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A APPENDIX

A.1 PARAMETERS AND CONSTRAINTS

Type Index Hardware Parameters Valid Range Meaning

PE
H1 PE mesh-X Factors of # PEs Decide the arrangement of the 2-D 

PE array.H2 PE mesh-Y Factors of # PEs

Local 
buffer

H3
Input entries in Local 

buffer 
0 to # local buffer 

entries Decide the partition of local buffer. 
The partition leads to sub-buffers 
with inflexible sizes. This is useful 
as the latency to access each 
smaller sub-buffer decreases.

H4
weights entries in Local 

buffer 
0 to # local buffer 

entries

H5
outputs entries in Local 

buffer 
0 to # local buffer 

entries

Global 
buffer

H6 Global buffer instances Factors of #PEs Determine the arrangement of 
global buffer, and its connection 
between global buffer and per PE’s 
local buffer (Local buffer of PEs 
along the X-axis shares the 
instances of global buffer along the 
X-axis).

H7 Global buffer mesh-X Factors of PE-mesh-X

H8 Global buffer mesh-Y Factors of PE-mesh-Y

H9 Global buffer block size Factors of 16
Determines the width of a global 
buffer entry

H10 Global buffer cluster size Factors of 16
Determines of the number of 
wider structures where multiple 
entries are ganged into

Dataflow

H11
Dataflow option of filter 

width
1, 2

Options that determine the size of 
filter width in PE’s local buffer

H12
Dataflow option of filter 

height
1, 2

Options that determine the size of 
filter height in PE’s local buffer

Figure 6: Hardware parameters.

Type Hardware Constraints

PE PE mesh-X (H1) * PE mesh-Y (H2)  = # PEs

Local buffer The sum of local sub-buffers (H3, H4, H5) does not exceed buffer size

Global buffer Global buffer mesh-X (H7) * global buffer mesh-Y (H8) =  # Global buffer instances (9)

Local buffer & global buffer
(unknown)

A valid software mapping exists depending mainly on local buffer partition (H3, H4, 
H5) and global buffer arrangement (H6, H7, H8)

Figure 7: Hardware constraints.

Type Index Software Parameters Valid Range Meaning

Loop blocking and 

degree of parallelism

S1 Blocking factors of R Factors of R
Determines the size 

(parallelism) of each type 

of data (inputs, weights 

and outputs) in each 

storage layer (except 

those that are in the 

hardware dataflow).

S2 Blocking factors of S Factors of S

S3 Blocking factors of P Factors of P

S4 Blocking factors of Q Factors of Q

S5 Blocking factors of C Factors of C

S6 Blocking factors of K Factors of K

Loop reorder

S7 Loop order in local buffer
Permutations of 

non-1 factors
Affects the reuse of each 

type of data (inputs, 

weights and outputs) in 

each storage layer.

S8 Loop order in global buffer
Permutations of 

non-1 factors

S9 Loop order in DRAM
Permutations of 

non-1 factors

Figure 8: Software parameters.

B HYPERPARAMTERS FOR BO

In Figure 10 we report the hyperparamters for BO.
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Type Software Constraints

Loop blocking and 
degree of parallelism

Product of all blocking factors of R (S1) equals R of the target neural layer

Product of all blocking factors of S (S2) equals S of the target neural layer

Product of all blocking factors of P (S3) equals P of the target neural layer

Product of all blocking factors of Q (S4) equals Q of the target neural layer

Product of all blocking factors of C (S5) equals C of the target neural layer

Product of all blocking factors of K (S6) equals K of the target neural layer

Buffer capacity (local) Inputs/weights/outputs sizes (S1-S6) cannot exceed corresponding local sub-buffer capacity

Buffer capacity (global) Size of all types of data (S1-S6) does not exceed global buffer capacity

Parallelism
Product of blocking factors in global buffer X-axis (S1-S6) cannot exceed # PEs in X-axis

Product of blocking factors in global buffer (S1-S6) cannot exceed total # PEs

Figure 9: Software constraints.

number of independent trials 5 (HW), 10 (SW)

number of random data points 50 (HW), 150 (SW)

number of warmup data points 5 (HW), 30 (SW)

number of samples for EI 1000

lambda for LCB 1.0

Figure 10: Hyperparamters for BO.

C NEURAL MODEL SPECIFICATIONS.

In Figure 11 and Figure 12 we report the specifications of neural models benchmarked in this paper.

D PARAMTERIZATION OF 2D CONVOLUTION

Listing 14 gives the seven-level nested loop that comprises a 2D convolution.

Figure 17 shows a design point for the CONV4 layer of ResNet. The architecture components are
again the same as in the 1D example, but since the memory footprint is significantly larger, the PE
can no longer capture all data reuse, so the Global Buffer must store large portions of the inputs and
outputs.

E EXAMPLE PARAMETER VECTOR

Below are example vectors of hardware and software parameters our BO optimizes.

F ADDITIONAL RESULTS

F.1 SOFTWARE OPTIMIZATION

In Figure 18 we show more examples of the software optimization over multiple layers of the different
architectures. Our Bayesian optimization formulation consistently outperforms the baselines (Chen
et al., 2018).

F.2 ABLATIONS

In Figure 19 we compare different surrogate models and acquisition functions for Bayesian optimiza-
tion of the software mapping. We found Gaussian processes with LCB to consistently outperform
other alternatives.
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Model Layers Specifications

ResNet

ResNet-K1

Filter size: 3�3
Output size: 56�56
# input channel: 64
# output channel: 64

Stride: 2

ResNet-K2

Filter size: 3�3
Output size: 28�28
# input channel: 128
# output channel: 128

Stride: 1

ResNet-K3

Filter size: 3�3
Output size: 14�14
# input channel: 256
# output channel: 256

Stride: 1

ResNet-K4

Filter size: 3�3
Output size: 7�7

# input channel: 512
# output channel: 512

Stride: 1

DQN

DQN-K1

Filter size: 8�8
Output size: 20�20
# input channel: 4

# output channel: 16
Stride: 4

DQN-K2

Filter size: 4�4
Output size: 9�9
# input channel: 16
# output channel: 32

Stride: 2

Figure 11: Specifications of ResNet (ResNet-18) (He et al., 2016) and DQN (Mnih et al., 2013)

In Figure 20 we investigate the robustness of LCB for software optimization using different values
of �. We found that � = 0.1 tends to be too greedy, but that above � = 0.5, LCB tends to be fairly
robust.
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Model Layers Specifications

MLP
MLP-K1

din: 512
dout: 512

MLP-K2
din: 64

dout: 1024

Transformer

Transformer-K1

dmodel = 512
dv = 32
dk = 32
h = 16

Transformer-K2

dmodel = 512
dv = 64
dk = 64
h = 8

Transformer-K3

dmodel = 512
dv = 128
dk = 128
h = 4

Transformer-K4

dmodel = 512
dv = 512
dk = 512
h = 1

Figure 12: Specifications of MLP and Transformer (Vaswani et al., 2017)

Model Feature name Description

Hardware
mesh_x_ratio The ratio of PE array and global buffer along x-axis

mesh_y_ratio The ratio of PE array and global buffer along y-axis

Software

input_buffer_usage input data size / input (local) buffer size

weight_buffer_usage weight data size / input (local) buffer size

output_buffer_usage output data size / input (local) buffer size

global_buffer_usage all data size / global buffer size

parallelism_ratio_x used parallelism / available parallelism in the x-axis of global buffer

parallelism_ratio_y used parallelism / available parallelism in the y-axis of global buffer

Figure 13: Extra features used by the hardware and software BO optimizers.

f o r n i n [ 0 :N)
f o r k i n [ 0 :K)

f o r r i n [ 0 : R)
f o r s i n [ 0 : S )

f o r p i n [ 0 : P )
f o r q i n [ 0 :Q)

f o r c i n [ 0 : C)
o u t p u t s [ n ] [ k ] [ q ] [ p ] += w e i g h t s [ k ] [ c ] [ s ] [ r ] ⇤

i n p u t s [ n ] [ c ] [ q+s ] [ p+ r ]

Figure 14: Computing a 2D convolution with a seven-level nested loop.
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R=3

P=14

C=256

C=256
P+R-1=16

Weights Inputs Outputs

x9

PE

x3*3*256*256
x16*16*256
x14*14*256

Global Bu!er

for(q=0; q<14; q+=1)
 for(p=0; p<14; p+=1)
  for(s=0; s<3; s+=1)
   for(r=0; r<3; r+=1)
    for(c3=0; c3<2; c3+=1)
     out[k][q][p] += in[c0+c1+c2+c3][q+s][p+r] *
                      w[k][c0+c1+c2+c3][s][r]

for(k=0; k<256; k+=1)
 for(c1=0; p<128; p+=8)
  parallel_for(c2=0; c2<8; c2+=2)

for(c0=0; c0<256; c0+=128)

c0,c1,k
c2

DRAM

c0

2D Convolution

= temporal = spatial

x9

PE

x9

PE

x9

PE

x16*16*128
x14*14*256

S=3

Q=14

K=256

1

Q+S-1=16
K=256

Figure 15: An architecture computing the CONV4 layer of ResNet.

Index Type Range of Values
1 int Factors of 256
2 int Factors of 256
3 int 0-220 (total local buffer size)
4 int 0-220 (total local buffer size)
5 int 0-220 (total local buffer size)
6 int Factors of 168
7 int Factors of H1
8 int Factors of H2
9 int Factors of 16
10 int Factors of 16
11 categorical 0, 1
12 categorical 0, 1

Figure 16: An example vector of hardware parameters. Please refer to Figure 6 for more detailed
descriptions.

Index Type Range of Values
1-2 int Factors of 3
3-4 int Factors of 3
5-6 int Factors of 28
7-9 int Factors of 28
10-12 int Factors of 128
13-17 int Factors of 128
18 categorical 0-1
19 categorical 0-5
20 categorical 0-1
21 categorical 0-1
22 categorical 0-23

Figure 17: An example vector of software parameters (with ResNet-K2). Please refer to Figure 8
for more detailed descriptions. In this example, parameters 1-17 correspond row-wise to S1-S6
respectively, parameters 18-20 correspond to S7, and parameters 21 and 22 correspond to S8 and S9
respectively.
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(a) ResNet-K1 (b) ResNet-K2 (c) ResNet-K3

(d) ResNet-K4 (e) DQN-K1 (f) DQN-K2

(g) MLP-K1 (h) MLP-K2 (i) Transformer-K1

(j) Transformer-K2 (k) Transformer-K3 (l) Transformer-K4

Figure 18: Software mapping optimization on ResNet, DQN, MLP, and Transformer. The Y-axis
shows the reciprocal of energy-delay product (EDP) (normalized against the best EDP value). Higher
is better.

(a) ResNet-K2 (b) ResNet-K3 (c) ResNet-K4

Figure 19: GP with different surrogate models and acquisition functions.

18



Under review as a conference paper at ICLR 2021

(a) ResNet-K2 (b) ResNet-K3 (c) ResNet-K4

Figure 20: LCB acquisition function with different lambda values.
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