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Causal Visual-semantic Correlation for Zero-shot Learning
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Figure 7: Semantic error visualization on the test set of SUN.
(a) is the class-averaged semantic error matrix for the base-
line, and (b) is the class-averaged semantic error matrix for
CVsC.
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Figure 8: Semantic error visualization on the test set of AWA2.
(a) is the class-averaged semantic error matrix for the base-
line, and (b) is the class-averaged semantic error matrix for
CVsC.

Table 6: Semantic error statistics on the test set of SUN and
AWA2.

Method SUN AWA2
average error | average error

baseline 0.2128 0.2208

CSvC 0.1312 0.1665
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A COMPARISON OF DIFFERENT LOSS
FUNCTIONS

We compared two classic loss functions used in ZSL, namely Mean
Square Error (MSE) loss and Cross-Entropy (CE) loss, to estab-
lish visual-semantic correlation. ZSL allows for the direct use of
attribute annotations as supervision, utilizing MSE loss to guide
model training. Alternatively, it can also use the labels as supervi-
sion, which employs Cross-Entropy loss to optimize the model to
learn visual-semantic correlation. Here, we take ViT as the back-
bone and use a fully connected neural network for semantic embed-
ding as the baseline. Subsequently, we separately train the baseline
using the two aforementioned loss functions. The results are pre-
sented in Table 5.

It shows that the performance of the CE loss significantly sur-
passes that of the MSE loss. This demonstrates our observation in
the introduction, wherein directly enforcing alignment between
mismatched vision and semantics leads to spurious visual-semantic
correlation, resulting in poor zero-shot prediction performance.
Although the CE loss utilizes strictly accurate image labels as su-
pervision to enable the model to adaptively learn visual-semantic
correlation, it lacks further effective semantic guidance and explo-
ration of substantive visual-semantic correlation. This inspires us
to propose CVsC, which establishes substantive visual-semantic
correlation for ZSL.

Table 5: Comparison of different loss functions on CUB, SUN
and AWA2.

CUB SUN AWA2
Loss type | GZSL | CZSL | GZSL | CZSL | GZSL | CZSL
H Acc H Acc H Acc
MSE 56.8 60.5 41.2 59.9 60.5 53.0
CE 67.3 72.6 52.5 72.9 72.0 65.5

B ADDITIONAL EXPERIMENTS FOR
VERIFICATION OF SUBSTANTIVE
CORRELATION

To provide a more comprehensive demonstration of the effective-
ness of our CVsC in establishing substantive visual-semantic cor-
relation, we conducted semantic error visualization experiments
on additional datasets, namely SUN and AWA2. Figures 7 and 8
respectively visualize the semantic error matrices on the SUN and
AWA2? datasets. Furthermore, statistical values of average semantic
errors on these two datasets are presented in Table 6. It is evident
that CVsC leads to a significant reduction in semantic errors. This
finding indicates that CVsC achieves superior results on both bench-
mark datasets, highlighting its consistent ability to enhance the
substantive correlation between vision and semantics for ZSL.
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