.98

Locality-sensitive Hashing (LSH). LSH [2] is an efficient framework for solving the ϵ-99

approximate nearest neighbor search (NNS) problem:100

Definition 1 (ϵ-NNS). Given a set of points P = {p1, p2, . . . , pn} in a metric spaceM and similarity101

funcion Sim :M×M→ R over this space, find a point p ∈ P , such that for a query point q ∈ X102

and all p′ ∈ P , we have that Sim(p, q) ≤ (1 + ϵ)Sim(p′, q).103

It is important to note that the similarity function Sim(·) need not be a distance metric, but rather104

any general comparison mapping. Popular choices include Euclidean distance and cosine similarity,105

the latter of which is the primary focus of this paper. The cosine similarity for x, y ∈ Rd is defined as106

cos(x, y) ≜ x⊤y/
(
||x||2||y||2

)
. We can frame the MIPS problem described previously as an ϵ-NNS107

one if we assume that the weights wi ∈W are of unit length. Thus, we are searching for ϵ-nearest108

neighbors in W of the query x according to cosine similarity.109

Consider a family H containing hash functions of the form h :M→ S, where S is a co-domain110

with significantly lower feature dimensionality thanM. We say that H is locality-sensitive if the111

hashes of a pair of points x, y inM, computed by an h ∈ H (selected uniformly at random), have a112

higher collision (matching) probability in S the more similar x and y are according to Sim. We now113

formally define this notion following [15].114

Definition 2 (Locality-sensitive Hashing). A familyH is called (S0, ϵS0, p1, p2)-sensitive if for any115

two points x, y ∈ Rd and h chosen uniformly at random fromH satisfies the following,116

1. if Sim(x, y) ≥ S0 ⇒ Pr(h(x) = h(y)) ≥ p1, 2. if Sim(x, y) ≤ ϵS0 ⇒ Pr(h(x) = h(y)) ≤ p2.117

For an effective LSH, p1 < p2 and ϵ < 1 is required. An LSH family allows us to conduct a similarity118

search over a collection of vectors through comparison of their hashed mappings. Of course, locality119

loss is inevitable if Sim is a dimension-lowering projection. Through a mixture of increased precision120

(raising the output dimension of H) and repeated trials (running several trials over independently121

chosen h), we may tighten the correspondence between Sim and matches over H, following the122

spirit of the Johnson-Lindenstrauss Lemma [19].123

SimHash. A popular LSH algorithm for estimating cosine similarity is SimHash, which uses124

signed random projections [6] as its hash functions. Specifically, for a collection of vectors W ⊂ Rd,125

the SimHash familyHSim consists of hash functions hv , each indexed by a random Gaussian vector126

v ∼ N (0, In), i.e., an n-dimensional vector with iid entries drawn from N (0, 1). For x ∈ Rn,127

we define the hash mapping hv(x) := sgn(v⊤x). Here, we modify sgn(x) to return 1 if x > 0,128
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else it returns 0. For Gaussian v chosen uniformly at random and fixed x, y ∈ Rd, we have129

Pr(hv(x) = hv(y)) = 1 −
arccos( x⊤y

||x||·||y|| )

π . This hashing scheme was popularized in [12] as part130

of a randomized approximation algorithm for solving MAX-CUT. Notice that the probability of131

a hashed pair matching is monotonically increasing with respect to the cosine similarity of x and132

y, satisfying Definition 2. More precisely, if we set S0 = cos(x, y) then HSim is
(
S0, ϵS0,

(
1 −133

arccos(S0

π )
)
,
(
1 − arccos( ϵS0

π )
))

-sensitive [6, 28]. The above discussion considers the sign of a134

single random projection, but in practice we will perform multiple projections.135

Definition 3 (Hash table). Let X = {x1, . . . , xn} ⊂ Rd and V = {v⊤1 , . . . , v⊤k } ⊂ N (0, Id), where136

k is the hash length. Define hV : Rd → Rk by [hV (x)]i = hvi(x) where hvi ∈ HSim for 1 ≤ i ≤ k.137

For fixed V , the hash table hV (X) ∈ Rk×n is a binary matrix with columns hV (xj) for 1 ≤ j ≤ n.138

Following the notation above, we may estimate similarity between an input q ∈ R and a collection of139

vectors X ⊂ Rd by measuring the Hamming distances (or exact sign matches) between hV (q) and140

columns of hV (X). SimHash is now more discriminatory, asHSim can separate Rd into 2k buckets141

corresponding to all possible length k binary vectors (which we refer to as hash codes). Finally,142

counting the frequency of exact matches or computing the average Hamming distance over several143

independently generated hash tables further improves our estimation of closeness. Implementations144

of the well-known SLIDE framework [8, 24], which utilize SimHash for LSH-based weight pruning,145

require upwards of 50 tables.146

DWTA. Another popular similarity metric is to measure how often high-magnitude entries between147

two vectors occur at the exact same positions. The densified winner-take-all (DWTA) LSH family148

[10] estimates this similarity by uniformly drawing k random coordinates over W and recording the149

position of the highest-magnitude entry. Similar to SimHash, this process is repeated several times,150

and vectors with the highest frequency of matches are expected to have similar magnitude ordering.151

This type of comparative reasoning is useful for computer vision applications [37].152

4 PGHash153

In this section, we develop a family of hash functionsHPG which allow for memory-efficient serial154

generation of hash tables using a single dimensionally-reduced sketch of W . This is in contrast155

to traditional LSH frameworks, which produce hash tables via randomized projections over the156

entirety of W . We first present an overview of the Periodic Gaussian Hash (PGHash) followed by its157

algorithm for distributed settings, an exploration of several statistical properties regarding the local158

sensitivity ofHPG.159

PGHash Motivation. As detailed in Section 3, our goal is to efficiently estimate cosine similarity160

between an input to a layer x ∈ Rd and the columns of a large weight matrix W ∈ Rd×n. SimHash161

performs hash table generation by first multiplying a matrix of uniformly drawn Gaussian hyperplanes162

TV ∈ Rc×d with W . The full hash table is computed as hV (W ) = sgn(TV W ). Then, the jth neuron163

is activated if sgn(TV x) = hV (wj) for a layer input x.164

One can immediately notice that generation of a new hash table hṼ (W ) requires both (i) computation165

of TṼ W which requires access to the fully-sized weights and (ii) the storage of TṼ to compute166

sgn(TṼ x
′) for further inputs x′. This is problematic for a memory-constrained device, as it would167

need to maintain both W and TṼ to generate further tables and perform dynamic pruning. To solve168

this issue, we introduce a family of hash functions generated from a single projection BW of W .169

4.1 PGHash theory170

Definition 4 (Periodic Gaussian Hash). Assume sketch dimension c << d divides d for simplicity.171

Let B = [Ic |Ic | · · · |Ic] ∈ Rc×d, where Ic is the c× c identity matrix and | denotes d
c concatenations.172

Let S ∈ Rk×c be a random Gaussian matrix with iid entries drawn from N (0, 1). We may define173

a Periodic Gaussian Hash (PGHash) function hPG
S : Rd → Rk by [hPG

S (x)]i = [sgn(SBx)]i for174

1 ≤ i ≤ k. We denote the family of all such hash functions asHPG(c, d).175

We use the term “periodic” to describe the hash functions described in Definition 4, since unlike176

SimHash which projects a point via a fully random Gaussian vector as in SimHash, our projection177
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is accomplished using a repeating concatenation of a length c Gaussian vector. Furthermore, for178

hPG
S ⊂ HPG(c, d), the matrix representation SB is a tiling of a single Gaussian matrix. Notice that179

we may easily extend the notion of a PGHash of one vector to an entire hash table over multiple vectors180

following Definition 3. In this manner, we may generate a sequence of hash tables {hPG
Si

(W )}τi=1181

over a weight matrix W simply by drawing random Gaussian matrices Si ∈ Rk×c for 1 ≤ i ≤ τ182

(where k is the hash length) and computing sgn(SiBW ).183

Extension to DWTA (PGHash-D) Remark. When DWTA (described in Section 3) is preferred184

over SimHash for similarity estimation, we may modify Definition 4 as follows: B = D1P where P185

is a d× d random permutation matrix, and D1 is a c× d rectangular diagonal matrix with Dii = 1186

for 1 ≤ i ≤ c. We denote our hash functions as hPG−D
S : Rd → Rk by hPG−D

S (x) = maxi[SBx]i187

for 1 ≤ i ≤ k, with k ≤ c, where S is now a rectangular permutation matrix which selects k rows of188

Bx at random. We refer to this scheme as PGHash-D, whereas PGHash refers to Definition 4.189

Local Memory Complexity Remark. When generating a new table using PGHash, a device190

maintains S and needs access to just BW , which costO(kc) andO(cn) space complexity respectively.191

This is much smaller than the O(kd) and O(dn) local memory requirements of SimHash.192

Sensitivity ofHPG. In this section, we will explore the sensitivity ofHPG(c, d).193

Definition 5. Let x ∈ Rd and c ∈ R such that c|d. Define the (d, c)-folding xc ∈ Rc of x as194

[xc]i =
∑ d

c
j=1[x]i+j· dc

. Equivalently, xc = Bx, with B as specified in Definition 4.195

Theorem 1. Let x, y ∈ Rd. Define the following similarity function Simd
c(x, y) ≜ cos(xc, yc),196

where xc, yc are (d, c)-foldings of x, y. HPG(c, d) is an LSH family with respect to Simd
c .197

Proof. Let hv ∈ HPG. This means that for a randomly chosen v′ ∼ N (0, I d
c
), v is a c-times198

concatenation of v. We see that sgn(v⊤x) = sgn
(

v⊤x
||v||·||x||

)
= sgn

(√
c
d
||xc||
||x||

v′⊤xc

||v′||||xc||
)
. Since sgn is199

unaffected by the positive multiplicative factors, we conclude that sgn(v⊤x) = sgn(v′⊤xc). Through200

symmetric argument, we find sgn(v⊤y) = sgn(v′⊤yc). Since v′ ∼ N (0, Ic), comparing the sign of201

v⊤x to v⊤y is equivalent to a standard SimHash over xc and yc, i.e., estimation of cos(xc, yc).202

Corollary 1. Let x, y ∈ Rd, then HPG(c, d) is
(
Sc, ϵSc,

(
1− arccos(Sc

π )
)
,
(
1− arccos( ϵSc

π )
))

-203

sensitive where Sc = cos(xc, yc),.204

Proof. This follows directly from the well-known sensitivity of SimHash [6].205

We see that HPG is LSH with respect to the angle between (d, c)-foldings of vectors. The use206

of periodic Gaussian vectors restricts the degrees of freedom (from d to d/c) of our projections.207

However, the usage of pseudo-random and/or non-iid hash tables has been observed to perform208

well in certain regimes[3, 35]. AlthoughHPG(c, d) is LSH, is cos(xc, yc) necessarily an acceptable209

proxy for cos(x, y), in particular, for high angular similarity? Heuristically, yes, for highly-cosine210

similar vectors: assuming x and y are both unit (since scaling does not affect angle) then we have that211

||x− y||2 = 2− 2 cos(x, y). If ℓ2 similarity between x and y is already high, then the ℓ2 similarity212

of their (normalized) (d, c)-foldings will also be high, and thus their cosine similarity as well. We213

now provide a characterization on the angle distortion of a (d, c)-folding.214

Theorem 2. Let x, y ∈ Sd−1. Assume that neither x nor y vanish under multiplication by B and that215

the set Sx,y = {v ∈ span(x, y) : ||v|| = 1} does not contain a 0-eigenvector of B⊤B. We denote the216

following quantities: λ = d/c, θ := 1
2 arccos(cos(x, y)), α = inf{c > 0 | |||Bv|| ≥ c,∀v ∈ Sx,y},217

and β = α/λ. (α > 0 since Sx,y does not contain any 0-eigenvectors.) Then cos(xc, yc) lives218

between 1−β2 tan2 θ
1+β2 tan2 θ and − tan2 θ2−β2

tan2 θ2+β2 .219

Proof sketch. Consider the unit circle Sx,y contained in span(x, y) (Let us assume x and y are unit,220

WLOG). The linear distortion BSx,y is an ellipse containing xc = Bx and yc = By. The length of221

the axes of this ellipse are determined by the eigenvalues of B⊤B. The bounds follow from further222

trigonometric arguments, by considering when the axes of BSx,y are maximally stretched and shrunk223

respectively. These distortions are strongly related to λ and β.224
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Algorithm 1 Distributed PGHash

Require: weights {W ℓ
0}Lℓ=1, objective F , N devices, tar-

get layer P , T iterations, folding matrix B, τ hash
tables, hash length k, sketch dim c, comp. ratio CR.

1: Server Executes:
2: for t = 1, 2, . . . , T do
3: Compile pre-target weights WA = {W ℓ

t }P−1
ℓ=1

4: Compile post-target weights WB = {W ℓ
t }Lℓ=P+1

5: for each device i in parallel do
6: Θi ← DeviceLSH(i, WA, BWP

t , CR, τ, k, c)
7: Wt+1,i ← DeviceUpdate(i, WP

t (Θi)
⋃

WB)
8: end for
9: Wt+1 ← Average the active weights Wt+1,i

across all devices
10: end for
11: return {W ℓ

T }Lℓ=1

12: DeviceLSH(i,WA, BW,CR, τ, k, c):
13: Sample input ξ from local data distribution Di

14: ξP−1 = F(WA, ξ)WA is stored locally
15: Θi ← PGHash(ξP−1, BW,CR, τ, k, c)
16: return Θi

17: DeviceUpdate(i,WB):
18: W ←WA

⋃
WB

19: return W − η∇WF(W ; ξ)

We can see that as cos(x, y) → 0 we225

have cos(xc, yc) → 0. It is natural to226

consider the distribution of α in Theo-227

rem 2 as how extreme shrinking by B228

(the folding matrix) can greatly distort229

the angle. We can characterize this sta-230

tistical distribution exactly.231

Proposition 1. Let u ∈ Sd−1,232

drawn uniformly at random. Then233

||Bu||2 ∼ Beta( c2 ,
d−c
2 , 0, d

c ), the four234

parameter Beta distribution with pdf235

f(x) = (2x/c)c/2−1(1−2x/c)(d−c)/2−1

(d/c)β(c/2,(d−c)/2236

and E||Bu||2 = 1.237

We defer proof of Proposition 1 to the238

Appendix D. Since the folded magnitude239

||Bu||2 is unit in expectation, the distor-240

tion term α2/λ2 in Theorem 2 will often241

be close to 1, greatly tightening the angle242

distortion bounds.243

4.2 PGHash algorithm244

Below, we detail our protocol for deploy-245

ing PGHash in a centralized distributed246

setting (presented algorithmically in Al-247

gorithm 1). Over a network of N de-248

vices, the central host identifies a target layer P whose weight WP
t ∈ Rd×n (at iteration t) is too249

expensive for memory-constrained devices to fully train or host in local memory. Neurons (columns250

of WP
t ) are pruned by devices according to its estimated cosine similarity to the output xP−1 of the251

previous layer.252

Algorithm 2 PGHash

Require: batched input X ∈ Rd×M , projected
weight BW ∈ Rc×n, compression rate CR, τ
hash tables, hash length k, sketch dim c.

1: Set Θ = [ ]
2: for i = 1, 2, . . . , τ do
3: Draw random Gaussian S ∈ Rk×c

4: for each sample x in X do
5: for j = 1, 2, . . . , n do
6: if sgn(SBx) = [sgn(SBW )]:,j then
7: Θ.add(j)
8: end if
9: end for

10: end for
11: if |Θ| > ⌊CR · n⌋ then
12: Randomly remove selected neurons

from table-i until |Θ| = ⌊CR · n⌋
13: return Θ
14: end if
15: end for
16: return Θ

The central host begins each round of dis-253

tributed training t by sending each device (1)254

all weights {W ℓ
t }P−1

ℓ=1 required to generate the255

input xP−1 and (2) the compressed target layer256

BWP
t . Using these weights, each device con-257

ducts PGHash analysis (via Algorithm 2) us-258

ing its current batch of local data to deter-259

mine its activated neurons. The central host260

sends each device i their set of activated neu-261

rons WP
t (Θi), and each device performs a262

standard gradient update on their new model263

{W ℓ
t }P−1

ℓ=1

⋃
WP

t (Θi)
⋃
{W ℓ

t }Lℓ=P+1. Finally,264

the central host receives updated models from265

each device and averages only the weights which266

are activated during training.267

The on-device PGHash analysis (Algorithm 2)268

consists of first running a forward pass up to the269

target layer to generate the input xP−1. Devices270

generate personal hash tables by performing left-271

multiplication of BWP
t and xP−1 by a random272

Gaussian matrix S ∼ N (0, Ic), as described in273

Section 3. The number of tables τ is specified274

by the user. A neuron j is marked as active if the input hash code sgn(SxP−1) is identical to j-th275

weight’s hash code sgn(SB[WP
t ]:,j). In Appendix A.2, we detail how Hamming distance can also276

be used for neuron selection (by selecting neurons which have the lowest average distance).277
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(a) SimHash (10 tables). (b) PGHash (10 tables). (c) SimHash (100 tables). (d) PGHash (100 tables).
Figure 2: Correlation between angle and Hamming distance. We plot the average Hamming
distance (x-axis) between a PG/SimHash hashed fixed vector x and collection of vectors V versus
their true angles (y-axis). Vectors are unit, length 100, and hashed down to dimension k = 25 binary
vectors according to τ = 10 or 100 hash tables. PGHash has a sketch dimension of c = 25. Both
PGHash and SimHash show strong correlation between Hamming distance and angular similarity.

Computational Complexity Remark. Through the use of dynamic pruning, PGHash significantly278

reduces both the forward and backward training computational complexities. PGHash activates at279

most CR · n neurons per sample as opposed to n for full training. In practice, PGHash activates only280

a fraction of the CR · n neurons (as shown in Figure 6a). Therefore, the number of floating point281

operations within forward and backward training is dramatically reduced.282

Communication Complexity Remark. By reducing the size of the model needed in local283

memory and subsequently requesting a pruned version of the architecture we improve communication284

efficiency. For a fixed number of rounds T and target weight size dn, the total communication285

complexity, with respect to this data structure, is O(T · CR · dn), which significantly less bits than286

the vanilla O(Tdn) communication cost of vanilla federated training. In Section 5, we show that287

PGHash achieves near state-of-the-art results with only CR = 0.1 (10% of a massive weight matrix).288

5 Experiments289

In this section, we (1) gauge the sensitivity of PGHash and (2) analyze the performance of PGHash290

and our own DWTA variant (PGHash-D) in training large-scale recommender systems. PGHash and291

PGHash-D require only 6.25% (c = 8) of the final layer sent by the server to perform on-device292

LSH in our experiments. In PGHash, devices receive the compressed matrix BW ∈ Rc×n via293

the procedure outlined in Section 4. In PGHash-D, devices receive c out of d randomly selected294

coordinates for all n neurons in the final layer weight. Using k of the c coordinates (ensuring privacy295

since the server is unaware of the coordinates used for LSH), PGHash-D selects neurons which, within296

the k coordinates, share the same index of highest-magnitude entry between the input and weight.297

We employ PGHash for Delicious-200K and PGHash-D for Amazon-670K and WikiLSHTC-325K.298

PGHash Sensitivity Analysis. Our first experiment measures the ability ofHPG(c, d) to estimate299

cosine similarity. We produce a fixed unit vector x ∈ R100 and set of 180 vectors {vi}180i=1 of the same300

dimension. Both the Gaussian vector x and collection of vectors V are fed through varying numbers301

of SimHash and PGHash tables. We produce a scatter plot measuring the correlation between angle302

and average Hamming distance. PGHash, as seen in Figure 2, is an effective estimator of cosine303

similarity. We observe that PGHash, like SimHash, successfully produces low average Hamming304

distances for vectors that are indeed close in angle. This provides evidence that selecting neurons305

with exact hash code matches (vanilla sampling) is effective for choosing neurons which are close in306

angle to the input vector. Finally, we find increasing the number of hash tables helps reduce variance.307

Large-Scale Recommender System Training. Our second experiment tests how well PGHash(-D)308

can train large-scale recommender systems. We train these networks efficiently by utilizing dynamic309

neuronal dropout as done in [8]. We use three extreme multi-label datasets for training recommender310

systems: Delicious-200K, Amazon-670K, and WikiLSHTC-325K. These datasets come from the311

Extreme Classification Repository [4]. The dimensionality of these datasets is large: 782,585/205,443312

(Delicious-200K), 135,909/670,091 (Amazon-670K), and 1,617,899/325,056 (WikiLSHTC-325K)313

features/labels. Due to space, Wiki results are found in Appendix A.3.314

The feature and label sets of these datasets are extremely sparse. Akin to [8, 7, 34], we train a315

recommender system using a fully-connected neural network with a single hidden layer of size 128.316

Therefore, for Amazon-670K, our two dense layers have weight matrices of size (135, 909×128) and317

(128× 670, 091). The final layer weights output logits for label prediction, and we use PGHash(-D)318

to prune its size to improve computational efficiency during training.319
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(c) No Compression.
Figure 3: Compressed PGHash. We record model accuracy of a large recommendation system
on an extreme classification task (Delicious-200K) using PGHash for varying compression rates
(CR). Compressed PGHash, even at 90% compression, is competitive with full training (without
even including effects of sparsity-induced neuronal drop out). Hyperparameters are in Appendix A.1.
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(a) 1 Device Results.
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(c) 8 Device Results.
Figure 4: Federated Delicious-200K PGHash. We record model accuracy of a large recommendation
system on an extreme classification task (Delicious-200K) trained in a federated setting. PGHash
achieves competitive accuracies compared with Federated SLIDE and FedAvg. In fact, PGHash
converges quicker to near-optimal accuracy. Hyperparameters are in Appendix A.1.

Unlike [8, 7, 34], PGHash(-D) can be deployed in a federated setting. Within our experiments, we320

show the efficacy of PGHash for both single- and multi-device settings. Training in the federated321

setting (following the protocols of Algorithm 1) allows each device to rapidly train portions of the322

entire neural network in tandem. We partition data evenly (in an IID manner) amongst devices.323

Finally, we train our neural network using TensorFlow. We use the Adam [21] optimizer with an324

initial learning rate of 1e-4. A detailed list of the hyper-parameters we use in our experiments can be325

found in Appendix A.1. Accuracy in our figures refers to the P@1 metric, which measures whether326

the predicted label with the highest probability is within the true list of labels. These experiments are327

run on a cloud cluster using Intel Xeon Silver 4216 processors with 128GB of total memory.328

Sampling Strategy. One important aspect of training is how we select activated neurons for each329

sample through LSH. Like [8], we utilize vanilla sampling. In our vanilla sampling protocol, a total330

of CR · n neurons are selected across the entire sampled batch of data. As detailed in Section 4 and331

Algorithm 2, a neuron is selected when its hash code exactly matches the hash code of the input. We332

retrieve neurons until either CR · n are selected or all τ tables have been looked up.333

Compression Efficacy. We begin by analyzing how PGHash performs when varying the compres-334

sion rate CR. Figure 3 showcases how PGHash performs for compression rates of 75% and 90% as335

well as no compression. Interestingly, PGHash reaches near-optimal accuracy even when compressed.336

This shows the effectiveness of PGHash at accurately selecting fruitful active neurons given a batch337

of data. The difference between the convergence of PGHash for varying compression rates lies within338

the volatility of training. As expected, PGHash experiences more volatile training (Figures 3a and339

3b) when undergoing compression as compared to non-compressed training (Figure 3c).340

Distributed Efficacy. In Figures 4 and 5, we analyze how well PGHash(-D) performs in a federated341

setting. We compare PGHash(-D) to a federated version of SLIDE [8] that we implemented (using342

respectively, a full SimHash or DWTA), as well as fully-dense Federated Averaging (FedAvg) for343

Delicious-200K. One can immediately see in Figures 4 and 5 that PGHash(-D) performs identically344

to, or better than, Federated SLIDE. In fact, for Delicious-200K, PGHash and Federated SLIDE345

outperform the dense baseline (FedAvg). In Appendix A.3 we detail the difficulties of PGHash-D346

and SLIDE in matching the dense baseline as well as the failure of SimHash to achieve performance347

akin to DWTA for Amazon-670K.348
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Figure 5: Federated Amazon-670K PGHash-D.
We record model accuracy of a large recommenda-
tion system on Amazon-670K trained in a feder-
ated setting. PGHash-D matches the convergence
of Federated SLIDE without requiring LSH to be
performed by the central server.

PGHash(-D) and Federated SLIDE smartly train349

portions of the network related to each batch350

of local device data, via LSH, in order to make351

up for the lack of a full output layer. However,352

unlike Federated SLIDE, PGHash(-D) can per-353

form on-device LSH using as little as 6.25% of354

the full weight W (c = 8) for both Delicious-355

200K and Amazon-670K experiments. Further-356

more, for Delicious-200K, PGHash generates a357

dense Gaussian that is only 6.25% (c = 8) the358

size of that for Federated SLIDE. In summary,359

PGHash(-D) attains similar performance to Fed-360

erated SLIDE while storing less than a tenth of361

the parameters.362

Induced Sparsity. PGHash(-D) induces a large amount of sparsity through its LSH process. This363

is especially prevalent in large-scale recommender systems, where the number of labels for each data364

point is a miniscule fraction of the total output layer size (e.g. Delicious-200K has on average only365

75.54 labels per point). PGHash(-D) performs well at identifying this small subset of neurons as366

training progresses. As one can see in Figure 6a, even when PGHash is allowed to select all possible367

neurons (i.e., no compression CR = 1), it still manages to select fewer than 1% of the total neurons368

after only 50 iterations of training over Delicious-200K. For Amazon-670K, PGHash-D requires369

less than 30% of the total neurons for the majority of training even. Therefore, PGHash(-D) greatly370

increases the amount of sparsity within the NN, subsequently improving the computational efficiency371

of the algorithm by reducing the number of floating point operations required in the forward and372

backward training.373
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Figure 6: PGHash(-D) Computational Efficiency. In Figure 6a, we showcase that PGHash(-
D) activates only a fraction of the total final layer neurons even without compression. Through
this induced sparsity, PGHash(-D) greatly reduces the computational complexity of forward and
backward training compared to full training. In Figures 6b and 6c, we compare PGHash(-D) with the
Sampled Softmax heuristic [17] (randomly sampling 10% of the total neurons) for efficiently training
recommender systems. PGHash(-D) outperforms the Sampled Softmax baseline, as it selects a better
set of activated neurons via LSH to more efficiently train the recommender system.

6 Conclusion374

In this work, we present a new hashing family, PGHash, which enables the generation of multiple375

LSH hash tables using a single base projection of a massive target weight. These hash tables can be376

used to dynamically select for neurons which are similar to the layer input. This alleviates memory,377

communication, and privacy costs associated with conventional LSH-training approaches. As a proof378

of concept, we demonstrate that (i) the PGHash family is effective at mimicking SimHash and (ii) our379

framework is competitive against other, memory-inefficient, LSH-based federated training baselines380

of large-scale recommender networks. For future work, we intend to explore how multi-layer PGHash381

pruning affects model performance and incorporate learnable hashes as in the Mongoose [7] pipeline.382

Limitations. Our theory indicates that PGHash is useful for detecting high angular similarity, but383

could prove unreliable for differentiating between intermediately dissimilar vectors. Additionally,384

LSH-based pruning has only shown success on large classification layers or attention layers in385

transformers [22]. When considering broader impacts, large-scale recommender systems, and any386

subsequent improvements to their design, can be used for strategically negative advertising purposes.387
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Paper 1682: Supplementary Material485

Large-Scale Distributed Learning via Private486

On-Device LSH487

A Experiment details488

In this section, we provide deeper background into how our experiments were run as well as some489

additional results and observations. We first detail the hyper-parameters we used in order to reproduce490

our results. Then, we provide additional comments and details into our sampling approach. Finally,491

we describe some of the interesting observations we encountered while solving the Amazon-670K492

and Wiki-325K recommender system problems.493

A.1 Experiment hyper-parameters494

Below, we detail the hyper-parameters we used when running our federated experiments.

Table 1: Hyper-parameters for Federated Experiments (PGHash and Federated SLIDE).
Dataset Algorithm Hash Type LR Batch Size Steps per LSH k c Tables CR

Delicious-200K PGHash PGHash 1e-4 128 1 8 8 50 1
Delicious-200K SLIDE SimHash 1e-4 128 1 8 N/A 50 1
Amazon-670K PGHash PGHash-D 1e-4 256 50 8 8 50 1
Amazon-670K SLIDE DWTA 1e-4 256 50 8 N/A 50 1

Wiki-325K PGHash PGHash-D 1e-4 256 50 5 16 50 1
Wiki-325K SLIDE DWTA 1e-4 256 50 5 N/A 50 1

495

What one can immediately see from Table 1, is that we use a Densified Winner Take All (DWTA)496

variant of PGHash for the larger output datasets Amazon-670K and Wiki-325K. As experienced in497

[8, 7, 24], SimHash fails to perform well on these larger datasets. We surmise that SimHash fails498

due in part to its inability to select a large enough number of neurons per sample (we observed this499

dearth of activated neurons empirically). Reducing the hash length k does increase the number of500

neurons selected, however this decreases the accuracy. Therefore, DWTA is used because it utilizes501

more neurons per sample on these larger problems and also still achieves good accuracy.502

Table 2: Hyper-parameters for Compression Experiments (PGHash).
Dataset Algorithm Hash Type LR Batch Size Steps per LSH k c Tables CR

Delicious-200K PGHash PGHash 1e-4 128 1 8 8 50 0.1/0.25/1

As a quick note, we record test accuracy every so often (around 100 iterations for Delicious-200K503

and Amazon-670K). Similar to [8], to reduce the test accuracy computations (as the test sets are very504

large) we compute the test accuracy of 30 randomly sampled large batches of test data.505

A.2 Neuron sampling506

Speed of Neuron Sampling. In Table 3 we display the time it takes to perform LSH for PGHash507

given a set number of tables. These times were collected locally during training. The entries in Table508

3 denote the time it takes to compute hashing of the final layer weights wi and each sample x in batch509

M as well as vanilla-style matching (neuron selection) for each sample.510

Table 3: Average LSH time for PGHash over a range of tables. We compute the average µ time
(and standard deviation σ) it takes for PGHash to perform vanilla sampling (exact matches) between
the hash codes of sample x and each weight wi in the final dense layer. Times are sampled for
PGHash on Delicious-200k for batch size M = 128, k = 9, and c = 8 for one device.

Method 1 table (seconds) 50 tables (seconds) 100 tables (seconds)
PGHash µ = 0.0807, σ = 0.0076 µ = 3.1113, σ = 0.0555 µ = 6.2091, σ = 0.1642
SLIDE µ = 0.0825, σ = 0.0099 µ = 3.2443, σ = 0.1671 µ = 6.2944, σ = 0.0689

We find in Table 3 that PGHash achieves near sub-linear speed with respect to the number of tables τ511

and slightly outperforms SLIDE. PGHash edges out SLIDE due to the smaller matrix multiplication512
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Figure 7: Wiki-325K PGHash-D. We record model accuracy of a large recommendation system on
Wiki-325K. PGHash-D matches the convergence of SLIDE without requiring LSH to be performed
by the central server. We note that test accuracy is determined by testing 30 randomly sampled large
batches of test data (and not the full test data). We saw that the true full test accuracy (which we
compute after each epoch) ran about 5% greater than the sampled batches.

cost, as PGHash utilizes a smaller random Gaussian matrix (size c×c). The speed-up over SLIDE will513

become more significant when the input layer is larger (as d = 128 in our experiments). Therefore,514

PGHash obtains superior sampling performance to SLIDE.515

Hamming Distance Sampling. An alternative method to vanilla sampling is to instead select final516

layer weights (neurons) wi which have a small Hamming distance relative to a given sample x. As a517

refresher, the Hamming distance simply computes the number of non-matching entries between two518

binary codes (strings). If two binary codes match exactly, then the Hamming distance is zero. In this519

sampling routine, either (i) the top-k weights wi with the smallest Hamming distance to sample x520

are selected to be activated or (ii) all weights wi with a Hamming distance of β or smaller to sample521

x are selected to be activated. Interestingly, the vanilla-sampling approach we use in our work is522

equivalent to using β = 0 in (ii).523

In either of the scenarios listed above, hash codes for wi and x are computed as done in PGHash(-D).524

From there, however, the hash code for x is compared to the hash codes for all final layer weights525

in order to compute the Hamming distance for each wi. The process of computing n Hamming526

distances for each sample x is very expensive (much harder than just finding exact matches). That is527

why our work, as well as [8, 7], use vanilla sampling instead of other methods.528

A.3 Amazon-670K and Wiki-325K experiment analysis529

Sub-par SimHash Performance. SimHash is known to perform worse than DWTA on Amazon-530

670K and Wiki-325K. Utilizing SimHash for these experiments is unfair as it is shown by [8, 7],531

for example, that DWTA achieves much higher performance on Amazon-670K. For this reason,532

DWTA is the chosen hash function in [8] for Amazon-670K experiments. To verify this observation,533

we performed experiments on Amazon-670K with PGHash (not PGHash-D) and SLIDE (with a534

SimHash hash function). Table 4 displays the SimHash approach for Amazon-670K.535

Table 4: PGHash and SLIDE performance on Amazon-670K using SimHash. Accuracy across
the first 5,000 iterations for a single device. Batch size M = 1024, k = 8, and c = 8.

Iteration SLIDE PGHash
1,000 10.82% 10.04%
2,000 18.27% 15.99%
3,000 21.83% 19.51%
4,000 23.72% 21.65%
5,000 25.08% 23.38%

As shown in Table 4, even with a much larger batch size, SLIDE and PGHash are unable to crack536

30% on Amazon-670K. We would like to note that using a smaller batch size (like the M = 256537
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value we use in our Amazon-670K experiments) resulted in an even further drop in accuracy. These538

empirical results back-up the notion that SimHash is ill-fit for Amazon-670K.539

Wiki-325K Performance. In Figure 7, we showcase how PGHash-D performs on Wiki-325K.540

Quite similar to the Amazon-670K results (shown in Figure 5), PGHash-D almost exactly matches up541

with SLIDE. In order to map how well our training progresses, we periodically check test accuracies.542

However, since the test set is very large, determining test accuracies over the entire test set is infeasible543

due to time constraints on the cluster. Therefore, we determine test accuracies over 30 batches of544

test data as a substitute as is done in [8, 7]. For Delicious-200K and Amazon-670K the entire545

test set accuracies matched the randomly sampled batches, however the randomly sampled batches546

underestimate the true test accuracies for Wiki-325K. For Wiki-325K, the true test accuracy ran about547

5% greater than the sampled test accuracy values.548

Matching Full-Training Performance. Along with the failure for SimHash to perform well on549

Amazon-670K and Wiki-325K, SLIDE and PGHash(-D) are unable to match the performance of550

full-training on these data-sets. This is observed empirically for Amazon-670K by GResearch in551

the following article https://www.gresearch.co.uk/blog/article/implementing-slide/.552

We surmise that the failure of SLIDE and PGHash(-D) to match full-training performance on Amazon-553

670K and Wiki-325K arises due to the small average labels per point in these two data-sets (5.45554

and 3.19 respectively). Early on in training, SLIDE and PGHash(-D) do not utilize enough activated555

neurons. This is detrimental to performance when there are only a few labels per sample, as the556

neurons corresponding to the true label are rarely selected at the beginning of training (and these557

final layer weights are tuned much slower). In full-training, the true neurons are always selected and558

therefore the final layer weights are better adjusted from the beginning. We also note that [33] requires559

a hidden layer size of 1024 for a distributed version of SLIDE to achieve improved test accuracies for560

Amazon-670K. Thus, increasing the hidden layer size may have improved our performance (we kept561

it as 128 to match the original SLIDE paper [8]).562

B PGHash: angle versus Hamming distance563

In this section, we visually explore the degree to which PGHash is a consistent estimator of angular564

similarity. Specifically, let x, y ∈ Rd: then we know by Theorem 1 that HPG(c, d) is an LSH for565

cos(xc, yc). We demonstrate that in the unit vector regime, θc = arccos(cos(xc, Yc)) is an acceptable566

surrogate for θ = arccos(x, Y ), where Y = {yi}Ni=1 and Yc = {yic}Ni=1.567

(a) c=5 (b) c=10 (c) c=25

(d) c=5 (e) c=10 (f) c=25

Figure 8: Angle/Hamming Distance as a function of sketch dimension. The average Hamming
distance between a PGHashed fixed unit vector x ∈ R100 and a collection of vectors yi ∈ R100 which
form different angles with x. Increasing sketch dimension c smooths and reduces the variance of
the scatter towards linear correlation. Furthermore, the Hamming scales linearly with c, improving
discernibility. (a)-(c) & (d)-(f) are independent series.
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(a) 5 tables (b) 10 tables (c) 50 tables

Figure 9: Angle/Hamming Distance as a function of tables The average Hamming distance between
a PGHashed fixed unit vector x ∈ R100 and a collection of vectors yi ∈ R100 which form different
angles with x and fixed sketch dimension c = 10. Increasing the number of tables reduces variance.

C Additional proofs568

Fact 3. Let x, y, e1, e2 be d-dimensional unit vectors such that that the ei lie on the unit circle569

contained with the plane spanned by x and y (denoted as Sx,y) and e1 ⊥ e2. Consider the point570

v on Sx,y such that the line through it bisects the angle of the lines passing through x and y. Let571

η = arccos(cos(v, e1). Denote θ = 1
2 arccos(cos(x, y)). Then we may write x = cos(η + θ)e1 +572

sin(η + θ)e2 and y = cos(η − θ)e1 + sin(η − θ)e2.573

C.1 Proof of Theorem 2574

Proof. Let θ = 1
2 arccos(cos(x, y)) where x, y ∈ Sd−1 and A = B⊤B. The cosine similarity575

between xc = Bx and yc = By (for B correspondent to a (d, c)-folding), is expressible as576

cos(xc, yc) =
x⊤B⊤By

(x⊤B⊤Bx)(y⊤B⊤By)
=

x⊤Ay√
(x⊤Ax)(y⊤Ay)

. (1)

Consider the SVD B = UDV ⊤ where U and V are orthogonal and D is c× d rectangular diagonal577

matrix. We have then that A = B⊤B = V D̂2V ⊤. (Here D̂ is now a square diagonal matrix578

containing squared Dii along the diagonal and 0 everywhere else.) Notice that choice of U nor the579

ordering of columns vi of V affects the angle calculation in Equation 1. First, we re-order the columns580

of V so as to order the diagonal entries di of D (i.e., the squared singular values) in decreasing order,581

and as an abuse of notation set B = 1
d1
DV ⊤. Denoting λ̂i = di/d1 for 1 ≤ i ≤ n, we have that582

Bvi = λ̂iei. (By construction of B we have that di ∈ {dc , 0}, therefore, λ̂i ∈ {1, 0})583

Consider B acting on Sd−1: it scales each dimension by λ̂i, thus (as with any linear transformation584

of a sphere), transforms it into an ellipsoid, with c principal axes determined by the vi. The585

greatest possible distance from the origin to the ellipsoid BSd−1 is 1 while the shortest possible586

distance is 0. Now consider the unit circle Sx,y = {v ∈ span(x, y) : ||v|| = 1}. We have that587

BSx,y ⊂ BSd−1 ∩ BU is an ellipse (since the intersection of an ellipsoid and plane is always an588

ellipse).589

Choose unit w1 and w2 belonging to Sx,y such that w1 ⊥ w2. by By Fact 3, we may parameterize590

our vectors as x = cos(η − θ)w1 + sin(η − θ)w2 and y = sin(η + θ)w1 + sin(η + θ)w2, where η591

is the angle made with w1 with the bisector of x and y. By assumption, ||Bw|| ≥ α (the minimal592

shrinking factor of B on Sx,y), so denoting λ = d
c (the maximal stretching factor of B on Sx,y), we593

have that the angle between Bx and By is upper-bounded by594

f(η) = arctan(
α

λ
tan(η + θ))− arctan(

α

λ
tan(η − θ)) (2)

.595

The numerator of df
dη is β(1− β)(1 + β) sin(2θ) sin(2η) where β = α/λ. The derivative is trivially596

0 if (1) β = 0, (2) β = 1, or (3) θ = 0. (1) will not occur as we assume that Sx,y does not contain a597

0-eigenvector of A = B⊤B. (2) can only occur if A is a multiple of the identity matrix (which it is598

not by construction), and (3) implies that x and y are parallel, in which case their angle will not be599
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distorted. Aside from these pathological cases, the critical points occur at η = 0, π/2. We have then600

that cos(Bx,By) lives between cos(f(0)) = 1−β2 tan2 θ
1+β2 tan2 θ and cos(f(π/2)) = − tan2 θ2−β2

tan2 θ2+β2 .601

602

Remark. The constant β has an enormous influence on the bounds in Theorem 2. The smaller the α603

(i.e., shrinking of ||w||), the greater the bounds on distortion. Although we have imposed constraints604

on x, y, if we treat them as any possible pair of random unit vectors, then the w in Sx,y effectively605

becomes a random unit vector as well. We can exactly characterize the distribution of ||BX|| where606

X denotes a random variable which selects a d-dimensional unit vector uniformly at random.607

C.2 Proof of Proposition 1608

Proof. We can sample a d-dimensional vector uniformly at random from the unit sphere Sd−1 by609

drawing a d-dimensional Gaussian vector with iid entries and normalizing. Let us represent this610

as the random variable X = Z ′/||Z ′|| where Z ′ ∼ N (0, Id). Consider a (c, d)-folding matrix611

B, i.e., a d/c horizontal stack of c × c identity matrices (let us assume c|d). We are interested in612

determining the distribution of ||BX||2. For ease of notation, consider the permutation Z of Z ′613

where Zi = Z ′
(⌊ d/c

i ⌋−1)∗(d/c)+i (mod d/c)
. Since this permutation is representable as an orthogonal614

matrix P (and multi-variate Gaussians are invariant in distribution under orthogonal transformations),615

we may instead consider X := P (Z ′/||Z ′||)2 = Z/||Z||2. We may write the norm-squared as616

||BX||2 =
(Z1 + · · ·+ Zd/c)

2

||Z||2
+

(Zd/c+1 + · · ·+ Z2d/c)
2

||Z||2
+ · · ·+

(Z(c−1)(d/c)+1 + · · ·+ Zd)
2

||Z||2
.

(3)
Consider the first term (Z1+···+Zd/c)

2

||Z||2 . First note that for any unit vector u, the distribution of (u⊤Z)2

||Z||2617

does not depend on choice of u. Consider the unit vector u′ then which contains
√
d/c in the first d/c618

entries and 0 otherwise. Then (u′⊤Z)2

||Z||2 is equivalent to d/c times our first term. Of course, since (e⊤1 Z)2

||Z||2619

has the same distribution as (u′⊤Z)2

||Z||2 , we have by transitivity that Z2
1

||Z||2
d
= (n/q)

(Z1+···+Zd/c)
2

||Z||2 .620

By extending the discussion above to the other terms, and by their independence with respect to621

rotation of Z (since their numerators contain squared sums of mutually disjoint Z coordinates), we622

have that623

||BX||2 d
=

d

c
·
Z2
1 + Z2

d/c + Z2
2d/c + · · ·+ Z2

d

||Z||2
. (4)

The distribution of
Z2

1+Z2
d/c+Z2

2d/c+···+Z2
d

||Z||2 is well-known to follow a Beta( c2 ,
d−c
2 ) distribution [13].624

In totality, ||BX||2 d
= d

cBeta(
c
2 ,

d−c
2 ). However, we will move to the four parameter description of625

this scaled Beta distribution which is Beta( c2 ,
d−c
2 , 0, d

c ). The pdf and expected value follows by the626

usual statistical descriptions of this distribution, which can also be found in [13].627

Figure 10 depicts how (d, c)-foldings affect the norms of unit vectors.628

D Additional theory629

In this section, we provide additional theory relevant to SimHash.630

We present several well-known results regarding SimHash.631

Proposition 2 (SimHash estimation). Let x, y ∈ S, i.e., unit d-dimensional vectors. Denote θ =632

arccos(| cos(x, y)|). Let v ∈ Sd be a unit vector drawn uniformly at random (according to the Haar633

measure, for example). Then,634

Pr[sgn(v⊤x) ̸= sgn(v⊤y)] =
θ

π
. (5)
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Figure 10: Distribution of folded norms. 100k randomly drawn unit vectors (d = 128) are folded
down to length 16 by are usual (d, c)-folding procedure. Depicted is a binned histogram of the norms.
As predicted by the statistical description of ||BX||2, where X is a randomly drawn unit vector,
the mass is centered at 1, i.e., most norms are preserved. Empirically we observe that folded rarely
exceed

√
12816, although the theoretical support is [0, 8]: this concurs with the pdf.

Proof. We reproduce the argument of [12]. We have by symmetry that Pr[sgn(v⊤x) ̸= sgn(v⊤y)] =635

2Pr[v⊤x > 0, v⊤y < 0]. The set U = {v ∈ Sd : v⊤x > 0, v⊤y ≤ 0} corresponds to the636

intersection of two half-spaces whose dihedral angle (i.e., angle between the normals of both spaces)637

is exactly θ. Intersecting with the d-dimensional unit sphere produces gives a subspace of measure638
θ
2π , therefore, 2Pr[v⊤x > 0, v⊤y < 0] = θ

π , completing the argument.639

Corollary 2. Let v instead be a d-dimensional random Gaussian vector with iid entries ∼ N (0, 1).640

Then for x, y ∈ Rd,641

Pr[sgn(v⊤x) ̸= sgn(v⊤y)] =
θ

π
(6)

Proof. Randomly drawn, normalized Gaussian vectors are well-known to be uniformly distributed642

on the unit sphere.643

In the setup as above, let the X be a random variable which returns 1 if x and y have differing signs644

when taking the standard inner product with a randomly drawn Gaussian v. Let X1, X2, . . . , Xn645

represent a sequence of independent X events. Then,646

Proposition 3. E[ 1n
∑n

i=1 Xi] = 1− θ
π and V[X] = 1

N
θ
π (1−

θ
π ).647

Given that PGHash is equivalent to a SimHash over (d, c)-foldings of Rd, the variance reduction we648

observe by using multiple tables (Figure 9 is explainable by Proposition 3.649
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