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Abstract

Test-time scaling has emerged as a powerful
technique for enhancing the reasoning capabili-
ties of large language models (LLMs). However,
its effectiveness in medical reasoning remains
uncertain, as the medical domain fundamen-
tally differs from mathematical tasks in terms of
knowledge representation and decision-making
processes. In this paper, we provide the first
comprehensive investigation of test-time scaling
for medical reasoning and present m1, a simple
yet effective approach that increases a model’s
medical reasoning capability at inference. Our
evaluation across diverse medical tasks demon-
strates that test-time scaling (by increasing
the “thinking” token budget) consistently en-
hances medical reasoning, enabling lightweight
fine-tuned models under 10B parameters to es-
tablish new state-of-the-art performance, while
our 32B model achieves results comparable to
previous 70B-scale medical LLMs. However,
we identify an optimal reasoning token bud-
get of approximately 4K, beyond which per-
formance may degrade due to overthinking.
Budget forcing, which extends test-time com-
putation through iterative prompts (e.g., ap-
pending “Wait”), helps models double-check
answers but does not necessarily improve the
overall medical QA performance and, in some
cases, even introduces errors into previously
correct responses. Taken together, our case-by-
case analysis further identifies insufficient med-
ical knowledge as a key bottleneck that pre-
vents further performance gains through test-
time scaling. To overcome this constraint,

we find that increasing data scale, improv-
ing data quality, and expanding model ca-
pacity consistently enhance medical knowledge
grounding, enabling continued performance im-
provements—particularly on challenging medi-
cal benchmarks where smaller models reach sat-
uration. These findings underscore fundamen-
tal differences between medical and mathemat-
ical reasoning in LLMs, highlighting that en-
riched medical knowledge, other than increased
reasoning depth alone, is essential for fully re-
alizing the benefits of test-time scaling.

Keywords: Medical, Reasoning, Large Lan-
guage Models, Test-Time Scaling, Health Care
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1. Introduction

Test-time scaling has emerged as a promising direc-
tion to enhance LLM reasoning by enabling models
to “think more” during inference Yang et al. (2025).
OpenAI’s o1 Jaech et al. (2024) demonstrated that
significantly extending an LLM’s chain-of-thought
can yield remarkable gains in problem-solving ability
in both STEM fields and the medical domain Muen-
nighoff et al. (2025); Xie et al. (2024), but the ex-
act methodology was not disclosed, spurring many
replication efforts. Among the most successful repli-
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Figure 1: Test-time scaling of m1 series. Each plot shows accuracy (%) vs. reasoning token budget for
different m1 model variants on various medical QA datasets. All models improve steadily as the thinking
length increases, with the 32B model reaching the best accuracy. The linear regression lines are dotted with
95% CIs.

cation attempts is the open-source s1 method Muen-
nighoff et al. (2025), which achieved remarkable re-
sults through a surprisingly simple approach. By fine-
tuning a 32B parameter model on just 1K carefully
curated examples with reasoning traces and imple-
menting an inference control mechanism via a ”Wait”
token, s1 enabled the model to effectively double-
check its work. This simple approach produced state-
of-the-art results on challenging mathematical bench-
marks, e.g., outperformed OpenAI’s o1-preview by
up to 27%.

Despite these advances, applying test-time scal-
ing to the medical domain remains largely under-
explored Jiang et al. (2025). The medical domain
presents unique challenges for LLMs: questions often
involve multi-step logical reasoning, accurate recall of
medical knowledge, and careful consideration to avoid
unsafe or harmful answers Chen et al. (2024b). As the
medical field fundamentally differs from mathemati-
cal tasks in terms of knowledge representation and
decision-making processes, the effectiveness of test-
time scaling for medical reasoning remains uncertain.

While advanced proprietary models like GPT-
4 Hurst et al. (2024) and Med-PaLM Singhal et al.
(2022) have achieved expert-level scores on medical
exams Zhang et al. (2024), open-source medical LLMs
still struggle to reliably solve complex medical prob-
lems. Improving reasoning in these models is critical,
as healthcare applications demand not just factual
accuracy but robust diagnostic and therapeutic rea-

soning capabilities. Existing medical reasoning LLMs
such as HuatuoGPT-o1 Chen et al. (2024b) typically
rely on computationally intensive methods like re-
inforcement learning with verification mechanisms.
This raises a key question: Can a simple test-time
scaling strategy, with minimal fine-tuning, also un-
lock strong medical reasoning?

In this paper, we answer in the affirmative by pre-
senting m1, a lightweight methodology that adapts
the test-time scaling paradigm to medical QA tasks.
Our approach is straightforward: we curate a high-
quality set of medical questions with detailed step-
by-step solutions (only 1K / 23K examples), fine-
tune open LLMs on this data, and at inference use
test-time controls to ensure the model fully “thinks
through” problems before answering. Figure 1 illus-
trates the outcome: as we allow the model to generate
longer chains of thought (x-axis increasing), accuracy
on various medical benchmarks consistently improves
for our m1 models. Notably, even our 7B-parameter
model fine-tuned on 1K examples shows significant
gains with more reasoning steps, and our 32B model
achieves the highest scores across the board.

To better understand the impact of test-time scal-
ing on medical reasoning in LLMs, we conduct a fine-
grained study, systematically examining the effects of
thinking budgets, inference techniques, data
curation, and model capacity. While increasing
the token budget consistently improves performance,
we identify an optimal reasoning threshold of approx-
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imately 4K tokens, beyond which accuracy declines
due to overthinking. In addition to increasing the
token budget (Figure 1), reasoning can also be ex-
tended through budget forcing, wherein the model
iteratively prolongs its thought process during infer-
ence Muennighoff et al. (2025). However, unlike in
mathematical reasoning—where iterative refinement
often enhances accuracy—forcing additional reason-
ing in medical QA yields limited benefits and, in some
cases, even degrades performance. This occurs when
models with erroneous knowledge reconsider correct
responses during extended reasoning, ultimately ar-
riving at incorrect conclusions.

A closer analysis of failure cases reveals that this
bottleneck stems from deficiencies in essential med-
ical knowledge, which cannot be resolved merely by
increasing the thinking budget. Consequently, ex-
tending the reasoning window reaches a fundamen-
tal limit, and budget-forcing techniques offer negli-
gible benefits, as models lacking foundational knowl-
edge remain anchored to incorrect assumptions. Even
with additional reasoning steps, these models still
struggle to retrieve accurate information. In such
cases, improving data quality and increasing model
capacity provide more effective avenues for improve-
ment. Our thorough ablation of data filtering strate-
gies, dataset size, and model scaling demonstrates
that when scaling thinking budget reaches its bottle-
neck, further performance gains can be achieved by
enhancing data quality and scaling the model. Specif-
ically, larger, difficulty-filtered, and diversity-sampled
datasets consistently improve performance, while
larger models further enhance scalability. This is be-
cause larger-capacity models or those fine-tuned on
more extensive, high-quality datasets inherently pos-
sess richer medical knowledge, leading to higher ac-
curacy. In conclusion, test-time scaling alone is insuf-
ficient for enhancing medical reasoning in LLMs—it
needs to be complemented by scaling model size and
improving knowledge grounding through high-quality
data.

Our 7B model fine-tuned on 23K examples
(m1-7B-23K) attains new state-of-the-art accuracy of
60.32% among in-domain and out-domain medical
exam datasets, surpassing previously established spe-
cialized models of similar scale such as HuatuoGPT-
o1-7B/8B (trained with complex RL on 40K in-
stances) Chen et al. (2024b) and UltraMedical-8B
(trained on hundreds of thousands of medical instruc-
tions) Zhang et al. (2024). Furthermore, our larger
32B model trained with only 1K fine-tuning samples

(m1-32B-1K) achieves performance comparable to 2X
bigger resource-exhausted models (around 70B pa-
rameters with high training costs), underscoring the
efficiency of our test-time scaling approach. All data,
code, and models are publicly available to encourage
future exploration in optimizing inference strategies
in clinical AI applications.

2. Related Works

Test-time scaling for LLMs. There is a grow-
ing interest in techniques that enhance an LLM’s
reasoning without altering its weights, by allocat-
ing more computation at inference time Jaech et al.
(2024); Meng et al. (2023); Hu et al. (2025). A
basic form is chain-of-thought prompting, e.g. in-
structing the model to “think step by step,” which
often improves performance on complex tasks Wei
et al. (2022). More explicit approaches include gen-
erating multiple solutions and using majority vot-
ing or self-consistency to pick an answer, or employ-
ing search-based strategies with verifiers and looka-
head. These methods trade extra inference passes
for accuracy gains. In contrast, sequential test-time
scaling keeps a single reasoning thread but makes it
longer. OpenAI’s o1 model hinted at the power of
simply extending the reasoning length Jaech et al.
(2024). Muennighoff et al. (2025) formalized this by
fine-tuning an LLM to utilize special “Wait” tokens,
which allow controlling response length during infer-
ence. Their budget forcing method (described below)
proved more effective than parallel voting strategies.
Other recent research has proposed optimizing the al-
location of test-time compute, for example finding an
optimal stopping length per problem to avoid over-
thinking Yang et al. (2025). Our work builds directly
on the simple test-time scaling idea Muennighoff et al.
(2025); Aggarwal and Welleck (2025) by extending
thinking traces with “wait” — we apply it to a new
domain (medicine) and confirm its benefits in a very
different setting. We focus on single-trace sequential
reasoning, noting that it is complementary to orthog-
onal advances like tool use or retrieval augmentation.

Medical LLMs. The success of GPT-4 in medi-
cal exams Zhang et al. (2024) has spurred numer-
ous open efforts to train medical domain LLMs ??.
Early approaches centered on domain-specific pre-
training: e.g. Wu et al. (2024) and Qiu et al.
(2024) pre-trained Llama models on medical text cor-
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pora (MIMIC-III Johnson et al. (2016), PubMed 1,
etc.) to inject medical knowledge. While this im-
proves knowledge recall, the gains on reasoning-heavy
tasks were limited Jiang et al. (2025); Wu et al.
(2025). More recent projects emphasize instruc-
tion tuning and reinforcement learning specialized for
medicine. For example, OpenBioLLM was fine-tuned
with expert-validated instructions and Direct Pref-
erence Optimization, and reportedly outperformed
GPT-4 and Med-PaLM-2 on several biomedical QA
benchmarks Pal and Sankarasubbu (2024). Med42
is another open model suite that achieved impres-
sive results, even exceeding GPT-4.0 on many multi-
choice medical QA tasks Christophe et al. (2024).
To push reasoning ability further, some works in-
corporate explicit reasoning supervision or verifica-
tion. HuatuoGPT-o1 introduced verifiable medi-
cal problem-solving: they constructed 40K problems
with known solutions and used a two-stage train-
ing (SFT + RL with a verifier) to train a 70B
model Chen et al. (2024b). This model achieved new
state-of-the-art results on medical reasoning bench-
marks, outperforming both general and prior med-
ical LLMs Zhang et al. (2024). UltraMedical built
a massive dataset of 410K mixed manual/synthetic
instructions for biomedicine Jiang et al. (2025),
and fine-tuned Llama-3 models with supervised and
preference learning. The 70B UltraMedical model
reached 86.5% accuracy on MedQA, nearly matching
Med-PaLM2 Singhal et al. (2025) and GPT-4 Achiam
et al. (2023). In contrast, our approach remains
lightweight as we do not introduce new RL or ver-
ification components, and our dataset size (1K-23K)
is relatively small, yet through test-time scaling, we
achieve competitive results with these state-of-the-art
models. We hope this encourages more exploration
of inference-time techniques as an efficient alternative
for domain-specific LLMs.

3. Method

Our approach consists of three parts: 1) Data cura-
tion: selecting and generating a high-quality set of
medical QA examples with detailed reasoning (Sec-
tion 3.1), 2) Model training: Supervised Fine-
Tuning (SFT) of base LLMs on this data (Sec-
tion 3.2), and 3) Inference: test-time control of the
model’s reasoning length (Section 3.3). Figure 2 pro-
vides an overview of the full pipeline.

1. https://pubmed.ncbi.nlm.nih.gov/
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Figure 2: An overview of our data curation
and training pipeline. We start with 196K raw
medical QA examples, apply difficulty filtering (re-
taining 37K that Qwen2.5-7B-Instruct Yang et al.
(2024) or its 32B version cannot solve), then use
DeepSeek-R1 Guo et al. (2025) to generate reason-
ing and keep correct solutions (m23K). We perform
diversity sampling to select a 1K high-quality sub-
set (m1K). These datasets are used to fine-tune base
models (Qwen2.5 7B and 32B Instruct) via Super-
vised Fine-Tuning (SFT), resulting in the m1 models
(m1-7B-1K, m1-7B-23K, m1-32B-1K).

3.1. Data Curation

Initial collection. To construct the training data
for m1 through a multi-step refinement process, we
begin with a large pool of approximately 196K med-
ical QA samples compiled from public datasets:
MedMCQA Pal et al. (2022), MedQA-USMLE Jin
et al. (2021), HeadQA Vilares and Gómez-Rodŕıguez
(2019), and PubMedQA Jin et al. (2019). These in-
clude multiple-choice questions from medical exams
as well as open-ended research questions. All sam-
ples are decontaminated against the evaluation data
in Section 4.1. More details are presented in Ap-
pendix A.

Difficulty filtering. Following s1 Muennighoff
et al. (2025), we identify a subset of solvable yet
non-trivial problems by performing difficulty filter-
ing using two strong base models. Specifically, we
use Qwen2.5-Instruct Yang et al. (2024) (an open gen-
eral LLM) of 7B and 32B parameters to attempt each
question. We filter a question if either Qwen-7B or
Qwen-32B answers it correctly. This heuristic retains
questions that are challenging to solve, eliminating
those that are too easy for either models. Difficulty
filtering pruned the dataset from 196K down to 37K
samples.

4
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Thinking generation. We employ DeepSeek-
R1 Guo et al. (2025), a state-of-the-art open reason-
ing LLM, to generate a chain-of-thought and final an-
swer for each of the 37K questions. DeepSeek-R1 was
chosen for its robust reasoning capability (it’s com-
parable to OpenAI’s o1 Jaech et al. (2024) in multi-
step problem solving). For each question, we prompt
DeepSeek-R1 to produce a detailed solution explana-
tion ending in a definitive answer. We then apply so-
lution validation: we only keep those instances where
DeepSeek-R1’s final answer is correct (matching the
ground-truth). This yields a set of 23K high-quality
“thinking - answers”, where each question now paired
with a verified-correct reasoning process. This step
ensures our training data predominantly consists of
valid reasoning, while incorrect chains are discarded.
More details are presented in Appendix A and B.1.

Diversity sampling. We design a diversity sam-
pling strategy to construct a well-balanced and en-
riched subset for training our primary model. This
process highlights two key components: domain bal-
ance and dataset balance. First, we ensure domain
balance by annotating each sample with Medical
Subject Headings (MeSH) categories2 (See Appendix
for the details), enabling systematic coverage across
medical specialties (e.g., cardiology, neurology) and
question types. Second, we address dataset imbal-
ance through stratified sampling, first selecting do-
mains, then source datasets, and finally individual
samples (see Appendix Tables 3 and 4 for distribu-
tions). We perform stratified sampling at the dataset
level to address the imbalance in sample counts across
datasets (Appendix, Table 3, 4). Specifically, we first
sample a domain, then sample a dataset, and finally
roll-out a sample. The process is repeated until there
are 1K samples (m1K), which will be served as our
core training set for m1. The remaining 23K difficult
samples (m23K) can be used to augment training or
for ablations. We provide summary statistics of the
final data in Appendix A.

3.2. Model Training

We fine-tune three model variants, corresponding
to two model sizes (7B and 32B) and two train-
ing set sizes (1K and 23K). For each, we use the
pre-trained Qwen2.5-Instruct model as the initializa-
tion. Qwen2.5 is a recent high-performance open
LLM Yang et al. (2024); using it as our base en-

2. https://www.ncbi.nlm.nih.gov/mesh/

sures strong general language ability and allows us
to focus on injecting medical reasoning. We format
each training example in a “question → reasoning →
answer” style. This format teaches the model to pro-
duce a coherent reasoning process and then give the
answer. Using this data, we perform SFT for each
model:

• m1-7B-1K: Fine-tuned on the 1K m1K dataset us-
ing the Qwen2.5-7B-Instruct. This represents the
minimal training scenario.

• m1-7B-23K: Fine-tuned on the full 23K filtered
dataset using Qwen2.5-7B-Instruct. This lets us ex-
amine the effect of more training data (23K vs 1K)
at the same model size.

• m1-32B-1K: Fine-tuned on the 1K dataset using
the larger Qwen2.5-32B-Instruct. This shows the ef-
fect of a larger model with minimal data.

3.3. Inference

At inference time, we employ test-time scaling by
managing the model’s generation of the chain-of-
thought. Specifically, we define a thinking budget: a
maximum number of tokens the model is allowed to
generate before producing a final answer. By allocat-
ing a larger budget, we give the model more “think-
ing space” to potentially reason through the prob-
lem. If the model would naturally finish its reasoning
early, we intervene to use the budget fully. We also
apply budget forcing technique to extend the think-
ing process of the model: when the model outputs
end-of-think token indicating the end of thinking
before reaching the token budget, we replace it with
“Wait.” and force the model to keep the generation of
the thinking traces. According to Muennighoff et al.
(2025), this method often leads the model to double-
check or refine its initial answers for math problems.

4. Experiments

4.1. Evaluation Settings

Datasets. We evaluate on nine medical QA bench-
marks, grouped into In-Distribution and Out-of-
Distribution tests. We measure accuracy for all
datasets. 1) In-Distribution tests: The accompa-
nying test splits from our training data, include
MedMCQA Pal et al. (2022) (MedMC); MedQA-
USMLE Jin et al. (2021) (MedQA), and Pub-
MedQA Jin et al. (2019) (PubMed). 2) Out-of-
Distribution tests: The datasets are not included
in training and stylistically distinct, assessing m1’s

5
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Model MedMC MedQA PubMed MMLU-P GPQA Lancet MedB (4) MedB (5) MedX NEJM Avg.
In-Distribution Test Out-of-Distribution Test

< 10B LLMs

MedLlama3-8B-v1 34.74 55.07 52.70 27.43 30.77 42.23 38.31 33.77 11.04 49.25 37.53
MedLlama3-8B-v2 59.34 59.39 75.50 55.11 36.41 52.43 48.38 39.94 13.46 54.56 49.45
OpenBioLLM-8B 54.63 55.30 70.10 49.32 41.03 52.43 41.23 32.47 14.29 54.23 46.50
MMed-8B 52.71 54.28 63.40 48.27 34.87 53.40 41.23 35.39 13.73 54.39 45.17
MMedS-8B 47.29 57.19 77.50 33.55 22.05 55.10 54.22 55.84 17.39 53.40 47.35
MMed-8B-EnIns 58.09 60.33 63.80 51.60 45.90 55.34 59.09 56.17 18.56 62.35 53.12
Med42-8B 56.35 59.78 76.00 55.64 48.21 59.47 44.81 46.75 14.63 62.69 52.43
UltraMedical-8B-3 59.22 71.09 71.10 61.50 50.00 61.89 54.22 52.27 15.25 64.51 56.11
UltraMedical-8B-3.1 63.78 75.73 79.20 64.30 48.72 67.23 64.61 55.19 17.39 66.83 60.30
HuatuoGPT-o1-7B 63.47 71.56 78.60 67.23 47.95 62.14 52.92 50.65 15.11 65.17 57.48
HuatuoGPT-o1-8B 63.97 74.78 80.10 63.71 55.38 64.32 58.44 51.95 16.84 64.84 59.43
Qwen2.5-7B-Instruct 56.56 61.51 71.30 61.17 42.56 61.17 46.75 40.58 12.15 59.04 51.28

+CoT 56.11 64.49 72.60 62.15 52.56 60.68 50.97 42.86 13.18 58.54 53.41
m1-7B-1K 58.26 71.01 77.50 65.15 51.79 64.32 58.77 51.95 16.29 62.52 57.76
m1-7B-23K 62.54 75.81 75.80 65.86 53.08 62.62 63.64 59.74 19.81 64.34 60.32

> 10B LLMs

Qwen2.5-72B-Instruct 66.60 74.55 70.80 66.06 62.05 66.50 57.14 53.57 14.91 68.99 60.12
+CoT 66.15 76.43 71.30 69.77 63.85 65.78 60.06 54.22 14.84 69.15 61.16

Med42-70B 62.28 51.14 78.10 54.53 50.77 54.61 45.78 37.99 16.29 56.05 50.75
OpenBioLLM-70B 74.23 75.10 79.30 71.92 50.77 68.93 58.44 54.55 21.33 67.83 62.24
UltraMedical-70B-3 72.94 83.90 80.00 73.94 58.72 75.49 72.08 64.61 21.67 73.13 67.65
HuatuoGPT-o1-70B 75.23 86.80 81.40 76.09 66.67 72.82 72.08 68.51 26.36 74.13 70.01
HuatuoGPT-o1-72B 76.76 88.85 79.90 80.46 64.36 70.87 77.27 73.05 23.53 76.29 71.13

Qwen2.5-32B-Instruct 64.83 75.26 68.00 74.72 63.85 66.02 60.39 52.92 13.87 66.67 60.65
+CoT 64.33 74.86 68.90 74.72 64.87 66.75 60.39 54.22 14.56 66.33 60.99

m1-32B-1K 67.34 83.50 77.60 76.94 66.67 70.15 73.70 67.86 25.53 73.13 68.24

Table 1: Baseline Comparisons. We report accuracy (%) on each evaluation dataset for various models.
Our m1 models (in bold) are shown in the ≤ 10B group (m1-7B variants) and > 10B group (m1-32B).
“+CoT” indicates using chain-of-thought prompting at inference for that base model. We mark Green color
within each parameter group: the deeper the color, the higher the accuracy. For header abbreviations, please
refer to Section 4.1.

reasoning generalization: medical related questions
from MMLU-Pro Wang et al. (2024) (MMLU-P) and
GPQA Rein et al. (2024), small QA sets from Lancet
and the New England Journal of Medicine (NEJM); 4
Options (MEdB (4)) and 5 Options (MedB (5)) splits
from the MedBullets platform Chen et al. (2024a);
and MedXpertQA Zuo et al. (2025) (MedX).

LLM baselines. We compare our models against
a variety of general and specialized medical LLM
baselines: 1) general base instruct models Qwen2.5-
7B, tested both as-is and with chain-of-thought
prompting (+CoT); 2) specialized medical mod-
els including MedLlama3 3, OpenBioLLM Pal and
Sankarasubbu (2024), MMed-Llama Qiu et al.
(2024), Med42 Christophe et al. (2024), UltraMed-
ical Zhang et al. (2024); 3) medical reasoning model

3. https://huggingface.co/johnsnowlabs/

HuatuoGPT-o1 Chen et al. (2024b), which undergoes
complex RL training.

Additionally, we compare to state-of-the-art large
open medical LLMs (>10B), including Med42-
70B Christophe et al. (2024), OpenBioLLM-70B Pal
and Sankarasubbu (2024), UltraMedical-70B Zhang
et al. (2024), HuatuoGPT-o1-70B/72B Chen et al.
(2024b), and baseline Qwen2.5 models (32B, 72B)
with their respective +CoT versions. HuatuoGPT-
o1 and UltraMedical employ complex training strate-
gies involving reinforcement learning or expert feed-
back; therefore, matching or exceeding their perfor-
mance with our simpler test-time scaling method un-
derscores its effectiveness.

4.2. Results

Test-time scaling with different thinking bud-
gets. We first evaluate how increasing the chain-

6
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of-thought token budget at inference affects perfor-
mance on various medical QA datasets. As illus-
trated by the upward trajectories in Figure 1, our m1
approach gains consistent accuracy improvements as
the thinking budget grows, demonstrating the effi-
cacy of simple test-time scaling. Despite simplicity,
Table 1 presents that our m1-7B-23K achieves an aver-
age accuracy of 60.32% amongst in-distribution and
out-of-distribution sets, which exceeds complex RL
tuned HuatuoGPT-o1-7B by 2.84%, and matches the
large-scale SFT-tuned UltraMedical-8B. Notably, be-
yond 4K tokens, the improvements begin to saturate,
indicating limited additional benefit from extremely
long reasoning.

Larger model capacity helps. When scaling
model size from 7B to 32B parameters, we observe
a more pronounced benefit from test-time scaling
as larger models inherently possess richer medical
knowledge. In Table 1, m1-32B-1K consistently out-
performs or matches even larger (70B+) specialized
medical LLMs, demonstrating that pairing a larger
base model with simple supervised thinking traces
and inference-time scaling yields strong results. This
trend is also apparent in Figure 1, where the 32B
model’s accuracy curve leads across most datasets as
the thinking budget increases.

Budget forcing does not help. Unlike math-
ematical tasks, where prompting the model to re-
peatedly refine its chain-of-thought can yield further
gains, our experiments show diminishing returns from
forced re-thinking (Figure 3). Although the model
will generate additional intermediate tokens when re-
peatedly prompted to “keep thinking”, we see mini-
mal improvement, suggesting that medical reasoning
may differ from math domains in how additional it-
erative reasoning is best leveraged. We analyze such
failure cases in the following sections.

SFT data ablation. We ablate two key data cu-
ration steps used in our SFT process: difficulty filter-
ing and diversity sampling (comprising domain and
dataset balancing). As shown in Table 2, at the
1K training scale, models fine-tuned on difficulty-
filtered data outperform those trained on randomly
sampled data by +0.27% percentage points on aver-
age. Adding domain balance further improves perfor-
mance by 0.43%, and incorporating both domain and
dataset balance yields additional gains, reaching up
to 56.55% average accuracy. At the 23K scale, over-
all performance improves substantially, and difficulty

Figure 3: Force thinking for different evalua-
tion datasets. Accuracy vs. number of budget
forcing times (iterations of injecting “Wait”) for each
m1 model (7B-1K, 7B-23K, 32B-1K). A value of 0
means the model’s first answer is taken without forc-
ing, while higher values mean the model was com-
pelled to reconsider up to that many times (within a
2048-token limit).

filtering alone provides a +0.65% accuracy boost on
average. These results highlight the critical role of
both data quality and scale in enhancing model per-
formance.

Failure cases. In this section, we discuss several
fail cases where the models fail to perform test-
time scaling, underscoring the critical role of accurate
knowledge in medical reasoning models. Specifically,
our investigation can be distilled into the following
key points:

• The extent of knowledge is crucial for ef-
fective medical reasoning. As illustrated in Fig-
ure 4, m1-7B-1K is unable to generate accurate rea-
soning because it lacks crucial knowledge: ’Anterior
ethmoidal artery belongs to the internal carotid’. In
contrast, both m1-7B-23K and m1-32B-1K possess
this essential knowledge. Consequently, having a sub-
stantial amount of accurate knowledge, whether from
fine-tuning data or the pre-training model, enhances
the model’s capability for medical reasoning. This
is similarly evidenced in Table 1, where m1-7B-23K
and m1-32B-1K exhibit a significantly better perfor-
mance.

• Incorrect knowledge obstructs the reason-
ing. As demonstrated in Figure 5, even when the
model generates the correct answer at first, forcing
it to re-think cause it to retrieve faulty information,
which results in an incorrect response. Therefore,
such erroneous knowledge may lead to unstable rea-
soning process, highlighting the importance of veri-
fying the accuracy of the training data for medical
reasoning models.
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Data Filtering MedMC MedQA PubMed MMLU-P GPQA Lancet MedB (4) MedB (5) MedX NEJM Avg.
In-Distribution Test Out-of-Distribution Test

1K Scale

Random 57.26 66.46 73.60 61.63 44.62 62.62 54.55 53.57 14.70 58.54 54.75
Hard Random 56.99 68.66 73.70 63.26 46.41 62.14 56.82 44.81 16.36 61.03 55.02
Hard Domain 58.88 66.38 74.00 64.95 45.38 63.11 54.55 49.68 16.36 61.19 55.45
Hard Domain Dataset 57.97 70.23 76.10 64.23 49.74 62.14 57.79 50.97 17.12 59.20 56.55

23K Scale

Random 60.41 71.64 76.50 67.43 48.72 62.38 60.06 54.22 15.32 61.86 57.85
Hard 62.01 73.76 75.80 65.54 50.51 61.89 60.06 55.19 18.91 64.34 58.80

Table 2: Data Filtering Ablation: difficulty filtering (“Hard”), and “Domain” and “Dataset”
balance for diversity sampling. Difficulty filtering consistently yields the largest gains across both 1K and
23K training scales, while domain and dataset balancing provide complementary improvements. Notably,
scaling up from 1K to 23K substantially boosts accuracy, underscoring the importance of data scale. The
same header abbreviations as Table 1.

• Test-time scaling fails to rectify incorrect
knowledge. In fields like math and coding, scaling
up thinking processes can enhance a model’s reason-
ing by allowing it to conduct self-reflection and iden-
tify errors in its previous logic. However, in the med-
ical domain, errors largely stem from misconceptions
in knowledge. These are difficult to correct merely
by increasing the reasoning budget. As illustrated
in Figure 4, despite m1-7B-1K executing the most
extended reasoning, its lack of crucial medical knowl-
edge hinders it from arriving at the correct answer.
Additionally, in Appendix Figure 7, even when the
model is forced to re-think multiple times, it is un-
able to rectify the inaccurate knowledge.

5. Conclusions

We introduced m1, demonstrating that test-time scal-
ing significantly improves medical reasoning in large
language models without requiring extensive fine-
tuning. Performance across diverse medical QA
benchmarks consistently improved with increased
inference-time reasoning budgets. Crucially, we
found that test-time scaling alone cannot remedy
fundamental deficiencies in medical knowledge, em-
phasizing the necessity for high-quality medical data
and model scale expansion. m1 achieves strong per-
formance, outperforming more expensive approaches
such as HuatuoGPT-o1 and UltraMedical on various
benchmarks. Our 7B model trained on 23K data es-
tablishes a new state-of-the-art in the ≤ 10B param-
eter category, and our 32B model rivals models 2× in
size. We release a full-stack open-source package in-
cluding the curated dataset (m1K), fine-tuned model

Figure 4: A failure case of test-time scaling with
the Qwen2.5-7B using 1K reasoning data. Although
the m1-7B-1K conducts the longest reasoning, its de-
ficiency in essential medical knowledge prevents it
from producing the right answer. On the other hand,
both m1-7B-23K and m1-32B-1K effectively resolve
the question with a relatively brief reasoning proce-
dure.

weights, and inference code with budget control, to
encourage future exploration in optimizing inference
strategies in clinical AI applications.
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Appendix A. Data Statistics

Dataset statistics. Table 3 shows the statistics of
all datasets used in the paper. Note that the sample
counts across datasets are highly imbalanced.

Token length statistics. As illustrated in Fig-
ure 6, the distributions of training token lengths be-
tween the m1K/m23K and s1K Muennighoff et al.
(2025) datasets exhibit clear differences. The
m1K/m23K dataset shows a strongly right-skewed
distribution, with most samples having token lengths
clustered around 1,000 tokens, quickly diminishing
toward lengths beyond 3,000 tokens. In contrast, the
s1K dataset displays a more uniform and broader dis-
tribution, spanning widely from about 2,500 to over
15,000 tokens, with peaks around 5,000 to 10,000 to-
kens. These contrasting distributions reflect differ-
ing data preparation strategies: m1K/m23K focuses
on concise medical knowledge without longer think-
ing steps, whereas s1K includes longer, more detailed
reasoning traces suitable for complex multi-step in-
ference tasks.

Sample domain statistics. We list the statistics
of sample domains for m1K and m23K in Table 4.
We use the domain label from MeSH Qualifiers with
Scope Notes 4.

Appendix B. Implementation Details

B.1. Data Generation Details

We generate the reasoning traces and answers using
the API of deepseek-ai/DeepSeek-R1 model on the
SiliconFlow platform 5. We call the API with its de-
fault sampling parameters. The API calls are sched-
uled with curator 6.

According to the initial observation on the
length of the outputs, we set the limit to
8K as no samples have outputs with length
larger than 8K. The prompt is formatted as
"Return your final response within \\boxed{{

}}.\n{Question}\n{Options}", thus the answers
are enclosed and are easy to be extracted and
verified.

4. https://www.nlm.nih.gov/mesh/qualifiers_
scopenotes.html

5. https://siliconflow.cn/
6. https://github.com/bespokelabsai/curator/
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Figure 6: The token length distributions of m1K and
s1K Muennighoff et al. (2025). The 25%/50%/75%
quantile is marked in transparent vertical dotted
lines.

We perform data decontamination and deduplia-
tion following OpenThoughts project 7.

7. https://github.com/open-thoughts/open-thoughts/
tree/main/open_thoughts
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Table 3: The statistics of all datasets used in the paper.

Dataset MedQA HeadQA MedMCQA PubMedQA Summation

Initial collection 10,178 2,657 182,822 500 196,157
+After difficulty filtering 2,099 331 35,270 116 37,816
+Generating thinking data 1,628 209 21,628 39 23,504

+Decontamination & deduplication (m23K) 1,628 209 21,628 28 23,493
Random 23K 1,316 317 21,831 29 23,493

Random 1K 61 8 929 2 1,000
Hard random 1K 78 10 909 3 1,000
Hard Domain Balanced 1K 52 20 924 4 1,000
Hard Domain Dataset Balanced 1K (m1K) 274 123 575 28 1,000

B.2. SFT Details

All fine-tuning runs use standard language mod-
eling training with ‘trl‘ library: we optimize the
model to minimize the output cross-entropy on the
reasoning \to answer sequences (teacher-forcing
the entire sequence). We use the same training hy-
perparameters as the s1 paper for consistency Muen-
nighoff et al. (2025): 5 epochs of training, a batch
size equals 16, a low learning rate of 1e-4 with
warmup and cosine decay, a modest weight decay
of 1e-4, Adam betas of 0.9 and 0.95. The think-
ing part is enclosed with <|im_start|>think and
<|im_start|>answer. SFT is performed with trl and
transformers libraries.

Training m1-7B-1K and m1-7B-23K is extremely
fast on the order of minutes on 8 H100 GPUs, and
m1-32B-1K can be trained in a few hours with 16
H100 GPUs. This underscores the efficiency of our
approach: unlike massive instruction tuning efforts
that require many days on tens of GPU nodes, our
models reach convergence with modest compute. We
did not apply any reward modeling or RL in training:
the model purely learns to imitate the given chain-of-
thought format.

B.3. Evaluation Details

Datasets. To thoroughly assess both in-domain
performance and generalization, we evaluate on eight
medical QA benchmarks, grouped as follows:

In-Distribution Tests:

1. MedMCQA Pal et al. (2022) – a collection of
3.5K multiple-choice questions from Indian med-
ical entrance exams, testing general medical
knowledge.

2. MedQA-USMLE Jin et al. (2021) – the USMLE
question dataset (NYU MedQA) containing US
medical licensing exam MCQs; we use the stan-
dard test split.

3. PubMedQA Jin et al. (2019) – a dataset of
biomedical research questions (factoid Q paired
with abstracts) where the task is to answer
yes/no/maybe or short answer. These three were
part of our training data pool (though we fil-
tered and sampled from them), so they repre-
sent in-domain evaluations. We report accuracy
(for MCQ, percentage of correct choices; for Pub-
MedQA, percentage of correct yes/no/maybe).

Out-of-Distribution Tests:

1. MMLU-Pro Wang et al. (2024) (Medical) – the
medical category subset of the Massive Multi-
task Language Understanding benchmark, which
includes professional medicine questions and re-
lated subjects. We specifically evaluate on the
Professional Medicine section (and report accu-
racy). We follow the split from Chen et al.
(2024b).

2. GPQA (Medical) Rein et al. (2024) – the
biomedical portion of the Graduate-Level
Physics/Chemistry/Biology QA dataset GPQA.
This dataset contains extremely challenging,
Google-proof multiple-choice questions created
by experts, requiring high reasoning (we use the
biology/medical questions, 150 in total). We
follow the split from Chen et al. (2024b).

3. Lancet & NEJM – we compiled two small sets
of QA pairs from The Lancet 8 and New Eng-

8. https://www.thelancet.com/
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land Journal of Medicine 9 (NEJM) clinical case
reports (answers verified from the text). These
assess how models handle medical literature style
questions.

4. MedBullets Chen et al. (2024a) – a collection of
practice questions from the MedBullets medical
education platform. We specifically take subsets
of difficulty level 4 and 5 (on a 1–5 scale, 5 being
hardest), denoted MedBullets Op4 and MedBul-
lets Op5, about 100 questions each, to serve as
challenging test sets.

5. MedXpertQA Zuo et al. (2025) – a custom set of
50 expert-written multi-step medical reasoning
questions we created for qualitative evaluation
(free-form answers). For MedXpertQA we report
the percentage of questions answered correctly.

These out-of-distribution (OOD) sets were not
used in training and often differ in style from our
training data (e.g. long clinical vignettes, or ex-
tremely tricky edge cases). They allow us to test
how well m1’s reasoning generalizes.

Methods. We compare our models against a broad
range of baselines, including both general LLMs and
specialized medical LLMs:

1. Qwen2.5 Instruct (7B, 32B, 72B) – The base
instruct models (no medical fine-tuning). We
include these to show the starting performance
of the underlying models before our fine-tuning.
We also test Qwen2.5 with a chain-of-thought
prompting (+CoT), where we simply prompt it
to “think step by step” at inference, to see if
prompting alone can elicit similar reasoning (this
baseline uses no additional training).

2. MedLlama3 (8B)10 – An 8B instruction-tuned
model released by M42 (Johns Hopkins/APL),
one of the early open medical LLMs. We list
two versions from their releases.

3. OpenBioLLM (8B) Pal and Sankarasubbu
(2024) – The 8B model from Saama AI, fine-
tuned with expert-curated medical data.

4. MMed-Llama (8B) Qiu et al. (2024) – A
multilingual medical model from MedS3 work,
which underwent additional pre-training (de-
noted MMedS or MMed in results).

9. https://www.nejm.org/
10. https://huggingface.co/johnsnowlabs/

5. Med42 (8B) Christophe et al. (2024) – The 8B
model from the Med42-v2 suite, instruction and
preference-tuned on clinical data.

6. UltraMedical (8B) Zhang et al. (2024) – The 8B
model from Tsinghua’s UltraMedical project (we
test both the v3.0 and v3.1 versions if available).

7. HuatuoGPT-o1 (7B & 8B) Chen et al. (2024b) –
The smaller versions of HuatuoGPT-o1 (the 70B
model’s distilled or intermediate checkpoints) as
reported in their paper.

8. Larger models (>10B): We also compare to
state-of-the-art open models in the larger
size class: Med42-70B Christophe et al.
(2024), OpenBioLLM-70B Pal and Sankara-
subbu (2024), UltraMedical-70B Zhang et al.
(2024), and HuatuoGPT-o1-70B/72B Chen et al.
(2024b) (if available). These represent the cur-
rent best open medical LLMs (some claim parity
with GPT-4).

It is worth noting that some of these baselines
(e.g. HuatuoGPT-o1 Chen et al. (2024b), UltraMed-
ical Zhang et al. (2024)) involve complex training
regimes (RL or extensive preference tuning), and in
cases like Med42 and OpenBioLLM, they incorporate
expert feedback. Our approach does not, so beating
or matching them would be a strong indication of the
power of test-time scaling.

Inference. We use SGLang as our inference engine.
We use bfloat16 precision and greedy sampling
(i.e., temperature=0) for inference. A fixed seed of
42 is used during inference. The prompt format is:
"{Question}\n{Options}\n{Instruction}". We
format options as: "A. yes\nB. no\nC. maybe".
The default instruction is:
"Return your final response within \\boxed

{{}}." For chain-of-thought inference with
baseline LLMs Qwen2.5 7B/32B/72B In-
struct, we update the instruction to:
"Let’s think step by step. Return your final

response within \\boxed{{}}.".

Answer matching. We try to directly extract the
answers from "\\boxed{{}}". If the extraction fails,
we follow Chen et al. (2024b) to match answers via
regex. If multiple answers are matched, we only
choose the first one.
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Appendix C. Failure Case of Budget
Forcing

We illustrate a failure case of budget forcing in Fig-
ure 7. Initially, the model arrives at the correct
answer with concise and accurate reasoning. How-
ever, when forced to continue thinking for longer, the
extended reasoning introduces confusion and incor-
porates incorrect anatomical associations, ultimately
leading to the wrong answer. This highlights a key
limitation of budget forcing in medical QA: more rea-
soning does not always equate to better reasoning.

Figure 7: A failure case of budget forcing.
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Table 4: The statistics of sample domain for m1K and m23k.

Domain
m23K m1K

MedQA PubMedQA HeadQA MedMCQA Summation MedQA PubMedQA HeadQA MedMCQA Summation

Abnormalities 24 1 0 646 671 10 1 0 10 21
Administration & Dosage 9 0 3 590 602 6 0 3 9 18
Adverse Effects 116 2 2 936 1,056 9 2 2 7 20
Agonists 2 0 1 20 23 2 0 1 13 16
Analogs & Derivatives 1 0 0 10 11 1 0 0 10 11
Analysis 2 2 14 222 240 2 2 2 6 12
Anatomy & Histology 17 0 3 2,328 2,348 10 0 3 11 24
Antagonists & Inhibitors 14 0 2 113 129 7 0 2 6 15
Biosynthesis 4 0 3 73 80 4 0 3 6 13
Blood 45 1 0 360 406 7 1 0 12 20
Blood Supply 19 0 0 228 247 6 0 0 8 14
Cerebrospinal Fluid 7 0 0 34 41 4 0 0 10 14
Chemical Synthesis 0 0 5 1 6 0 0 5 1 6
Chemically Induced 16 0 1 82 99 5 0 1 8 14
Chemistry 0 0 21 342 363 0 0 7 8 15
Classification 0 0 5 341 346 0 0 5 8 13
Complications 73 1 2 625 701 6 1 2 3 12
Congenital 59 0 0 382 441 7 0 0 4 11
Cytology 3 0 1 90 94 3 0 1 18 22
Deficiency 58 1 2 245 306 6 1 2 3 12
Diagnosis 229 1 17 1,681 1,928 2 1 3 4 10
Diagnostic Imaging 25 4 2 720 751 7 4 2 11 24
Diet Therapy 3 1 2 41 47 2 1 2 3 8
Drug Effects 12 0 0 107 119 11 0 0 9 20
Drug Therapy 164 0 6 509 679 1 0 4 5 10
Economics 1 1 1 17 20 1 1 1 11 14
Education 0 1 1 20 22 0 1 1 12 14
Embryology 12 0 1 245 258 7 0 1 6 14
Enzymology 5 0 3 95 103 4 0 1 2 7
Epidemiology 8 0 3 265 276 4 0 3 4 11
Ethics 8 0 2 20 30 5 0 2 2 9
Ethnology 0 0 0 5 5 0 0 0 5 5
Etiology 133 1 5 657 796 4 1 5 3 13
Genetics 66 0 5 293 364 4 0 2 3 9
Growth & Development 8 1 3 245 257 0 1 1 5 7
History 0 0 2 72 74 0 0 2 5 7
Immunology 17 0 2 199 218 10 0 2 7 19
Injuries 12 0 1 430 443 12 0 1 10 23
Innervation 10 0 1 157 168 3 0 1 9 13
Instrumentation 0 0 0 151 151 0 0 0 17 17
Isolation & Purification 0 0 0 7 7 0 0 0 7 7
Legislation & Jurisprudence 0 0 1 204 205 0 0 1 15 16
Metabolism 15 0 5 158 178 1 0 4 5 10
Methods 1 1 3 260 265 1 1 3 9 14
Microbiology 27 0 0 358 385 5 0 0 8 13
Mortality 3 0 0 30 33 3 0 0 5 8
Nursing 0 0 5 6 11 0 0 5 6 11
Organization & Administration 0 1 3 111 115 0 1 3 10 14
Parasitology 5 0 1 209 215 5 0 1 9 15
Pathogenicity 10 0 0 71 81 5 0 0 4 9
Pathology 68 0 2 1,532 1,602 11 0 2 7 20
Pharmacokinetics 4 0 6 99 109 3 0 6 1 10
Pharmacology 31 0 1 315 347 5 0 1 6 12
Physiology 45 1 17 1,168 1,231 5 1 5 13 24
Physiopathology 92 1 3 1,093 1,189 5 1 3 6 15
Poisoning 17 0 0 171 188 5 0 0 7 12
Prevention & Control 17 0 1 131 149 6 0 1 10 17
Psychology 20 1 21 165 207 0 1 1 4 6
Radiation Effects 1 0 0 56 57 1 0 0 23 24
Radiotherapy 0 0 0 28 28 0 0 0 17 17
Rehabilitation 0 0 1 10 11 0 0 1 10 11
Secondary 2 0 0 44 46 2 0 0 6 8
Standards 2 0 0 67 69 2 0 0 10 12
Statistics & Numerical Data 5 1 2 53 61 5 1 2 4 12
Supply & Distribution 0 0 0 10 10 0 0 0 10 10
Surgery 5 2 1 749 757 5 2 1 7 15
Therapeutic Use 5 0 1 230 236 5 0 1 6 12
Therapy 45 2 7 373 427 5 2 3 3 13
Toxicity 2 0 0 29 31 2 0 0 7 9
Transmission 1 0 1 86 88 1 0 1 15 17
Transplantation 0 0 0 31 31 0 0 0 11 11
Trends 0 0 0 1 1 0 0 0 1 1
Ultrastructure 0 0 0 7 7 0 0 0 7 7
Urine 11 0 0 77 88 8 0 0 6 14
Veterinary 0 0 0 2 2 0 0 0 2 2
Virology 12 0 5 90 107 6 0 5 4 15
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